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Abstract

Localization algorithm

To effectively localise a source node in a dense wireless tiny-sensor network with an arbitrary 2D/3D node distribution,
a novel approach suitable to describe the hop progress of source-to-sink path in such a system is proposed. In this
approach, the network topology is described as a regular lattice and relates the statistical parameters of the hop count
in the source-to-sink propagation path to the fractal properties of a percolating cluster. Based on this approach, a
mathematical model is developed to estimate the probability P(r, t) of successful reception of the message by a sink
node spaced at distance r from a source in a given time t. The accuracy analysis of the positioning method
demonstrates its high performance for the very broad spectrum of values of the occupation probability pocc.
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1 Introduction

At present, environmental sensing using electromagnetic
waves can be performed using two different approaches.
The first approach implies the use of devices that sense
an environment remotely (e.g. radars or lidars). Another
approach requires a number of sensor nodes, which
are distributed in an application area, perform sensing
directly inside the phenomenon and wirelessly commu-
nicate with each other and with the external reference
nodes (sinks). The collected local data are then transmit-
ted through such a wireless sensor network towards an
end user in a multihop fashion. The ability to operate
and monitor in harsh, complex and inaccessible environ-
ments makes the latter approach more promising and
ensures a wide range of applications for wireless sen-
sor networks. In particular, there already exist low-end
sensor-network-based solutions aiming to detect a sniper
location [1], monitor volcano intensity [2], protect for-
est against fire [3], control water waste in homes [4] and
the like [5]. All these actual sensor networks consist of
a small number of macro-scale nodes with their posi-
tions carefully engineered or pre-determined and capable
of coarse-grained sensing. Further development of such
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sensor networks towards a wireless tiny-sensor network
(WTSN) with superior fine-grained sensing capabilities
would enable a wide spectrum of appealing applications
in civil engineering and the health-care sector [6]. Simi-
lar to its macro-scale counterpart, each node in a WTSN
integrates a sensing, processing and communication unit
and a power source [7]. Due to its size restrictions, the tiny
node imposes severe constraints on its power component
[8]. Since the communication coverage of such a node is
thus very limited, the WTSN is foreseen as a swarm of
densely deployed nodes within an application area: due
to the high node density, the network can still support a
long-distance transmission using multihop communica-
tion. The simple functionality of tiny nodes implies that
the WTSN topology cannot be retrieved (a node has no
energy to reconnoitre its surroundings). A large number
of these nodes in turn entails that a random scattering
over the area to be monitored is the most convenient or
perhaps the only option to deploy them. All these features
make the WTSN very distinguishable from the current
sensor systems. Therefore, novel solutions at the network-
ing level are needed to transfer and extract information
gathered by the WTSN.

In particular, an efficient method capable of localising
a transmitting node in the WTSN is required. The use
of GPS on all nodes is unacceptable in terms of energy
resources, node dimensions and its inability to operate
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indoor, so other techniques have to be considered. At
present, there are two such major GPS-free techniques
for positioning in multihop environments: centralised and
distributed localisation. In the first approach, all ranges
between all nodes in the network are measured, marked
by unique node numbers and are transmitted to a global
central unit, which processes and computes the location
of each node in the network [9-11]. Evidently, the cen-
tralised approach is not a good candidate for the WTSN
since it requires a very large communication overhead.
Distributed localisation algorithms [12-15] require com-
munication and ranging only with direct neighbouring
nodes and are in general more robust and energy effi-
cient than centralised schemes. With distributed localisa-
tion, each node in the network is capable of processing
and computing to remove a lack of reliance on a sin-
gle point of possible failure and provide with an opti-
mum load balancing. Both approaches mentioned above
require a large amount of energy to perform the prereq-
uisite self-organization stage since the nodes must recon-
noitre their surroundings to form a network topology.
Due to modest processing capabilities and very limited
energy resources of the nodes, the distributed localisa-
tion however becomes unaffordable and impracticable
for the WTSN. In view of this, we propose a pioneer-
ing approach to estimate the location of a source node in
the WTSN with arbitrary positions of nodes without con-
suming extra energy on the self-organization step. This
approach employs an analysis of hop progress in such a
network and uses time differences of last-arriving signals
to its borders to position a source (initially transmitting)
node.

