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Abstract

In this paper, we propose a novel mechanism for spectrum sensing that leads us to exploit the spatio-temporal
correlation present in the received signal at a multi-antenna receiver. For the proposed mechanism, we formulate
the spectrum sensing scheme by adopting the generalized likelihood ratio test (GLRT). However, the GLRT
degenerates in the case of limited sample support. To circumvent this problem, several extensions are proposed
that bring robustness to the GLRT in the case of high dimensionality and small sample size. In order to achieve these
sample-efficient detection schemes, we modify the GLRT-based detector by exploiting the covariance structure and
factoring the large spatio-temporal covariance matrix into spatial and temporal covariance matrices. The performance
of the proposed detectors is evaluated by means of numerical simulations, showing important advantages over
existing detectors.
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1 Introduction
For a cognitive radio system, which opportunistically
accesses the wireless channel, spectrum sensing becomes
a crucial task for detecting the presence of primary
user transmissions [1]. Recently, sensors with multi-
ple antennas have become an integral part of many
cognitive receivers [2,3], thus giving us the chance to
consider multi-antenna techniques to improve the per-
formance of spectrum sensing. Multiple antennas can
offer spatial diversity and improve the spectrum sens-
ing performance [4,5]. Intuitively, the presence of any
primary signal should result in some spatial correla-
tion in the observations received at the multi-antenna
receivers [5] and thus, exploiting this correlation improves
the primary user detection performance. In addition
to being spatially correlated, the received signal sam-
ples are usually correlated (wide-sense stationary) in
time due to presence of a temporal dispersive chan-
nel, oversampling of the received signals or just because
the originally transmitted signals are correlated in time
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[5,6]. This spatio-temporal correlation is a feature that
can be used for detection purposes, since the remaining
(i.e. undesired) noise processes at different antennas can
be safely assumed statistically independent, both in time
and space.
Spectrum sensing methods that only exploit the spa-

tial structure of the received signal covariance matrix
have been of great interest in the recent years [5]. The
majority of these schemes are based on multivariate sta-
tistical inference theory [7,8], and interested readers can
find comprehensive details in ([8], Ch. 9-10), which dis-
cusses multivariate detectors for testing the independence
of random observations with the help of the generalized
likelihood ratio test (GLRT). These GLRT-based detectors
typically end up in a simple quotient between the determi-
nant of the sample covariance matrix and the determinant
of its diagonal version, and these tests have been widely
applied to the detection of signals especially in the context
of cognitive radios [2,9].
Through careful study of various existing spectrum

sensing techniques, one can conclude that the signal’s
temporal correlation is not fully exploited in most of these
techniques. In fact, in most of them, temporal correlation
is ignored or considered as a deleterious effect. In the
very few works that exploit the temporal correlation, they
usually assume some prior knowledge about it [10-14].
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One of the reasons for ignoring or only partially exploit-
ing temporal correlation is that it often makes it difficult
to achieve tractable solutions. However, the exploitation
of temporal correlation jointly with spatial correlation can
provide us extra side information to enhance the detec-
tion performance. Hence, it will be interesting to find
ways to devise detection mechanisms that exploit tempo-
ral correlation with tractable solutions. Taking this into
account, the main focus of this work is to develop a multi-
antenna detector that robustly exploits spatio-temporal
correlation. In order to do so, we propose a signal
model that leads us to tractable detection schemes while
exploiting the temporal correlation jointly with spatial
correlation.
In order to achieve the proposed goal, we start with our

