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Abstract

Affine arithmetic (AA) is widely used in range analysis in word-length optimization of hardware designs. To reduce the
uncertainty in the AA and achieve efficient and accurate range analysis of multiplication, this paper presents a novel
refined affine approximation method, Approximation Affine based on Space Extreme Estimation (AASEE). The affine
form of multiplication is divided into two parts. The first part is the approximate affine form of the operation. In the
second part, the equivalent affine form of the estimated range of the difference, which is introduced by the
approximation, is represented by an extra noise symbol. In AASEE, it is proven that the proposed approximate affine
form is the closest to the result of multiplication based on linear geometry. The proposed equivalent affine form of
AASEE is more accurate since the extreme value theory of multivariable functions is used to minimize the difference
between the result of multiplication and the approximate affine form. The computational complexity of AASEE is the
same as that of trivial range estimation (AATRE) and lower than that of Chebyshev approximation (AACHA). The
proposed affine form of multiplication is demonstrated with polynomial approximation, B-splines, and multivariate
polynomial functions. In experiments, the average of the ranges derived by AASEE is 59% and 89% of that by AATRE
and AACHA, respectively. The integer bits derived by AASEE are 2 and 1 b less than that by AATRE and AACHA at most,
respectively.
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1 Introduction
As a method of representing real numbers, floating point
can support a wide dynamic range and high precision of
values. It has been thus commonly used in signal pro-
cessing, such as image processing, speech processing,
and digital signals processing, to represent signals. When
these applications are implemented on hardware for high
speed and stability, the signals need to be represented in
fixed point to optimize the performance of area, power,
and speed of the hardware. Hence, the values in floating-
point need to be converted to those in fixed point. This
process is named as word-length optimization. Its goal is
to achieve optimal system performance while satisfying
the specification on the system output precision. Word-
length optimization involves range analysis and precision
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analysis. The former one is to find the minimum word
length of the integer part of the value, while the latter one
focuses on the optimization of the fractional part of the
word length.
Word-length optimization has been proven to be anNP-

hard problem [1]. It can be usually classified into dynamic
analysis [2-7] and static analysis [8-20]. By analyzing a
large set of stimuli signals, dynamic analysis is applicable
to all types of systems. However, it will take long time on
simulation to provide sufficient confidence. Also, the pre-
cision for the signals without simulation cannot be guar-
anteed. Comparatively, the static analysis is an automated
and efficient word-length optimization method and more
applicable to large designs when compared to dynamic
analysis. The static analysis mainly uses the characteristics
of the input signals to estimate the word length conser-
vatively, which can result in overestimation [12] to some
extent. As a part of word-length optimization, the range
analysis can also been classified in the same way.
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Affine arithmetic (AA) [21] is often used for range
analysis in static analysis. In AA, every signal must be
represented in an affine form, which is a first-degree
polynomial. As AA tracks the correlations among range
intervals of signals, it can provide more accurate word-
length range. This makes it suitable for range analysis of
the result of linear operations. It is noted that besides
linear operations, nonlinear operations, such as multipli-
cation, are also involved in hardware operations, typically
in linear time invariant (LTI) systems. AA cannot pro-
vide an exact affine form for nonlinear operations. To
solve this problem, Stolfi and de Figueiredo [22] proposed
affine approximation methods for multiplication, which
include trivial range estimation (AATRE) and Chebyshev
approximation (AACHA). AATRE is efficient for compu-
tation, but the range produced by it can be four times of
real range at most. The accumulation of the uncertainty
of all signals in the computational chain may result in
an error explosion, which is unacceptable in application.
Such overestimation obviously cannot satisfy the accuracy
requirement of the system, which limits the application of
AATRE in large systems. The uncertainty of AACHA is
less than AATRE, however, it is too complex to be used
in large systems. Since LTI operations are accurately cov-
ered by AA, the proposed method is applied in the field
of the range analysis of word-length optimization in this
paper.
A novel affine approximation method, Approximation

Affine based on Space Extreme Estimation (AASEE), is
proposed to reduce the uncertainty of multiplication and
achieve an accurate and efficient range analysis of multi-
plication in this paper. To analyze the uncertainty conve-
niently, we use two parts to divide the different parts of
all the approximation methods for multiplication, which
include AATRE, AACHA, and AASEE. The first part is
named as approximate affine form, which is approximated
to the nonlinear operation. The second part is named as
equivalent affine form, which is the equivalent affine form
of the estimated range of the difference between the result
of multiplication and the approximate affine form. The
more accurate the two parts are, the more accurate the
approximation method is. Based on linear geometry [23],
it is proven that the proposed approximate affine form is
the closest to the result of multiplication. To derive the
equivalent affine form, we use the extreme value theory
of multivariable functions [24] to estimate the upper and
lower bounds of the difference in space, and the differ-
ence is introduced by the approximation of the first part.
The uncertainty of the proposed method is minimized.
The accuracy of the resulting affine form by AASEE is
higher than that by AATRE and averagely higher than that
by AACHA. Meanwhile, the computational complexity of
AASEE is equivalent to that of AATRE and lower than that
of AACHA.

The rest of this paper is organized as follows. Back-
ground of range analysis for multiplication is presented in
Section 2. Section 3 presents the method of derivation of
the two parts for multiplication. The refined affine form
of multiplication, AASEE, is presented in next section. In
Section 5, we compare the computational complexity and
the accuracy among AASEE to AATRE and AACHA. The
case studies and experimental results are demonstrated in
Section 6. Section 7 concludes the paper.