Due to the complexity and the unknown locations of
sensor nodes, determination of the hop count in the
source-to-sink path of the WTSN is intractable with exist-
ing solutions, which are based on statistical laws (e.g. the
Poisson distribution). Models available in the literature on
the probabilistic analysis of the hop count in a large-scale
and decentralised system are currently limited to two-
dimensional (2D) networks. In particular, the probability
of establishing a connection of a given length through a
planar network with uniformly distributed nodes with a
given number of hops has been investigated in [16]. There
it was shown that node density does not greatly affect the
hop count but has a huge effect on whether a connection
can be made at all. In turn, the distribution of Euclidean
distances to the nth node in a Poisson process is studied
in [17]. For homogeneous sensor networks, the connec-
tivity probability in one or two hops is derived and the
connectivity in multiple hops is examined with analyti-
cal bounds in [18]. In [19], the distribution of the hop
distance and its expected value in uniformly distributed
networks are analysed by means of numerical simula-
tions. The results indicate that directional nodes might
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substantially decrease the hop count compared to omni-
directional ones, although the connectivity of a large-scale
sensor system will degrade. Hence, as there are merely
solutions suitable to determine the hop count in specific
2D WTSN structure, which require heavy computational
resources to treat large-scale networks, a different model
capable of analysing the source-to-sink multihop path in
a 2D/3D WTSN and obtaining its hop count in a low-
cost manner is developed here. It is notable that the model
capable of analysing the hop progress can also be used
to estimate the time required to pass a message through
the WTSN and reach a sink node as well as determine
other relevant parameters, such as degradation of network
throughput and raised source localization cost [20-22].

In the proposed model, the WTSN topology is mapped
to a regular lattice, where each lattice site is occupied
by a sensor node with certain occupation probability. By
relating statistical parameters (such as mean and vari-
ance) of the source-to-sink hop count to fractal properties
of the percolating cluster in the corresponding lattice,
the probability P(r,t) of successful reception of sensed
data by a sink node spaced at Euclidean distance r from
a source in a given time interval ¢ can in particular be
estimated. This probability quantifies the source-to-sink
channel in the WTSN and may be regarded as a mea-
sure of the network reliability. Based on the hop progress
model, the new positioning algorithm that requires
no energy on the self-organization step is eventually
proposed.

The remainder of the paper is organized as follows.
Concepts of percolation theory and the system mod-
elling from the percolation perspective are discussed in
Section 2. In Section 3, a technique to determine the hop
count of the source-to-sink channel in a WTSN and the
probability P(r,t) is developed, whereas simulation and
numerical results are provided in Section 4. Finally, the
source-positioning method for the WTSN is introduced
and discussed in Section 5, whereas the paper concludes
in Section 6.

2 System model

In the WTSN, the sensed data spreads through the flood-
ing protocol (i.e. a node transmits a signal either when
it is triggered by its sensor or when a signal is received
from neighbouring nodes [23]) as it is the most suitable
way for a network with unknown node topology. To min-
imize interference overhead, a node is regarded not to
broadcast the same message twice if it comes from differ-
ent transmitting nodes with a delay in time. Each node is
assumed to radiate omnidirectionally with a coverage dis-
tance b;, meanwhile the region covered by the WTSN is
represented by a regular lattice structure with a given lat-
tice spacing a, (in the following, the suffix d indicates the
dimension).
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In this paper, the 2D area of interest is discretized in
a regular square lattice with a; = bz/ﬁ, and thus,
the amount of sites to be reached through an one-hop
link (i.e. adjacent) is limited by the node degree number
my = 8 (Figure 1a). In turn, the 3D application space
is simplified to a regular cubic lattice with a3 = b3/+/3,
and consequently, the number of adjacent sites is lim-
ited to m3 = 26 (Figure 1b). Both selected structures are
chosen so to be conceptual since any square/cubic lat-
tice with lattice spacing ay < by /2 (a3 < b3/+/3) can
be converted to such a corresponding structure using the
position-space renormalization group technique and be
subsequently resolved [24].