earlier work in [15], where we derived the GLRT. This
detector basically tests whether the covariance matrix
is block diagonal or not. To make the discussion and
notation simple, for our case, we call this GLRT scheme
the spatio-temporal GLRT (ST-GLRT). Compared to the
traditional spatial covariance-based GLRT, the ST-GLRT
provides some improved performance. The reason for this
is that the ST-GLRT scheme exploits temporal correla-
tion as an additional feature on top of spatial correlation
and energy. However, since any GLRT involves the estima-
tion of unknown parameters (e.g., covariance matrix), its
performance depends on the sample size and the dimen-
sionality of the signal model. In practice, the GLRT is
used based on the assumption that the sample size is large
compared to the model dimension. When this is not the
case, the performance of the GLRT degenerates because
the sample covariance matrix becomes singular, and the
whole problem becomes ill-conditioned [16,17]. In the
case of the ST-GLRT, we have to deal with both the spa-
tial and temporal dimensions, and hence, the overall data
dimension is even larger. Thus, the ST-GLRT has some
further limitations when the detection process requires a
quick decision, as it is in the case of the detection of pri-
mary signals in cognitive radio. Hence, although for the
large sample support, the ST-GLRT can certainly achieve
an improved detection performance; for small sample
support, it has some limitations that deserve a detailed
study.
In order to reduce the demand for large sample sup-

port and bring robustness to the ST-GLRT, one may
assume existence of some underlying structure based on
the spatial and temporal components of the covariance
matrix. In our earlier work [15,18], by assuming wide
sense stationary (WSS), we exploited the Toeplitz struc-
ture of the covariance matrix. Doing so, we proposed an
approximated GLRT in the frequency domain that leads
to robustness against the small sample support. Contrary
to that work, in the present one, we rather focus on
exploiting the covariance structures without the GLRT

approximation in the frequency domain. In particular, we
approximate the block-Toeplitz structure of a multivari-
ate WSS process as persymmetric. Doing so, we will take
advantage of the result in [19] which states that by exploit-
ing the persymmetric structure, the number of indepen-
dent vector measurements required for the covariance
matrix estimator can be decreased by up to a factor of two.
This will certainly bring down the demand for high sam-
ple support required for the ST-GLRT to not degenerate
and provide robustness against the repercussions of small
sample support and large dimensional data.
Moving one step forward, we also approximate the

block-Toeplitz structure of the spatio-temporal correlated
multi-antenna measurements with a Kronecker product
structure [20,21]. Recently, exploitation of the Kronecker
structure in covariance matrices has received a lot of
interest in statistics [22,23]. Moreover, the maximum like-
lihood (ML) method for estimating the covariance matrix
based on the Kronecker product has been previously
discussed in [22,23]. Similarly, in the cases where the
correlation structure is not separable through the Kro-
necker product, [24] discusses some insightful details
about the nearest Kronecker product approximations. In
this paper, we use the Kronecker structure to reformu-
late the ST-GLRT by taking advantage of the inherent
spatio-temporal structure of the received observations. In
order to do so, we adopt and extend our earlier work
[25] by using the Kronecker product to efficiently exploit
the space-time correlation in a multi-antenna spectrum
sensing scheme. In addition to the Kronecker product-
based factorization, we also exploit the fact that the fac-
tored matrices could have additional persymmetric struc-
ture [21]. Therefore, by exploiting the Kronecker product
structure jointly with the persymmetric structure, the per-
formance of the proposed detection scheme can further
be improved in terms of the required number of sam-
ple to estimate the covariance matrix (i.e. the detector
efficiency).
To compare the proposed methods with traditional

techniques, numerical simulations are conducted. These
results illustrate that the proposed detection schemes
indeed outperform the traditional approaches, especially
in the case of small sample support.
The remainder of the paper is organized as follows.

Section 2 introduces the proposed methodology and the
signal model. In Section 3, we solve the problem by using
the traditional GLRT formulations. The proposed detec-
tion schemes are derived in Sections 4 and 5. Numerical
results are provided in Section 6. The conclusion is finally
drawn in Section 7.

2 Proposedmethodology and signal model
Herein, we address the problem of detecting the pres-
ence of a primary user by a single cognitive radio that
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is equipped with L antennas as shown in Figure 1. We
assume no prior knowledge about the primary transmis-
sion or the noise processes except that the noise is spatio-
temporally independent. We focus on a practical scenario
where due to the presence of a primary user (PU) signal,
the received signals at the L antennas are correlated in
space as well as time. The spatial correlation is due to the
proximity between the receiving antennas and the tempo-
ral correlation is due to the presence of a temporal dis-
persive channel, oversampling of the received signal or the
time correlation of the transmitted signal [6]. In this work,
we consider the temporal correlation to be WSS. Hence,
consecutive received samples of the (L × 1) vector x (n),
n = 1, . . . ,NT at L antennas of a user are temporally cor-
related, where x (n) � [x1 (n) , x2 (n) , . . . , xL (n)]T andNT
is the total number of received vector samples. Exploiting
the temporal correlation, jointly with spatial correlation,
can provide us extra information to enhance the detection
performance. In order to devise detection mechanisms
that exploit temporal correlation with tractable solutions,
the proposed technique can be described as follows:

1. We split the received block of NT vectors x (n) into
M sub-blocks where each block contains N samples
of vector x (n), as shown in Figure 2.