2 Background
2.1 Related work
Interval arithmetic (IA) and affine arithmetic (AA) have
been widely used in range analysis in word-length opti-
mization.
IA [25] is a range arithmetic theory which is firstly

presented by Moore in 1962. Cmar [2] employs it for
range analysis of digital signal processing (DSP) systems.
Carreras [20] presents a method based on IA. To reduce
the oversized word length, the method provides the prob-
ability density functions that can be used when some
truncation must be performed due to constraints in the
specification. IA is not suitable for most real-world appli-
cations, since it could lead to drastic overestimation of the
true range.
AA [21] is proposed to overcome the weakness of IA

by Stolfi in 1993. In [8,9], Fang uses AA to analyze
word-length optimization. Both range and precision are
represented by the same affine form, which limits the
optimization. Pu and Ha [10] also use AA for word-
length optimization. Simultaneously, they use two differ-
ent affine forms for range analysis and precision analysis,
respectively, and achieve more refined result of word-
length optimization. Similarly, Lee et al. [11] develop an
automatic optimization approach, which is calledMiniBit,
to produce accuracy-guaranteed solutions, and area is
minimized while meeting an error constraint. Osborne
[12] uses both IA and AA for range analysis for different
situations. Computation using either of the two methods
in the design is time-consuming. The problem of over-
estimation is serious due to the approximation of the
nonlinear operations.
Since AA cannot be used in the systems with infinite

number of loops, an improved approach, quantized AA
(QAA), has been proposed in [13] for linear time-invariant
systems with feedback loops. This method can provide
fast and tight estimation of the evolution of large sets of
numerical inputs, using only an affine-based simulation,
but it does not provide the exact bounds.
AATRE [22] is adopted for multiplication in most of

the works for the low computational complexity. But the
uncertainty of the range by AATRE is very large. To adjust
the trade-off between the accuracy of approximation and
computational complexity, Zhang [14] introduces a new
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parameter N in the N-level simplified affine approxima-
tion (N-SAA). This method is faster than AACHA and
more accurate than AATRE, but it is more complex than
AATRE. Furthermore, it is troublesome to choose a suit-
able N. A method of range analysis is proposed by Pang
[26]. This method combines methods of IA, AATRE, and
arithmetic transform (AT); and the result of the method
is more accurate than AATRE, while the CPU implemen-
tation time is longer than AATRE. To deal with appli-
cations from the scientific computing domain, Kinsman
[17,18] uses the computational methods based on Satisfi-
ability Modulo Theory. Search efficiency of this method is
improved leading to tighter bounds and thus smaller word
length.
For all the existing methods, the accuracy of approxi-

mation is improved at the expense of the computational
complexity. This paper presents an affine approximation
method for multiplication, which achieves better trade-off
between accuracy and computational complexity.

2.2 Range analysis
Range analysis involves studying the data range of every
signal and minimizing the integer word lengths for signals
on the premise that the signals in the design have enough
bits to accommodate this range. The range of signal x is
represented by x = [xmin, xmax], where the two real num-
bers, xmin and xmax, denote the lower and upper bounds
of x, respectively. The required integer part of the word
length for signal x, which is represented as IWLx, can be
derived by:

IWLx =
{

�log2(|x|max)� + α, |x|max ≥ 1
1, |x|max < 1

.

where |x|max = max(|xmin|, |xmax|) and

α =
{
1, mod(log2(xmax), 1) �= 0
2, mod(log2(xmax), 1) = 0

.

(1)

In (1), all the signals in the design are assumed to be
expressed as signed numbers, and the sign bit is taken into
account in IWLx. According to (1), once the range of a
signal is decided, the integer part of word length of the
signal can be derived.

2.3 Affine arithmetic
AA is widely applied for range analysis. In AA, an uncer-
tain signal x is represented by an affine form as a first-
degree polynomial [22]:

x̂ = x0 +x1ε1 +x2ε2 +· · ·+xnεn, where εi = [−1, 1] . (2)

For the signal x, x0 is the central value, and εi is the
ith noise symbol. εi denotes an independent uncertainty

source that contributes to the total uncertainty of the
signal x, and xi is its coefficient.
The upper and lower bounds for the range of x can be

represented as

xmax = x0 +
n∑

i=1
|xi|, xmin = x0 −

n∑
i=1

|xi|. (3)

With xmin and xmax, the input interval x̄ = [xmin, xmax] can
be converted into an equivalent affine form as (4), using
only one independent noise symbol.

x̂ = x0 + x1ε1,

with x0 = xmax + xmin
2

, x1 = xmax − xmin
2

.
(4)

AA can keep correlations among the signals of the com-
putational chain by contributing the sample noise symbol
εi to each signal [22].
For multiplication, AATRE and AACHA are typical

approximation methods.
The affine form of AATRE is

x̂ŷ = x0y0 +
n∑

i=1
(x0yi + y0xi)εi +

n∑
i=1

|xi|
n∑

i=1
|yi|εn+1.

(5)

Suppose M1 = max(n1, n2), in which n1 and n2 denote
the number of the noise symbol, whose coefficient is
nonzero, of x̂ and ŷ, respectively. The computational com-
plexity of AATRE is O(M1).
AACHA provides a better approximation result, but it

is more complex. The affine form of AACHA is

x̂ŷ = x0y0 +
n∑

i=1
(x0yi + y0xi)εi + a + b

2
+ b − a

2
εn+1, (6)

where a and b denote the minimum and the maximum of
the range of

( n∑
i=1

xiεi
) ( n∑

i=1
yiεi

)
. SupposeM2 = n1 + n2.

The complexity of computing the both extremal values, a
and b, is O(M2 logM2). As M1 ≤ M2, the computational
complexity of AATRE is lower than that of AACHA [22].

2.4 Extreme value theory
The proposed approximation is based on the extreme
value theory of multivariable functions [24].
According to the extreme value theory of multivari-

able functions, the Hessian matrix of the function, H, and
Jacobian matrix of the function, J , can be used to find
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the local maxima and the local minima. Hessian matrix of
function f (x1, x2, . . . , xn) is

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2f
∂x21

∂2f
∂x1x2 · · · ∂2f

∂x1xn
∂2f

∂x2x1
∂2f
∂x22

· · · ∂2f
∂x2xn

· · · · · · · · · · · ·
· · · · · · · · · · · ·
∂2f

∂xnx1
∂2f

∂xnx2 · · · ∂2f
∂x2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

Here we use H f α to represent H at a point f α =
(xα

1 , xα
2 , · · · , xα

n) and J f α to represent J at a point f α .
A stationary point of f, f α , is a point where J f α = 0. H f α

is indefinite whenH f α is neither positive semidefinite nor
negative semidefinite. If H f α is positive definite, then f α

is a local minimum point. If H f α is negative definite, then
f α is a local maximum point. If H f α is indefinite, then f α

is neither a local maximum nor a local minimum. It is a
saddle point. Otherwise, f α is not utilized in this paper.
The principal minor determinants are used to deter-

mine if a matrix is positive or negative definite or
semidefinite.
It is necessary and sufficient for a positive semidefinite

matrix that all the principal minor determinants of the
matrix are nonnegative real numbers.
It is necessary and sufficient for a negative semidefinite

matrix that all the odd order principal minor determi-
nants of the matrix are non-positive real numbers and all
the even order principal minor determinants of the matrix
are nonnegative real numbers.