Due to the regularity, the probability that a site of
this lattice is occupied by a node is uniform and can be
obtained as pocc = p-(ag)?, where p is the given node den-
sity [m’d], and (a,)? indicates the d-dimensional space
occupied by a single site. Two occupied sites are inter-
connected only if either there exists a one-hop link or
both of them share such links with another occupied site.
The one-hop link exists solely when the sites are spaced
at a distance less than b, while occupied sites separated
by a large range (i.e. 3> b,) can still establish a connec-
tion through a multihop channel. The occupied sites form
clusters in the lattice. When the occupation probability
Pocc is small, there is a sparse population of occupied sites,
and clusters composed of small numbers of these sites
predominate. However, by increasing pocc, more occupied
sites become interconnected and thus become part of the
same cluster. Eventually, for pocc to be large enough, the
lattice experiences a critical phase transition: i.e., once
Pocc reaches the percolation threshold p, an infinitely
large percolating cluster of interconnected sensor sites
emerges for the first time [25]. For a finite-sized lattice,
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this cluster is bounded by the lattice edges, thus also called
the spanning cluster [26]. The percolation threshold value
P depends merely on the lattice geometry and the ‘lattice’
node coverage: the number and organization of sites are
interconnected through a one-hop link. Note that due to
an exceedingly complex structure of the percolating clus-
ter in higher dimensions, it is cumbersome to determine
the percolation threshold analytically except for the 1D
and a few 2D lattices [27]. In this respect, the value p, is
typically estimated via a numerical experiment.

When pocc < pc, the WTSN is basically fragmented,
i.e. composed of many disjoint clusters. Therefore, due
to the finite size of a cluster, in which the source node
is located, the probability to receive sensed data abruptly
goes to zero with increasing source-to-sink separation. In
this way, such a sensor network is unreliable and its mod-
elling will not be treated in this paper. Once pocc > pe, the
WTSN becomes a dependable system since at any source-
to-sink distance, there always exists a multihop channel
between two arbitrary chosen occupied sites when they
belong to the percolating cluster. Hence, the probability
P(r,t) that a node at Euclidean distance » from a source
receives a message in a time interval ¢ can be decomposed
as

P(r,t) = p(r,t) - p2, 1

where pg is the probability a site belongs to the perco-
lating cluster (the power of two is due to the fact that
both source and sink nodes must be part of this clus-
ter), whereas p(r,t) is the probability a signal conveyed
through such a cluster is received within the time inter-
val ¢ by the sink node at the distance r from the source.
The analysis of p( is carried out in Section 4, while the
probability p(r, t) is modelled in the next section.

(a)

empty ones are drawn in white.

(b)

Figure 1 Node coverage is mapped to a regular lattice at (a) 2D surface and (b) 3D space. Occupied sites are indicated in black, whereas
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3 Signal flooding modelling

The probability p(r, ¢) is determined based on the diffu-
sion process defined on the sites of a percolating cluster.
In particular, the time variable ¢ is considered discrete.
Note that the time unit is determined by the processing
delay time in a sensor node At as it is much larger in gen-
eral than the propagation time. In other words, at each
time unit At, a message is regarded to hop from its cur-
rent positions to adjacent occupied sites, i.e. the signal
propagates in a flooding manner. Hence, in time interval ¢,
the sensed signal propagating in a wavefront manner per-
forms i = |t/ At] hops and the occupied nodes, which are
eventually reached, form an aggregation. For the sake of
understanding, such a particular aggregation for # = 20 in
the 2D lattice of interest with pocc = 0.5 is demonstrated
in Figure 2.