2. We assume that the consecutive vector-valued
samples within each sub-block are temporally
correlated with N × N temporal correlation
matrix Ct .

3. Independence is assumed between consecutive
sub-blocks.

It is clear that the proposed approach does not exploit
the correlation among different sub-blocks. However, as
it will become clear in the following sections, exploit-
ing such correlation would result in an ill-posed prob-
lem. This would make it intractable to derive the ML
estimators of the covariance matrices, required for the
generalized likelihood ratio test (GLRT). The proposed

Figure 1 Systemmodel for a single secondary user equipped
with multiple antennas andmulti-antenna primary user.

Figure 2 Schematic representation of the proposedmethodology
for slicing the observation block intoM sub-blocks.

mechanism could also be motivated from the concept of
correlated block-fading channel, which presents correla-
tion in each N-samples block, but independence between
consecutive blocks [6,26].
In order to proceed, we need the distribution of

{x (n)}NT
n=1, and we assume it to be zero-mean complex

Gaussiana. This assumption is particularly reasonable if
the primary network employs orthogonal frequency divi-
sion multiplexing (OFDM) as modulation format [15,18].
Similarly, we also assume that the SU collects NT consec-
utive samples of vector x (n). Based on the proposed three
step approach discussed above, the received NT vector
samples are divided intoM blocks and each block consists
of N vector samples, such thatMN = NT . Them-th block
is defined as:

X (m)

=

⎡
⎢⎢⎣
x1(1+(m−1)N) x1(2+(m−1)N) · · · x1(N+(m−1)N)
x2(1+(m−1)N) x2(2+(m−1)N) · · · x2(N+(m−1)N)

...
...

. . .
...

xL(1+(m−1)N) xL(2+(m−1)N) · · · xL(N+(m−1)N)

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣
xT1 (m)

xT2 (m)
...

xTL (m)

⎤
⎥⎥⎥⎦ ,

(1)

where the i-th row, xTi (m) for m = 1, . . . ,M, contains N-
samples at the i-th antenna. Let us define a vector z (m) �
vec

(
XT (m)

)
. The covariance matrix of the LN × 1 vector

z (m) under hypothesisH1 is

� = E
[
zzT

]
=

⎡
⎢⎢⎢⎣

�11 �12 · · · �1L
�21 �22 · · · �2L
...

...
. . .

...

�L1 �L2 · · · �LL

⎤
⎥⎥⎥⎦ ∈ C

LN×LN ,

(2)
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where the sub-block covariance matrices�il = E
[
xixTl

] ∈
C
N×N , 1 ≤ i, l ≤ L in � capture all space-time second-

order information about the random vector {xi}Li=1. Thus,
the hypothesis testing problem becomes

H0 :z ∼ CN (0,�0) ,
H1 :z ∼ CN (0,�) .

(3)

Now, considering that the noise powers at the L anten-
nas of the user are different and spatially and temporally
uncorrelated noise, the covariance matrix under noise-
only hypothesis is �0 = �A,0 ⊗ IN , where

�A,0 =

⎡
⎢⎢⎢⎢⎣

σ 2
1 0 · · · 0

0 σ 2
2

...
...

. . . 0
0 · · · 0 σ 2

L

⎤
⎥⎥⎥⎥⎦ , (4)

and σ 2
i , i = 1, 2, . . . , L is noise power at i-th antenna of the

array.