3 Derivation of the two parts for multiplication
A generic nonlinear operation z ← f (x̂, ŷ) proposed in
[22] can be described by (8):

z = f (x0 + x1ε1 + · · · + xnεn, y0 + y1ε1 + · · · + ynεn)
= f ∗(ε1, . . . , εn).

(8)

Since the operation f is nonlinear, f ∗(ε1, . . . , εn) cannot
be expressed exactly as an affine combination of the noise
symbols, εi. Under this case, an approximate affine form
of the operation, which is represented as fz, must be used
to approximate f ∗(ε1, . . . , εn). The difference introduced
by this approximation, df = f ∗ − fz, can be expressed by
an equivalent affine form of the estimated range of the dif-
ference, which is represented as d̂. Hence, the affine form
of z can be expressed as

ẑ = fz + d̂. (9)

In (9), fz is a first-degree function of εi and can be
expressed as (10)

fz(ε1, · · · , εn) = z0 +
n∑

i=1
ziεi. (10)

The computational complexity of computing the true
range of df is very high in a practical application. The esti-
mated range of df is utilized instead of the true range. Sup-
pose dmax and dmin denote the upper and lower bounds of
the estimated range of df , respectively. According to (4),
the d̂ can be expressed as (11)

d̂ = z′ +zn+1εn+1 = dmax + dmin
2

+ dmax − dmin
2

εn+1.

(11)

With (10) and (11), the affine form of z can be repre-
sented as

ẑ = fz + d̂ = z0 +
n∑

i=1
ziεi + z′ + zn+1εn+1. (12)

For multiplication, z can be expressed as

z = x0y0+x0
n∑

i=1
yiεi + y0

n∑
i=1

xiεi +
( n∑

i=1
xiεi

)( n∑
i=1

yiεi

)
.

(13)

The first three items of (13) form an affine form and the
last term is a quadratic term. Its affine form can also be
represented as (12).
According to the definition of fz in (10) and d̂ in (11),

AATRE and AACHA can also be represented by fz and d̂.
For AATRE in (5), the fz and d̂ are defined as

fz = x0y0 +
n∑

i=1
(x0yi + y0xi)εi, (14)

d̂ =
n∑

i=1
|xi|

n∑
i=1

|yi|εn+1. (15)

For AACHA in (6), the fz and d̂ are defined as

fz = x0y0 +
n∑

i=1
(x0yi + y0xi)εi, (16)

d̂ = a + b
2

+ b − a
2

εn+1. (17)

In the existing affine approximation methods of AATRE
and AACHA, dmax and dmin are estimated in the XY
plane. In these methods, the same noise symbol of dif-
ferent variables is considered to be independent. Hence,
the range of d̂ is much larger than that of df . The differ-
ence between d̂ and df will propagate to ẑ and result in
uncertainty.
To describe the multiplication accurately, we use εi as

the input arguments and estimate the range of z in the
(n+ 1)-dimensional space En+1. The (n+ 1)-dimensional
space En+1 is labeled as (ε1, . . . , εn, z). In space En+1, a
first-degree polynomial function can be expressed as a
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(n + 1)-dimensional hyperplane and a nonlinear polyno-
mial function denotes a (n+ 1)-dimensional space curved
surface. The approximate affine form in (10) denotes a
(n+1)-dimensional hyperplane in En+1. Each hyperplane
in En+1 can be viewed as a parallel translation of a tangent
hyperplane at a certain point of (n+1)-dimensional space
curved surface. Hence, all possible approximate affine
forms for z can be regarded as the (n + 1)-dimensional
tangent hyperplanes at all points of (n + 1)-dimensional
space curved surface in En+1. The translation amount is
taken into account in df , which is approximated by d̂. In
space En+1, df can be viewed as the function of the dis-
tance between the points of space curved surface and the
tangent hyperplane.
Figure 1 shows an example of x̂ = 1 + ε1 + 5ε2 and

ŷ = 3−6ε1+ε2. The space is labeled as (ε1, ε2, z). The red
mesh surface represents the function z = x̂ŷ = (1 + ε1 +
5ε2)(3 − 6ε1 + ε2). The blue plane represents the tangent
plane fz, z = 3 − 3ε1 + 16ε2, at the point zα = (0, 0, 3).
All the possible approximate affine forms for z are the tan-
gent planes of all the points. df is a function of distance
between z and fz.
Here we use fzα in (18) to represent the tangent hyper-

plane at the point zα = (εα
1 , εα

2 , . . . , εα
n ). Then, the possible

approximate affine form can be represented as fzα , too.

fzα = zα+z′ε1(ε1−εα
1 )+z′ε2(ε2−εα

2 )+· · ·+z′εn(εn−εα
n ).

(18)

In (18), z′εn are the partial derivatives of z with respect to
the variables εn at the point zα .

With the estimated range of df , the maximum absolute
error of df can be expressed as

ea = max (|dmax|, |dmin|). (19)

To reduce the uncertainty, fz must be the most closed to
the result of multiplication. Hence, fz is the tangent hyper-
plane whose maximum absolute error is minimum among
that of all the possible affine form fzα , that is,

ea(fz) = min (ea(fzα )). (20)

The geometrical meaning of fz denotes the tangent
hyperplane whose maximum absolute error is minimized.
fz is derived by the range of df , while d̂ is the equiva-

lent affine form of df . It is very complex to compute the
true range of df . With d̂ in (11), the uncertainty in AA
for nonlinear operations is generated due to the difference
between the true range of df and the estimated range of
df .
It is much tighter and easier to estimate range of df in

En+1 space than in the XY plane. Based on the extreme
value theory of multivariable functions, the estimated
range of df in AASEE is derived.
With more accurate dmax and dmin, fz and d̂ can be cal-

culated more precisely, and AASEE can achieve a refined
affine approximation result.
In the next sections, the estimated range of df will be

derived firstly, and the two parts will be derived later.
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Figure 1 Example of multiplication in (n + 1)-dimensional space En+1.
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4 AASEE for multiplication
4.1 Estimated range of the difference
For multiplication, which is expressed as (13), the value of
z at the point zα is

zα =
(
x0 +

n∑
i=1

xiεα
i

) (
y0 +

n∑
i=1

yiεα
i

)
. (21)

The partial derivatives of z with respect to the variable εi
at the point zα are

z′εi =
⎛
⎝xi

⎛
⎝y0 +

n∑
j=1

yjεα
j

⎞
⎠ + yi

⎛
⎝x0 +

n∑
j=1

xjεα
j

⎞
⎠

⎞
⎠ .