Since any aggregation is obviously inscribed by a circle
(or a sphere for 3D) with its centre coincided with a source
site and radius of / - b, the probability p(r, t) is a non-zero
value only when the number of hops % in time interval ¢
exceeds the minimum hop count n = [r/b] required to
cover a distance r. To reach a sink node spaced at r in the
minimum number of hops # = n with probability 1, it is
required to have no empty sites in a lattice (i.e. pocc = 1)
in order to transmit a signal between sites which are
merely located along the source-to-sink direction; thus,
the resulting multihop path is a straight line and its frac-
tal degree is equal to 1. For a lattice with pocc < 1, the
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Figure 2 Aggregation of the occupied nodes for h = 20 in the 2D
lattice characterised by pocc = 0.5. The blank sites are drawn in
white; the occupied sites are shown in black. The sites, which belong
to the aggregation, are depicted in light grey, while the origin node is
displayed in dark grey.
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presence of blank sites implies that the fractal degree of
the source-to-sink multihop path exceeds 1, and as a con-
sequence, 1 > n hops are needed to cover the distance r.
Evidently, in the worst case scenario, the probability p(r, t)
has to be related to the multihop path with the highest
fractal degree, which demands the largest number of hops
h for reaching the sink at distance r. Since such a ‘longest’
path is composed of the sites situated on the hull of a
percolating cluster, statistical parameters of the source-
to-sink path can directly be associated with the fractal
properties of this cluster hull. As shown in [28,29] and
verified in Section 4, the hop count of a path through
a cluster hull is typically distributed according to the
Gaussian law. Therefore, the multihop path of interest can
be defined in terms of its mean and variance, and the
probability p(r,t), which is regarded as the cumulative
distribution function of its hop count, is expressed as

(u — p)?

752 :|du,h>n, 2)
o

h
1
pr,t) = W/E/exp[

where u and o are the mean and variance corresponding
to the hop count in the ‘hull’ multihop path, respectively.
The parameter / is the actual number of hops made in
time ¢, while the minimum number of hops needed to
cover the source-to-sink distance r is equal to n. Hence,
the probability p(r, t) increases monotonically from zero
(h < n)tol (h > p), where u formally corresponds to
the average number of hops to be made to reach the sink
node through a ‘hull’ multihop path.

Since the hull of a percolating cluster does possess frac-
tal properties [29], fractal principles demand that the
parameters i and o, which describe the multihop path
composed of sites appertaining to the cluster hull, are
expressed via n as follows (this conclusion is also sup-
ported through calculations in [30]):

=c, - n,
T 3)
0 =c¢y-n',
where ¢ and d are, respectively, the effective amplitude
and the fractal (or Hausdorff) dimension of the Gaussian
parameters u and o. Hence, Equation 2 for p(r, t) can be
rewritten using Equation 3 as

1
- x
Co N /21

h

2
(u—c i)
x/exp|:202::2da dl/l,h>}’l.
o

n

p(r,t) =
(4)

As can be seen in Equation 4, the probability p(r,t)
can be determined once the effective amplitudes c, ¢,
and the fractal dimensions d,,d, are known. Such frac-
tal parameters merely depend on the lattice geometry and
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are estimated by means of numerical experiments (the
modelling is simple and shown in Section 4). It is also
notable that once these parameters are known, the prob-
ability p(r,£) can be assessed for any distance r without
extra numerical simulations as the fractal parameters are
independent of the source-to-sink separation. This is an
essential advantage of the proposed model since; unlike
other simulation solutions, it can treat a very large-scale
sensor network in a simple way.

4 Numerical analysis

The percolation threshold p. and the size of a percolating
cluster are numerically explored as both coefficients are of
particular interest: the value p, distinguishes percolating
from fragmented systems, while its size is directly related
to the probability p that an occupied site belongs to the
percolating cluster. To determine the fractal parameters
related to the cluster hull, the hop count of a multi-
hop path only composed of sites belonging to the hull is
investigated as well.