3 GLRT based on spatio-temporal correlation
In this section, by adopting the GLRT formulation, we
review a spectrum sensing scheme that exploits both the
spatial and temporal correlation without exploiting any
a-priori structure. This will be done just to provide a
reference benchmark to compare the proposed detectors
in Sections 4.2 and 5. Since, the parameters {�0,�} are
unknown, we need to adopt the GLRT approach and the
test statistic of the ST-GLRT can be formulated as:

�ST (Z) =
max
�0

fz (Z;�0)

max
�

fz (Z;�)
≷H0

H1
γ , (5)

where fz (Z,�0) and fz (Z;�) are the likelihood functions
under hypothesis H0 and H1, respectively. We assume
that we have M independent blocks of the data X, or
equivalently vector z, Z �

[
z (1) z (2) , · · · , z (M)

]
available. To solve the GLRT (5), we have to derive the
ML estimators of the parameters for each of the hypothe-
ses. Note that under weak conditions, the ML estimator
is asymptotically an unbiased and efficient estimator [27].
The expression for the likelihood function fz (Z;�) under
hypothesisH1 can then be written as:

fz (Z;�) = 1
(π)MLN |�|M exp

{
−Mtr

(
�−1�̂

)}
. (6)

Taking into account that � has no further structure
beyond being positive semi-definite, it is easy to prove [7]
that its ML estimate is given by the sample covariance

matrix i.e. �̂ = 1
M
∑M

m=1 z(m)zH(m). Under the alter-
native hypothesis, the expression for fz (Z,�0), ignoring
constant factors, is

fz (Z,�0) = fz
(
Z;�A,0 ⊗ IN

)
= ∣∣�A,0 ⊗ IN

∣∣−M

× exp
[
−

M∑
m=1

z(m)
(
�−1

A,0 ⊗ IN
)
zH(m)

]
.

(7)

Now, taking into account the Kronecker structure of the
covariance matrix, (7) may be rewritten as [25]:

fz (Z,�0) = fx
(
XT;�A,0, IN

)
= ∣∣�A,0

∣∣−MN |IN |−ML

× exp
[
−

M∑
m=1

tr
{
�−1

A,0X (m)XH (m)
}]

,

(8)

where XT �
[
X (1) , X (2) , · · · , X (M)

]
, as in Figure 2,

and the ML estimate of the covariance matrix �A,0

becomes �̂A,0 = diag
(

1
MN

∑M
m=1 X (m)XH (m)

)
[7] and

thus �̂0 = �̂A,0 ⊗ IN . To solve (5), we have to replace
�0 and � by �̂0 and �̂, respectively. Therefore, the final
expression of the ST-GLRT becomes:

�ST (Z) =
∣∣∣�̂∣∣∣∣∣∣�̂0

∣∣∣ ≷
H0
H1

γ (9)

Note that the detection scheme in (9) assumes no struc-
ture for the covariance matrix, except that the covariance
matrix is Hermitian and non-singular.
Before concluding the discussion in this section, as a ref-

erence, we present the GLRT that only exploits the spatial
correlation, ignoring the temporal correlation. Assuming
that the vector samples x (n) , n = 1, . . . ,NT are tempo-
rally uncorrelated, the GLRT scheme can be formulated
as:

�Tr (XT) =
max
�A,0

fx
(
XT;�A,0

)
max
�A,1

fx
(
XT;�A,1

) ≷H0
H1

γ , (10)

where fx
(
XT;�A,0

)
and fx

(
XT;�A,1

)
are the likelihood

functions, and �A,0 and �A,1 represent the covari-
ance matrices under hypothesis H0 and H1, respectively.
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Solving (10), the final expression of the detector that does
not exploit the temporal structure is

�Tr (XT) =
∣∣�A,1

∣∣∣∣�A,0
∣∣ ≷H0

H1
γ , (11)

where �A,1 = 1
NT

∑NT
n=1 x(n)xH(n) is a sample covariance

matrix. Under the hypothesis H0, as we have previously
shown, the covariancematrix may be estimated as:�A,0 =
diag

(
�A,1

)
[7]. The detector (11) only exploits the energy

and the spatial correlation across the L antennas of the
receiver and it wrongly assumes independence in time
the information provided by the temporal correlation.
Compared to (11), the ST-GLRT (9) provides improved
detection performance since it uses temporal correlation
as an additional source of information. However, in the
case when M < NL, the ST-GLRT may completely col-
lapse due to the ill-conditioned sample covariance matrix
[17]. In order to circumvent this limitation, in the fol-
lowing sections, we propose some modifications in the
ST-GLRT by exploiting the presence of some inherent
structures in the space-time correlation.