(22)

Upon substitution for zα and z′εi , the tangent hyper-
plane fzα can be expressed as

fzα =
(
x0+

n∑
i=1

xiεα
i

)(
y0+

n∑
i=1

yiεα
i

)
+

(
x1

(
y0+

n∑
i=1

yiεα
i

)

+ y1

(
x0+

n∑
i=1

xiεα
i

)) (
ε1 − εα

1
) + · · ·

+
(
xn

(
y0+

n∑
i=1

yiεα
i

)
+yn

(
x0+

n∑
i=1

xiεα
i

))(
εn−εα

n
)
.

(23)

The difference between the tangent hyperplane fzα and
(n + 1)-dimensional quadratic surface z is

df = z − fzα =
n∑

i,j=1
xiyj(εi − εα

i )(εj − εα
j ),

where εi, εj, εα
i , εα

j = [−1, 1] .

(24)

Suppose demax and demin denote the estimated maxi-
mum and minimum of the function value at the domain
boundary respectively, and dfimax and dfimin denote the
local maxima and the local minima, respectively. The esti-
mated maximum and minimum of multivariable function
df , dmax and dmin, can be expressed as

dmax = max (demax, dfimax), (25)

dmin = min (demin, dfimin). (26)
According to (24), the function value at the domain

boundary, dfe, is represented by

dfe =
n∑

i,j=1
xiyj[ εiεj − εjε

α
i − εiε

α
j + εα

i εα
j ]

where ∃εi = ±1,∀i = 1, 2, . . . , n.

(27)

To simplify, we observe the extreme case of ∀εi = ±1.
Under this case, for the first item, it is always positive

when i = j. Hence, the estimated function value at the
domain boundary, de, is expressed as

de =
n∑

i,j=1,i=j
xiyj +

n∑
i,j=1

xiyjεα
i εα

j +
n∑

i,j=1,i�=j
xiyjεiεj

−
n∑

i,j=1
xiyjεjεα

i −
n∑

i,j=1
xiyjεiεα

j

where ∀εi = ±1.

(28)

Hence, the maximum and minimum of de, demax and
demin are derived as

demax =
n∑

i=1
xiyi +

n∑
i,j=1

xiyjεα
i εα

j +
n∑

i,j=1,i�=j
|xiyj|

+
n∑

i,j=1
|xiyjεα

i | +
n∑

i,j=1
|xiyjεα

j |
(29)

demin =
n∑

i=1
xiyi +

n∑
i,j=1

xiyjεα
i εα

j −
n∑

i,j=1,i�=j
|xiyj|

−
n∑

i,j=1
|xiyjεα

i | −
n∑

i,j=1
|xiyjεα

j |.
(30)

To simply compare, dfimax and dfimin in (25) and (26) can
be expressed as

dfimax =
n∑

i=1
xiyiε2i +

n∑
i,j=1,i�=j

xiyjεiεj +
n∑

i,j=1
xiyjεiεα

j

+
n∑

i,j=1
xiyjεjεα

i +
n∑

i,j=1
xiyjεα

i εα
j ,

(31)

dfimin =
n∑

i=1
xiyiε2i +

n∑
i,j=1,i�=j

xiyjεiεj +
n∑

i=1
xiyiεi(εα

i + εα
j )

+
n∑

i,j=1,i�=j
xiyjεiεα

j +
n∑

i,j=1,i�=j
xiyjεjεα

i +
n∑

i,j=1
xiyjεα

i εα
j ,

where εi, εj = (−1, 1), and εα
i , εα

j = [−1, 1] .
(32)

As the example in Section 3, Figure 2 shows the function
of df = −6(ε1−0.1)2−29(ε1−0.1)(ε2−0.1)+5(ε2−0.1)2
when εα

1 = 0.1 and εα
2 = 0.1. The estimated maximum

and minimum of df at the domain boundary, demax and
demin, are also marked in the figure. Since the value of
εi in (27) are substituted by ∀εi = ±1, demax is larger
than the maximum of df and demin is smaller than the
minimum.
The extreme value theory of multivariable functions is

used to compare demax, dfimax, demin, and dfimin.
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Figure 2 df , demax, and demin of the example in Section 3.

Hessianmatrix of function df =
n∑

i,j=1
xiyj(εi−εα

i )(εj−εα
j )

is

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2df
∂ε21

∂2df
∂ε1ε2

· · · ∂2df
∂ε1εn

∂2df
∂ε2ε1

∂2df
∂ε22

· · · ∂2df
∂ε2εn

· · · · · · · · · · · ·
· · · · · · · · · · · ·
∂2df
∂εnε1

∂2df
∂εnε2

· · · ∂2df
∂ε2n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

2x1y1 x1y2 + x2y1 x1y3 + x3y1 · · ·
x1y2 + x2y1 2x2y2 x2y3 + x3y2 · · ·
x1y3 + x3y1 x2y3 + x3y2 2x3y3 · · ·

· · · · · · · · · · · ·
· · · · · · · · · · · ·

x1yn + xny1 x2yn + xny2 x3yn + xny3 · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(33)

From (33), we can see that H is independent of εi. It is a
expression of xi and yi. This means that H is same for all
the points in the domain.
To determine if H is positive or negative definite or

semidefinite, its principal minor determinants are derived
as

D0 = 2xiyi (34)

D1 =
∣∣∣∣ 2xiyi xiyj + xjyi
xiyj + xjyi 2xjyj

∣∣∣∣ = −(xiyj − xjyi)2 (35)

D2 = D3 = · · · = Dn = 0,
where 1 ≤ i < j ≤ n.

(36)

As introduced in Section 2.4,H is a positive semidefinite
matrix, iff it satisfies

∀xiyi ≥ 0, ∀xiyj = xjyi, for 1 ≤ i < j ≤ n. (37)

H is a negative semidefinite matrix, iff it satisfies

∀xiyi ≥ 0, ∃xiyj �= xjyi, for 1 ≤ i < j ≤ n. (38)

If it satisfies neither (37) nor (38), which means it satis-
fies (39), H is an indefinite matrix as

∃xiyi < 0, for 1 ≤ i ≤ n. (39)

According to (37), (38), and (39), we can compare demax,
demin, dfimax, and dfimin, which are expressed as (29), (30),
(31), and (32), respectively. Based on (25) and (26), dmax
and dmin can be identified.