To estimate these parameters, a set of Monte Carlo sim-
ulations are carried out. Due to computer limitations, the
largest source-to-sink distance of a 2D lattice being anal-
ysed is 2,000 sites, whereas that of a 3D system is bounded
by 500 sites. To get accurate results, each set of numerical
experiments requires Q = 3,000 iterations. Per simula-
tion, a signal is only transmitted to the adjacent occupied
sites, which are found based on the left-hand maze rule
in order to keep its propagation along the cluster hull (by
keeping the left hand in contact with one wall of a maze,
the player is guaranteed not to get lost and will reach a
different exit if there is one). Once there exists a multihop
path between the source site and sink spaced at distance
n, the outcome is assumed to be successful and the hop
count /4 of this path is stored. After applying this pro-
cedure Q times, the value p. is determined as the ratio
between the number of successful outcomes and the total
number of iterations, while the mean value x and the stan-
dard deviation o are eventually determined through using
their common representations.

The percolation threshold of a 2D structure is found to
be equal to p. = 0.4073 £ 0.0007. This result is in
agreement with the data presented in [31]. The percola-
tion threshold of a 3D lattice is significantly less than p.)
and determined to be p.3y = 0.0977 £ 0.0008. The fur-
ther estimations are performed under the assumption that
the occupation probability po.. exceeds the percolation
threshold to ensure that a percolating cluster arises.

The probability p that a site belongs to the percolat-
ing cluster directly corresponds to the ratio of the number
of sites in this cluster and the total number of occu-
pied sites. The size of a percolating cluster is determined
from numerical simulations on a square and cubic lat-
tice, whereas the amount of occupied sites is consequently
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expressed as pocc n?, where d is the lattice dimension. To
understand the behaviour of the probability p., the size
of a percolating cluster is in particular analysed for differ-
ent values of p,cc and lattice dimensions. For a 2D and 3D
structure, the probability that the starting node belongs to
the percolating cluster is found to be reasonably less than
1 in the vicinity of the percolation threshold p. (Figure 3).
Nonetheless, for both lattices of interest, the value of p
rapidly tends to 1 once the occupation probability pocc
increases. In other words, with raising pocc, the level of
disjoint clustering in a lattice considerably decreases as
more and more occupied sites become part of the perco-
lating cluster. Hence, although pj never strictly equals 1 as
long as some randomness occurs in a WTSN (poec < 1),
for practical applications, the probability p. can be sup-
posed to be about 1 since a node density would be chosen
such that pocc is reasonably larger than the respective p,
for ensuring network connectivity. Note that we however
rely on the actual values of p to obtain accurate results
here.
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Figure 3 The probability that a site belongs to the percolating
cluster for (a) 2D and (b) 3D lattices of interest.
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For any lattice, the fractal dimensions 4, and d, are
found to reach their maxima when the probability pocc is
near the percolation threshold p, and become minimum
when pocc tends to 1. The reason for such a behaviour is
that by increasing the probability poc., we decrease the
degree of randomness in a network, and consequently, the
mean number of hops u moves to 7 as well as the value
of o decreases to zero. To demonstrate that the fractal
dimension is the prime characteristic which affects the
rate of increase of u and o with increasing the value n,
the fractal parameters for both 2D and 3D lattices are
obtained by fitting the mean and variance of the hop count
h calculated for different # to Equation 3. These results
are shown in Figure 4 (only for u), whereas the estimated
parameters are indicated in Table 1. Also note that such
a fractal behaviour is not seen for small hop distances #
since the percolation theory requires a great number of
entities to become applicable. In particular, according to
the numerical experiments, it is suggested to keep # larger
than 50 to be able to use this approach.
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Figure 4 Dependence of average hop count x on lattice
dimension for (a) 2D and (b) 3D structures.
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Table 1 Fractal characteristics of 2D and 3D lattice
structures

Fractal parameters Values

Pocc2) 041 042 045 050 060 090
e 05736 08393 14337 15947 14389 10169
du2) 13469 12631 11116 10410 10041 10007
o) 01252 02560 1.1821 19558 16301 0.2291
o) 13921 12470 08479 06343 05178 05022