4 Exploiting persymmetric structure
In order to solve the detection problem (3) with unknown
covariance matrices, a critical requirement for the detec-
tors based on the GLRT is that the sample covariance
matrices must be non-singular [23]. To this end, we have
to make sure that the number of available observations
given by M, is not smaller than LN (i.e. M ≥ LN).
However, in quick spectrum sensing, a number of sam-
ples greater than LN is a requirement difficult to fulfill in
practice [28]. Hence, the motivation of the remaining dis-
cussion is to bring robustness against this small sample
support. Note that in (9) we assume no prior knowl-
edge about the spatio-temporal structure of the covari-
ance matrix except that it is positive definite. One way to
achieve the robustness against the small sample support is
to look for possible a-priori known patterns/structures in
the large spatio-temporal covariance matrix.

4.1 Persymmetric structure
In this section, we use the fact that the spatio-temporal
covariance matrix � has a persymmetric structure. From
[15,18], we know that the multivariate WSS time series
has a block-Toeplitz covariance matrix. We remark here
that Toeplitz structured matrices belong to a subclass
of the persymmetric matrices [19,21,29]. Furthermore,
considering structured antenna array configurations (i.e.,
uniform linear arrays) at the SU, the spatio-temporal
covariance matrix � can be modelled as persymmetric-
block-Toeplitz, as shown in [30]. Therefore, we propose
to approximate the spatio-temporal covariance matrix �,

which is block-Toeplitz, as a persymmetric matrix. Obvi-
ously, this approximation results in a suboptimal detection
scheme, but it is well known that it does not exist in
closed-form ML estimators for Toeplitz matrices. More-
over, it provides better detection performance than the
unconstrained ML estimate, particularly, in the case of
small sample support. Persymmetric covariance matrices
fulfill [31]

� = JLN�T JLN , (12)

where the LN × LN counter-identity matrix JLN is

JLN =

⎡
⎢⎢⎢⎢⎣
0 · · · 0 1
... · · · 1 0

0 . .
.

0
...

1 0 · · · 0

⎤
⎥⎥⎥⎥⎦ , (13)

also known as exchange matrix [19]. Based on these ideas,
in Section 4.2, we present a modified GLRT that exploits
the persymmetric property of the block-Toeplitz covari-
ance matrix.

4.2 Persymmetric GLRT (P-GLRT)
The difference in the formulation of the GLRT that
exploits the persymmetry comes due to the constraint
(12). Therefore, the formulation of the GLRT based on the
persymmetric covariance matrix can be represented as:

�PS (Z) =
max
�0

fz (Z;�0)

max
�

fz (Z;�)
≷H0

H1
γ .

s.t. � = JLN�T JLN

(14)

Comparing (14) to (5), we can see that the differ-
ence lies only in the denominator. In order to exploit
the persymmetry of �, we need to use the forward-
backward (FB) log likelihood [32], which is a combination
of the forward-looking and the backward-looking log-
likelihood functions. The forward-looking log-likelihood
log fz (Z;�) can be written as:

log fz (Z;�) = − log |�| − tr
{
�−1�̂

}
, (15)

where we have ignored constant terms that do not depend
on data. Similarly, using the constraint � = JLN�T JLN ,
the backward-looking log-likelihood log f (B)

z (Z;�) can be
written as [32]:

log f (B)
z (Z;�) = − log |�|−tr

{
�−1JLN �̂

T
JLN

}
. (16)

Adding (15) and (16), it gives us the forward-backward
log likelihood as:

1
2
log f (FB)

z (Z;�) = − log |�| − tr
{
�−1�̂PS

}
, (17)
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where

�̂PS = 1
2

(
�̂ + JLN �̂

T
JLN

)
. (18)