Lemma 1. The estimatedmaximum of function df , dmax
equals to the estimated maximum of the function value
at the domain boundary, and the estimated minimum
of function df , dmin equals to the estimated minimum of
the function value at the domain boundary. This can be
expressed as

dmax = demax dmin = demin. (40)

Proof. There are two cases to consider, as ∃xiyi < 0 and
∀xiyi ≥ 0.
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For ∃xiyi < 0, (39) is satisfied and H is indefinite. The
stationary point is a saddle point, such as the point P in
Figure 2. Neither dfimax nor dfimin exists in df , that is,

dmax = demax dmin = demin. (41)

According to (41), Lemma 1 can be proven in this case.
For ∀xiyi ≥ 0, H may be positive semidefinite or neg-

ative semidefinite. df may have local minima or local
maxima under this condition.
As εi = [−1, 1], the following inequalities are estab-

lished:
n∑

i,j=1,i�=j
|xiyj| ≥ ±

n∑
i,j=1,i�=j

xiyjεiεj, (42)

n∑
i,j=1

|xiyjεα
i | ≥ ±

n∑
i,j=1

xiyjεiεα
j , (43)

n∑
i,j=1

|xiyjεα
j | ≥ ±

n∑
i,j=1

xiyjεjεα
i . (44)

If a local maximum lies at zα , the difference between
demax and dfimax is

demax − dfimax ≥
n∑

i=1
xiyi(1 − ε2i ). (45)

∀xiyi ≥ 0, there exists

demax ≥ dfimax. (46)

According to (25) and (46), we can prove that

dmax = demax. (47)

Similarly, if a local minimum lies at zα , the difference
between demin and dfimin is

demin − dfimin ≤ −
n∑

i=1
xiyi(ε2i + εi(ε

α
i + εα

j ) + 1)

≤ −
n∑

i=1
xiyi(εi + 1)2.

(48)

As ∀xiyi ≥ 0 in (48), the inequality (49) can be proven:

demin ≤ dfimin. (49)

According to (26) and (49), we can prove that

dmin = demin. (50)

As (47) and (50) are established, Lemma 1 can be proven
in the case of ∀x1y1 ≥ 0.
Combining these two cases, Lemma 1 is proven.

According to Lemma 1, dmax and dmin at a point zα can
be computed as demax and demin in (29) and (30).

4.2 Expression of the approximate affine form in AASEE
Lemma 2. When fz represents a tangent hyperplane at

the point z0 = z0 = (0, 0, . . . , 0), it satisfies (20).

Proof. According to Lemma 1, (29), and (30), the maxi-
mum absolute error of df is

ea = |
n∑

i=1
xiyi| +

n∑
i,j=1,i�=j

|xiyj| +
n∑

i,j=1
|xiyjεα

i |

+
n∑

i,j=1
|xiyjεα

j | + |
n∑

i,j=1
xiyjεα

i εα
j |.

(51)

So the maximum absolute error between the tangent
hyperplane fz0 at the point z0 = z0 = (0, 0, . . . , 0) and
(n + 1)-dimensional quadratic surface z is

ea(z0) = |
n∑

i=1
xiyi| +

n∑
i,j=1,i�=j

|xiyj|. (52)

Suppose that there is another point zα �= z0, which is
typically represented by zα = (ε1, ε2, . . . , εn), where εi =
[−1, 1], and εi cannot be equal to 0 for all i, i = 1 . . . n. The
maximum absolute error between the tangent hyperplane
fzα at point zα and (n + 1)-dimensional quadratic surface
x̂ŷ is

ea(zα) = |
n∑

i=1
xiyi| +

n∑
i,j=1,i�=j

|xiyj| +
n∑

i,j=1
|xiyjεα

i |

+
n∑

i,j=1
|xiyjεα

j | + |
n∑

i,j=1
xiyjεα

i εα
j |.

(53)

ea(zα) and ea(z0) can be compared by

ea(z0) − ea(zα) = −
n∑

i,j=1
|xiyjεα

i |

−
n∑

i,j=1
|xiyjεα

j | − |
n∑

i,j=1
xiyjεα

i εα
j | ≤ 0.

(54)

Because ea(z0) ≤ ea(zα), the tangent hyperplane fz0 at
the point z0 = z0 = (0, 0, . . . , 0) is the tangent hyperplane
whose maximum absolute error is minimized.
It is proven that the chosen fz is a tangent hyperplane at

the point z0 = z0 = (0, 0, . . . , 0).

According to Lemma 2, fz of AASEE denotes the tan-
gent hyperplane at the point z0 = (0, 0, . . . , 0) and can be
expressed as

fz = x0y0 + x0
n∑

i=1
yiεi + y0

n∑
i=1

xiεi. (55)

This fz is the same as the fzs in AATRE and AACHA.
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4.3 Expression of the equivalent affine form in AASEE
According to (55), the df between the tangent hyperplane
fz0 and the quadratic surface is

df =
n∑

i,j=1
xiyjεiεj. (56)

According to Lemma 1, (29), and (30), the estimated
maximum and estimated minimum of df , dmax and dmin
can be expressed as

dmax = demax =
n∑

i=1
xiyi +

n∑
i,j=1,i�=j

|xiyj|

dmin = demin =
n∑

i=1
xiyi −

n∑
i,j=1,i�=j

|xiyj|.
(57)

n = 1 is a special case and dmax and dmin can be
optimized as

dmax =
{
x1y1, for n = 1, x1y1 ≥ 0
0, for n = 1, x1y1 ≤ 0

(58)

dmin =
{
0, for n = 1, x1y1 ≥ 0
x1y1, for n = 1, x1y1 ≤ 0.

(59)

By combining the two cases, demax and demin are rewrit-
ten as

dmax =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=1

xiyi +
n∑

i,j=1,i�=j
|xiyj|, for n > 1

x1y1, for n = 1, x1y1 ≥ 0
0, for n = 1, x1y1 < 0

(60)

dmin =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=1

xiyi −
n∑

i,j=1,i�=j
|xiyj|, for n > 1

0, for n = 1, x1y1 ≥ 0
x1y1, for n = 1, x1y1 < 0.