Pocc(3) 010 012 014 017 020 030
) 0.1245 13137 15666 14140 12569 10556
dus) 17956 1.1650 10508 10116 10041 10004
o) 00153 17925 27176 19873 11938 03684
do(3) 20603 08296 05788 05038 05033 05025

The Kolmogorov-Smirnov criterion is applied to test the
suitability of the Gaussian distribution to the random dis-
tributions of the hop counts /4, and /3 for the 2D and 3D
systems, respectively. For the sake of curiosity, other major
statistical hypotheses are considered as well. In particular,
the lognormal distribution fits best both the random dis-
tributions of the hop counts. Meanwhile, it has been found
that the normal distribution fits well to the calculated
random data sets and can fairly describe the arbitrary
behaviour of the hop counts /sy and /3 only if pocc is more
than 0.5 and 0.14, respectively (Figure 5). Nonetheless,
the assumption of normally distributed parameter p(r, t)
in Equation 4 is valid, and thus, the model still furnishes
proper results for the very broad spectrum of pocc.

To better understand the actual impact of randomness
on the WTSN, a ‘tortuosity’ level of the multihop path
along the hull of the percolating cluster is introduced as
A = p/m and analysed as a function of the probability
Pocc and the hop distance n (Figure 6). As can be seen,
the larger the distance # and the smaller the probability
Pocc, the more convoluted is the hop count of the path
between a source and sink node. Meanwhile, at large val-
ues of pocc, the randomness impact significantly decreases
as A is close to 1 and only slightly varies with changing
the source-to-sink distance 7. In other words, when pgcc
is in the vicinity of the percolation threshold, the proba-
bility P(r, £) becomes negligible since (a) the value of p is
small and (b) for a large source-to-sink separation r, the
probability p(7, £) is also small due to the high tortuosity of
the multihop path of interest. Hence, the WTSN with pgcc
being about p, seems to be out of interest from a practical
perspective. Once pocc reasonably exceeds the percolation
threshold, the probability P(r, t) is mainly determined by
the parameter p(r, £) since the value p is close to 1. For
2D and 3D lattices, the probability P(r, ¢) is calculated and
shown in Figure 6c,d. As can be seen, the initial value
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Figure 5 The random distribution histograms are plotted for the 2D lattice of dimension n(;) = 500 with (a) pocc(2) = 0.42 and (b)
Poce(2) = 0.50. For the 3D lattice, the dimension n(3) = 300 and the occupation probabilities (€) pocc3y = 0.10 and (d) pocc3) = 0.14. A Gaussian
distribution approximation is depicted in bold, whereas a line following a lognormal distribution is of standard thickness.

of pocc considerably affects such a probability: in partic-
ular, the value of P(r,t) increases pretty fast by slightly
increasing pocc. From this point, it follows that to meet
a common criterion of WTSN-based applications, i.e. to
receive a signal with a high probability, it is better to
add extra sensors and increase the value pocc rather than
expand the time interval ¢£. Another fact to be empha-
sised is that the dimensionality significantly affects the
characteristics of a percolating cluster, e.g. d,(3) decreases
much faster than d,(2) with increasing occupational prob-
ability due to having an extra degree of freedom in 3D
networks. Note also that the Gaussian distribution of the
multihop path, which is derived from the results of Monte

Carlo simulations, is depicted in markers in Figure 6c,d
and corresponds to pocc2y = 0.45 and pocc3) = 0.12,
respectively.