(61)

When n > 1, the range of d̂ can be expressed as⎡
⎣ n∑

i=1
xiyi −

n∑
i,j=1,i�=j

|xiyj|,
n∑

i=1
xiyi +

n∑
i,j=1,i�=j

|xiyj|
⎤
⎦ .

(62)

According to (11), the affine form of d̂ can be expressed
as

d̂ =
n∑

i=1
xiyi +

n∑
i,j=1,i�=j

|xiyj|εn+1. (63)

When n = 1, the range of d̂ can be expressed as

[x1y1, 0] or [0, x1y1] . (64)

The affine form of d̂ can be expressed as

d̂ = 1
2
x1y1 + 1

2
|x1y1|ε2. (65)

4.4 Formulary of AASEE
According to (12), the affine form of AASEE for multipli-
cation is

ẑ = fz + d̂ = x0y0 + x0
n∑

i=1
yiεi + y0

n∑
i=1

xiεi

+
n∑

i=1
xiyi +

n∑
i,j=1,i�=j

|xiyj|εn+1 for n > 1,
(66)

ẑ = fz + d̂ = x0y0 + (x0y1 + y0x1)ε1 + 1
2
x1y1

+ 1
2
|x1y1|ε2 for n = 1.

(67)

It is impossible to obtain the exact affine form for mul-
tiplication in AA. The result of multiplication must be
approximated to an affine form. Using εi as the input
arguments, the uncertainty of multiplication in AASEE is
reduced. The proposed fz is themost closed to the result of
multiplication among all the possible approximate affine
forms, and the upper and lower bounds of d̂ in AASEE are
much closer to true bounds of df . Hence, the uncertainty
in AASEE is smaller than that in AATRE and AACHA.
Formed by such fz and d̂, AASEE creates a refined affine
form of multiplication.

5 Comparison of AASEE to AATRE and AACHA
5.1 Computational complexity
The computational complexity of an expression is deter-
mined by its most complex item. For n > 1, the most
complex item is the coefficient of εn+1. To make the
analysis convenient, we transform this coefficient:

n∑
i,j=1,i�=j

|xiyj| =
n∑

i,j=1
|xiyj| −

n∑
i=1

|xiyi|

=
n∑

i,j=1
|xi|

n∑
i,j=1

|yj| −
n∑

i=1
|xiyi|.

(68)

The computational complexity of the minuend is O(M1),
where M1 is defined in Section 2.3, while the computa-
tional complexity of the subtrahend is less than O(M1).
Hence, the computational complexity of AASEE is

O(M1). We can see that it is the same as that of AATRE
and is lower than that of AACHA.

5.2 Accuracy
The accuracy of d̂ is influential to the accuracy of
the affine approximation methods of multiplication. The
more accurate d̂ will lead to a more accurate the affine
approximation result.
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For AATRE, d̂ =
n∑

i=1
|xi|

n∑
i=1

|yi|εn+1. In this method, the

same noise symbol of different variables is considered to
be independent. The range of this d̂ is

[
−

n∑
i=1

|xi|
n∑

i=1
|yi|,

n∑
i=1

|xi|
n∑

i=1
|yi|

]
. (69)

It is much larger than the range of d̂ by AASEE, which is
expressed in (62) and (64).
In AACHA, d̂ = a+b

2 + b−a
2 εn+1, where a and b are

represented the estimated range of d̂. In this method, a
polygon in XY plane is used to find a and b. The domain
of x̂ŷ is bounded by the polygon. However, the polygon
is larger than the true domain, and all the same noise
symbols of different variables are not taken into account
together.
All the same noise symbols of different variables are

considered together by d̂ of AASEE. It is more accurate
than d̂ of AATRE. In the most cases, it is more accurate
than d̂ of AACHA, too.

6 Case studies
The following nonlinear system cases are used to demon-
strate the efficiency of the proposed refined affine form
of multiplication. These cases are commonly used in sig-
nal processing. The first two cases are univariate cases
and come from [11]. The rest of cases are multivariate
polynomial functions and come from [27-29].

6.1 Introduction of the cases
Case 1. Polynomial approximation. The first case study
is that degree-four polynomial for the approximation of
y = ln(1+ x), where x = [0, 1]. Horner’s rule evaluates the
polynomial

y = (((−0.0550x+0.2168)x−0.4645)x+0.9956)x+0.0001,

where the coefficients are obtained by polynomial curve
fitting technique.
Case 2. B-splines Uniform cubic B-splines are com-

monly used for image warping [30]. Basic functions B0, B1,
B2, and B3 in B-spline are defined as

B0(u) = 1
6
(1 − u)3, B1(u) = 1

6
(3u3 − 6u2 + 4),

B2(u) = 1
6
(−3u3 + 3u2 + 3u + 1), B3(u) = −u3

6
,

where u = [0, 1].
Case 3. Multivariate polynomial functions. In the third

case, eight multivariate polynomial functions are exam-
ined. They are as follows:

1. Savitzky-Golay filter:

f1(X) = 7x31 − 984x32 − 76x21x2 + 92x1x22 + 7x21
− 39x1x2 − 46x22 + 7x1 − 46x2 − 75

where the input range: X = [−2, 2]2

2. Image rejection unit:

f2(X) = 16384
(
x41 + x42

) + 64767
(
x21 − x22

) + x1 − x2
+ 57344x1x2(x1 − x2)

where the input range: X = [0, 1]2

3. A random function:

f3(X) = (x1 − 1)(x1 + 2)(x2 + 1)(x2 − 2)x23
where the input range: X = [−2, 2]3

4. Mitchell function:

f4(X) = 4
[
x41 + (

x22 + x23
)2] + 17x21

(
x22 + x23

)
− 20

(
x21 + x22 + x23

) + 17
where the input range: X = [−2, 2]3

5. Matyas function:

f5(X) = 0.26(x21 + x22) − 0.48x1x2
where the input range: X = [−100, 100]2

6. Three-hump function:

f6(X) = 12x21 − 6.3x41 + x61 + 6x2(x2 − x1)
where the input range: X = [−10, 10]2

7. Goldstein-Price function:

f7(X) = [
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x21 − 14x2

+ 6x1x2 + 3x22
)] × [

30 + (2x1 − 3x2)2

× (
18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22

)]
where the input range: X = [−2, 2]2

8. Ratscheck function:

f8(X) = 4x21 − 2.1x41 + 1
3
x61 + x1x2 − 4x22 + 4x42

where the input range: X = [−100, 100]2

6.2 Analysis of case 1
For the input range x = [0, 1], equivalent affine form is
x̂ = 0.5 + 0.5ε1. For case 1, the intermediate and output
signals are defined as

y1 = −0.0550x + 0.2168, y2 = y1x − 0.4645,
y3 = y2x + 0.9956, y = y3x + 0.0001.

(70)
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Using AATRE, the affine forms of intermediate and
output are

y1 = 0.1893 − 0.0275ε1,
y2 = −0.36985 + 0.0809ε1 + 0.01375ε2,
y3 = 0.81068 − 0.14448ε1 + 0.00688ε2 + 0.04733ε3,
y = 0.4054 + 0.3331ε1+ 0.0034ε2 + 0.0237ε3+ 0.0993ε4.

Using AACHA, the affine forms of intermediate and
output are

y1 = 0.1893 − 0.0275ε1,
y2 = −0.3768 + 0.0809ε1 + 0.0069ε2,
y3 = 0.8291 − 0.1479ε1 + 0.0034ε2 + 0.0220ε3,
y = 0.3761+ 0.3406ε1+ 0.0017ε2 + 0.0110ε3 + 0.0436ε4.

Using AASEE, the affine forms of intermediate and
output are

y1 = 0.1893 − 0.0275ε1,
y2 = −0.37673 + 0.0809ε1 + 0.00688ε2,
y3 = 0.84769 − 0.14791ε1 + 0.00344ε2 + 0.00344ε3,
y = 0.34999 + 0.34989ε1+ 0.00172(ε2+ε3) + 0.00344ε4.

Table 1 shows the variable ranges and the range inter-
vals, (ymax − ymin), of intermediates and output by the
three methods. The true range of y lies in [0, 0.6931], and
the range interval of output is 0.6931. Suppose R(T), R(C),
and R(A) are represented as the ratios of range interval
obtained by AATRE, AACHA, and AASEE to the true
range interval, respectively. The closer this ratio converges
to 1, the more accurate the method is. In this case, as
R(T) = 1.33, R(C) = 1.15, and R(A) = 1.03, we can
see the range by AASEE is closer to the true range than
AATRE and AACHA.

6.3 Comparison of range and computational complexity
by the three cases

The output ranges by the three methods of case 2 and case
3 can be obtained according to the process of case 1.
Table 2 demonstrates the ranges and the integer word

lengths by AASEE and comparison among AATRE,
AACHA and AASEE. Column c.fun shows the case study
and the function of the row. The true output ranges, which
are used as reference values, are obtained by numerical

method or nonlinear programming technique, which are
time-consuming and are not practical to solve the true
bounds for large number of signals. From the table, we
can see that the ranges, which are derived by AASEE,
cover the true ranges and they are smaller than those by
AATRE, for all the functions. For these thirteen functions,
the ranges, which are derived by AASEE, are smaller than
those by AACHA for nine functions, and equal to those
by AACHA for two functions. According to (1), the inte-
ger word length can be decided by the range. The integer
word-length, which is derived by AASEE, is 2 b less than
that by AATRE and 1 b less than that by AACHA, at most.
Comparing with AATRE, AASEE and AACHA can save
0.54 b on average.
To calculate the estimated range of df , the values of

∃εi = ±1,∀i = 1, 2, . . . , n in (27) are substituted by
∀εi = ±1 in AASEE. The difference between the esti-
mated range and the true range of df is introduced by this
approximation. In most of the applications, the estimated
ranges, which are computed by AASEE, are closer than
those by AACHA. However, the estimated minimum and
maximum of x̂ŷ on the boundary of the polygon are inde-
pendent of the value of εi. In some applications such as
functions f2 and f8 in Table 2, the results by AASEE are
almost the same as those by AACHA.
In Table 3, ratios of range intervals and the computa-

tional complexity are compared among AATRE, AACHA,
and AASEE. The computational complexity is calculated
from the numbers of multiplications and additions. For
AACHA, the extreme value of a quadratic function in one
variable on a bounded interval needs to be calculated.
Nm, Na, and Ne denote the numbers of multiplications,
additions and the extreme value computations of each
case, respectively. Table 3 shows that R(T) values are from
1.04 to 281.2, R(C) are from 1.03 to 233.7, and R(A) are
from 1.03 to 192.9. The ratios of R(A) to R(T) and R(C)

show the accuracy of AASEE compared to AATRE and
AACHA, respectively. The average ratios can be used to
evaluate the accuracy of the affine approximation meth-
ods. The ratios of R(A) to R(T) are from 0.18 to 0.99,
and the average of these ratios is 0.59. The ratios of R(A)

to R(C) are from 0.33 to 1.17, and the average of these
ratios is 0.89. For these 13 cases, on average, the accu-
racy of AASEE is 1.69 times than that of AATRE and 1.12

Table 1 Comparison of ranges and range intervals for every variable of the threemethods for case 1

Variable AATRE AACHA AASEE

Range Interval Range Interval Range Interval

y1 [0.1618, 0.2168] 0.055 [0.1618, 0.2168] 0.055 [0.1618, 0.2168] 0.055

y2 [−0.4645,−0.2752] 0.1893 [−0.4645,−0.2890] 0.1755 [−0.4645,−0.2890] 0.1755

y3 [0.6120, 1.0094] 0.3974 [0.6558, 1.0025] 0.3467 [0.6929, 1.0025] 0.3096

y [−0.0541, 0.8650] 0.9191 [−0.0253, 0.7685] 0.7938 [−0.0068, 0.7068] 0.7136



Sun et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:36 Page 12 of 15
http://asp.eurasipjournals.com/content/2014/1/36