Eventually, once the parameters r and ¢ are speci-
fied, the lowest density of nodes (i.e. the minimum
value of pocc) needed to keep the probability P(r,t)
above a given threshold can be determined by using
the proposed model. Alternatively, for a given node
density and time interval ¢, the distance r in the net-
work can be obtained so that the probability P(r,?)
still exceeds some specified level. Since the probabil-
ity P(r,t) can basically be considered as a good indica-
tor for the performance of a large-scale sensor network,
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Figure 6 The tortuosity parameter A and the probability P(r, t) for 2D (a, ) and 3D (b, d) lattices. For panels (c) and (d), the source-to-sink

separation is n = 700.

the proposed model is relevant for handling such a sys-

tem. The source-to-sink path with the maximum num-

ber of hops, which can be rigorously defined through
the fractal characteristics of the hull of the percolating
cluster, is also important from a communication per-
spective as its modelling helps to avoid inter-message
interference in the WTSN (i.e. the source node must send
more than one message to complete its report). How-
ever, the proposed model is not limited to such predic-
tions on communication properties of a WTSN but also
can be used to effectively position a source node in this

network.

5 Source-positioning method

Once a source node in the WTSN triggers, its posi-
tion is assumed to be detectable only when this node
is located at one of the network borders (i.e. an end
user can only get access and treat such ‘outward’” sensor
nodes). If a message originates from one of the ‘inward’
nodes, there is no direct way to localise this node as it
is inaccessible from an end user point of view. Nonethe-
less, if such an ‘inward’ source belongs to the percolating
cluster, the originating message spreads throughout the

WTSN and is only terminated by the lattice borders.
By using the data collected at these borders and apply-
ing the developed model of hop progress in the WTSN,
the position of the inward source node can reliably be
estimated.

The positioning algorithm is, in particular, described for
the 3D WTSN. For the sake of simplicity, it is assumed
that this area can be represented by a regular lattice of
N; x Nj x Ni. Once the inward source node with coor-
dinates (i,j, k) belongs to the percolating cluster, a sig-
nal originating from it and spreading within this cluster
reaches all the lattice borders after all (Figure 7). Here-
inafter, let us focus on the determination of parameter
i as the values of j and k can be estimated in a simi-
lar manner. Evidently, the absolute times of last arriving
signals at the left and right borders, denoted as #; and
t, are simply measured (without loss of generality, we

may also suppose that f; > f). As discussed, these time

values reflect the product of At and the hop count of
the corresponding peripheral path. In this way, since hop
counts /1 and /4, are normally distributed parameters, the
delay difference time A¢; = # — ¢ is also distributed
by the Gaussian law, and thus, its mean value p(A¢;)
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distribution quantile function (as all these parameters
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where Z, is the normal distribution quantile for a known
y confidence level p. Since the total number of sites in the
‘ lattice is N;-Nj-Nj, the ratio between the confidence region

=
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Figure 7 ‘Hull’ multihop paths to the left and right (opposite)
borders in a 3D WTSN. The network is simplified by a lattice of
dimension N; x N; x N, and a source node is situated in (i,j, k) site.
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where effective amplitudes c,,(3) and ¢, (3) and the fractal
dimensions d,,(3) and dy(3) are obtained as described in
Section 4. In this context, the coordinate i of the source

node can be calculated by measuring the delay times ¢ and 10000
t; and solving Equation 5 with u(A¢) = # — ¢ Other
coordinates j and k can be determined in the similar fash- 2 8000
ion by assessing the delay times Az and At between the =
respective lattice boundaries. g
From Equation 6, by taking {0 (At)}/3i = 0, it fol- | & 6000
lows that the maximum standard deviation in sites for 5
the relative time A¢; is given as follows (this derivation is 8 4000+
thoroughly discussed in [30]): E
cooay - NP©® .-OE) 2000 -
Omax(AL) = G(B)—id - Nj. (7)
cue - N
The maximum standard deviation for Af; and Afy is 1000.5 0.6 0.7 0.8 0.9 0.99
obtained using the same equation but substituting N; The confidence level, p

with Nj and N, respectively. In this regard, the accuracy (b)

of the proposed positioning method can be numerically

tested by comparing a confidence region of signal ori- Figure 8 Accuracy of source localization (the ratio between the

gin to the entire lattice area. The confidence region is confidence area and the ent?re I;ttlce ;rea).Thls character@tlc is
K db . h . dard deviati ¢ shown as a function of the lattice dimension n() and the confidence

estimated by using the maximum standard deviation o level p when (a) poce(z) = 045 and (b) poce(z) = 0.5 from [32].

each of three parameters At;, Atj, Aty and the normal
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and the entire lattice area is simplified from Equation 8 as
follows:

d, dy (3) dy:
A 73, 0B A ARCOR co3) - N
® =2, : .

)4 d,,,(g) d,3) dy ) ’
cu@3) - N; ) - N; ue3) - Ny

)

Evidently, the accuracy of the positioning method for
the 2D WTSN can be treated in the same way as above.
The ratio A(y) is thus reduced from Equation 9 and has
the squared Z, and no term containing Nj due to the two
dimensionality.

The analysis of results suggests that the proposed posi-
tioning method technique is limited to the cases when
the fractal dimension d(2,3) is smaller than the value of
d(2,3)- Otherwise, the algorithm becomes inaccurate and
unstable as the value of Ay 3) would diverge with increas-
ing the lattice sizes. This requirement puts a limit on the
occupation probability, such as according to Table 1 for
the lattices of interest pocc(2) > 0.42 and pocez) > 0.11.
Note that due to the fast decrease of d,; () with increasing
occupational probability, the algorithm accuracy notice-
ably improves once pocc(2) is moderately larger than the
percolation threshold (see Figure 8). For 3D WTSNS, this
accuracy refinement is even more substantial due to an
extra dimensionality.

6 Conclusions

In this paper, we propose a novel method to obtain in
a simple manner the worst case number of hops of the
source-to-sink path in a very large-scale network with an
arbitrary network complexity and the unknown locations
of the wirelessly connected nodes. The model assumes
that the network topology can be represented by a regular
lattice, where each lattice site is occupied by a sensor node
with occupation probability pocc. The value poec should
exceed the percolation threshold p. for the emergence of
a percolating cluster. Then, by relating statistical parame-
ters (such as mean and variance) of the hop count of the
source-to-sink path to the fractal parameters of the perco-
lating cluster, the probability P(r, t) indicating a successful
arrival of the sensed signal to a sink node spaced at dis-
tance r from a source within a specified time ¢ has been
mathematically expressed. The simple approach to esti-
mate fractal parameters of the percolating cluster based
on the left-hand maze rule has been used.

The numerical analysis has been performed for 2D and
3D conceptual lattices to better understand the impact of
randomness on a large-scale network. It has been shown
that the network with p,cc being close to p. is an unreli-
able system from an application perspective. Meanwhile,
it has also been demonstrated that the occupational prob-
ability pocc greatly affects the level of randomness in
the network, i.e. the value P(r, t) increases pretty fast by
slightly increasing pocc beyond p.. From this, the practical
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conclusion can be drawn that it is more effective to
increase P(r,t) through adding extra sensors rather than
by expanding the time ¢. The raise of P(r, ) with increas-
ing number of sensors is much faster in 3D network than
that in 2D due to having an extra degree of freedom.
The inverse problem, i.e. the determination of the occupa-
tional probability needed to maintain the required P(r, t),
can also be solved using the developed model. Note that
although the model’s applicability is currently limited by
nodes radiating omnidirectionally, the approach shown
in the paper implies that the model can be expanded to
nodes with directional coverage once the fractal parame-
ters in the respective lattice structure are estimated.

An effective source-positioning method, which can
localise a source node in a large-scale network with arbi-
trary positions of nodes and without retrieving the net-
work topology, has been proposed based on the developed
connectivity model. This localization method, which can
be applied in very large scale networks, exploits the frac-
tal nature of the percolating cluster. The accuracy analysis
of the method has demonstrated its high performance for
the very broad spectrum of values of the occupation prob-
ability pocc. As the counterpart approaches are impartially
restricted to position in very large-scale networks, this
method is the first of its kind to localise a source in these
networks and thus is useful for designing such networks
in the near future.
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