Table 2 Comparison of analytical ranges and bits by the threemethods

c.fun True output AATRE AACHA AASEE

Range Bits Range Bits Range Bits Range Bits

c1.Y [0, 0.6931] 1 [−0.0541, 0.8650] 1 [−0.0253, 0.7685] 1 [−0.0068, 0.7068] 1

c2.B0 [ 0, 0.17] 1 [−0.13, 0.17] 1 [−0.05, 0.17] 1 [−0.02, 0.17] 1

c2.B1 [ 0.17, 0.67] 1 [−0.33, 1.29] 2 [−0.05, 0.98] 1 [ 0.10, 0.92] 1

c2.B2 [ 0.17, 0.67] 1 [−0.21, 1.17] 2 [−0.02, 0.89] 1 [ 0.04, 0.73] 1

c2.B3 [−0.17, 0] 1 [−0.17, 0.13] 1 [−0.17, 0.05] 1 [−0.17, 0.02] 1

c3.f1 [−9453, 9303] 15 [−9821, 9671] 15 [−9793, 9487] 15 [−9793, 9487] 15

c3.f2 [−5.51e4, 8.79e4] 18 [−1.75e5, 1.79e5] 19 [−0.95e5, 1.28e5] 18 [−1.15e5, 1.41e5] 19

c3.f3 [−36, 64] 8 [−256, 256] 10 [−192, 192] 9 [−64, 64] 8

c3.f4 [−8, 641] 11 [−1087, 1121] 12 [−223, 881] 11 [−335, 641] 11

c3.f5 [ 0, 104] 15 [−104, 104] 15 [−4800, 104] 15 [−4800, 104] 15

c3.f6 [ 0, 0.94e6] 21 [−1.07e6, 1.07e6] 22 [−0.06e6, 1.00e6] 21 [−0.11e6, 0.94e6] 21

c3.f7 [ 3, 1.01e6] 21 [−1.42e8, 1.42e8] 29 [−1.23e8, 1.13e8] 28 [−9.87e7, 9.61e7] 28

c3.f8 [−1.03, 3.3e11] 40 [−3.3e11, 3.3e11] 40 [−2.1e8, 3.3e11] 40 [−4.2e10, 3.3e11] 40

c.fun, case study and the function of the row.

times than that of AACHA. The extreme value computa-
tion, which is only necessary for AACHA, of the quadratic
function is the most complex and time-consuming among
the operations. Hence, the computational complexity of
AACHA is much higher than that of AATRE and AASEE.
The increase rate of the number of multiplications,Nm, by
AASEE to AATRE is from 0.091 to 1.75, and the average

is 0.450. The increase rate of the number of multiplica-
tions, Nm, by AASEE to AACHA is from 0.2 to 1.833, and
the average is 0.567. The increase rate of the number of
additions, Na, by AASEE to AATRE is from 0.05 to 3.4,
and the average is 0.944. The increase rate of the num-
ber of additions, Na, by AASEE to AACHA is from 0 to
0.985, and the average is 0.157. The numbers of multipli-

Table 3 Comparison of range ratios and computational complexity by the threemethods

c.fun AATRE AACHA AASEE

R(T) Nm Na R(C) Ne Nm Na R(A) Nm Na

c1.Y 1.33 17 20 1.15 18 14 17 1.03 20 21

c2.B0 1.76 13 8 1.29 7 11 10 1.12 15 10

c2.B1 3.24 20 11 2.06 7 18 13 1.64 22 13

c2.B2 2.76 22 13 1.82 7 20 15 1.38 24 15

c2.B3 1.76 13 7 1.29 7 17 9 1.12 15 9

c3.f1 1.04 16 9 1.03 22 13 15 1.03 22 21

c3.f2 2.48 42 54 1.56 16 36 51 1.79 46 59

c3.f3 5.12 17 19 3.84 21 19 23 1.28 23 27

c3.f4 3.4 12 12 1.7 9 22 34 1.5 33 37

c3.f5 2 6 2 1.48 6 6 4 1.48 9 4

c3.f6 2.28 8 5 1.13 12 6 16 1.12 17 16

c3.f7 281.2 48 72 233.7 36 40 66 192.9 67 131

c3.f8 2 12 5 1 14 9 22 1.39 19 22

c.fun, case study and the function of the row.
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Figure 3 Area variation for c3.f3 with increasing target precision.

cations and additions of AASEE are increased a few. As
shown in Table 3, AACHA is slightly more accurate for
functions c3.f2 and c3.f8, but the computational complexity
of AACHA is much higher than that of AASEE.

6.4 Comparison of the design cost by the three methods
To compare the design cost, the system area by the three
methods, the fractional word lengths are obtained by the
precise analysis in [11]. Typically, we select the case of
a random function of case 3, c3.f3, for this section. The
design of c3.f3 is synthesized on Xilinx Xc2vp30-7ff896
FPGA device (Xilinx, San Jose, CA, USA).
Figure 3 shows the area variation for c3.f3 with increas-

ing target precision. It can be seen that the area, which
is calculated by AASEE, is less than that by AATRE and
AACHA, and the area difference between them is increas-
ing with the target precision. This difference is from 265 to

729 with the target precision increased. Such optimization
of integer word length can save area.
Figure 4 shows the percentage area saving of AASEE

over AATRE at different target precision for c3.f3. The
percentage area saving is from 14.34% to 5.62% with the
target precision increased. Generally, we obtain increased
relative saving for lower precision.

7 Conclusions
This paper presents a novel affine approximation method
for multiplication, Approximation Affine based on Space
Extreme Estimation. In this method, an extra noise sym-
bol is added to an approximated affine form.
To reduce the uncertainty in AA, we derive this method

in the (n + 1)-dimensional space En+1. In space En+1,
approximate affine form can be regarded as the tangent
hyperplane at a certain point of (n+1)-dimensional space
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Figure 4 Percentage area saving of AASEE over AATRE at different target precision for c3.f3.
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curved surface. Using the linear geometry, it is proven that
the fz of AASEE is the closest to the result ofmultiplication
among all the possible approximate affine forms. Taking
εi as the input arguments, all the same noise symbols of
different variables are taken into account together. Hence,
the uncertainty of d̂ of AASEE is reduced. Based on the
extreme value theory of multivariable functions, we can
prove that the range of this d̂ covers the true range of the
difference introduced by approximation and much tighter
than that by AATRE and AACHA.
The uncertainty in AASEE is much smaller than that in

AATRE and AACHA on average. At the same time, the
computational complexity of AASEE is the same as that of
AATRE and lower than that of AACHA.
In the case studies, the accuracy of AASEE is 1.69 times

than that of AATRE and 1.12 times than that of AACHA
on average. The integer word length, which is derived
by AASEE, is 2 b less than that by AATRE and 1 b less
than that by AACHA, at most. For the case of c3.f3, the
area, which is computed by AASEE, is less than that by
AATRE and AACHA, and the percentage area saving of
AASEE over AATRE is from 14.34% to 5.62% with the
target precision increased.
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