The covariance matrix estimator (18) is called forward-
backward sample covariance matrix, which is the ML
estimator of the persymmetric covariance matrix [32]. An
exact theory indicating the performance of the estima-
tor as a function of number of independent vector z(m),
m = 1, 2, . . . ,M, is not available. However, a qualitative
discussion reported in [19,29] shows that the required
number of samples decreases by approximately a factor
of two. Similarly, it is reported in [33] that �̂PS has con-
sistently lower variance than the variance of �̂. Finally,
solving (14) and using (18), the GLRT becomes

�PS (Z) =
∣∣∣�̂PS

∣∣∣∣∣∣�̂0

∣∣∣ ≷H0
H1

γ . (19)

where �̂0 = �̂A,0 ⊗ IN as before. Compared to the detec-
tion scheme in (9), the new one in (19) offers improved
performance at small sample support, as the number
of independent vector measurements required for the
covariance matrix estimator decreases by up to a factor
of two [19]. Motivated by these facts, in Section 5, we go
one step further and exploit the properties of the Kro-
necker product to decompose the large covariance matrix
into smaller ones, reducing considerably the number of
unknown parameters.

5 GLRT based on Kronecker factorization
In Section 3, we presented the ST-GLRT approach for
the detection problem in (3) and argued that it performs
poorly for M < KN . In Section 4.1, we have (partially)
exploited the temporal structure by imposing persym-
metry on the covariance matrix. We have also discussed
that the spatio-temporal covariance matrix � has block-
Toeplitz (with Toeplitz blocks) structure. In [34,35], it is
reported that the block-Toeplitz structure can be approx-
imated by the Kronecker product of two matrices. Taking
this into account, we therefore approximate the covari-
ance matrix � into a purely spatial and a purely temporal
component as:

� = �A ⊗ �T. (20)

In (20), the matrix �A captures the spatial correlation
between the observations received at different antennas
and matrix �T captures the time correlation between N
column vectors in X. Herein, we remark that the covari-
ance structure in (20) makes the implicit assumption that
the temporal correlation structure remains the same at all

spatial locations. Similarly, the spatial correlation struc-
ture remains the same for the whole sub-block.

5.1 KR-GLRT
In this section, we consider the Kronecker product-based
factorization and derive the GLRT that exploits this struc-
ture, which is given by

�KR(Z) =
max
�0

fz (Z;�0)

max
�T,�A

fz (Z;�A ⊗ �T)
≷H0

H1
γ . (21)

In order to solve (21), under hypothesis H1, we need
to obtain the ML estimates of the unknown covariance
matrices �A and �T. Under H1, the likelihood func-
tion fz (Z;�A ⊗ �T), ignoring constant factors, can be
written as:

fz (Z;�A ⊗ �T) = |�A ⊗ �T|−M

× exp
[
−

M∑
m=1

zH(m)
(
�−1

A ⊗ �−1
T

)
z(m)

]
.

(22)

Now, we can write fz (Z;�A ⊗ �T) = fx (XT;�A,�T)

[36], which yields

fx (XT;�A,�T) = |�A|−MN |�T|−ML

× exp
[
−

M∑
m=1

tr
{
�−1

T XH (m) �−1
A X (m)

}]
,

(23)

To find theML estimates of�A and �T, we need to take
the derivative of log fX (xT;�A,�T), given by

log fx (XT;�A,�T) = −N log |�A| − L log |�T|

− 1
M

M∑
m=1

tr
{
�−1

T XH(m)�−1
A X(m)

}
(24)

with respect to �A (�T), keeping �T (�A) fixed. Equat-
ing the result of the derivative to zero and after simple
mathematical operations, the estimators underH1 can be
written as:

�̂T = 1
LM

M∑
m=1

XH (m) �̂
−1
A X (m) , (25)

�̂A = 1
NM

M∑
m=1

X (m) �̂
−1
T XH (m) . (26)

Equations (25) and (26) suggest that �̂T and �̂A
can be obtained using an iterative method such as the
Flip-Flop algorithm. The Flip-Flop algorithm maximizes
log fx (XT;�A,�T) w.r.t. �A, keeping the last available
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estimate of �T fixed and vice versa. In [23], numerical
experiments show that the Flip-Flop algorithm performs
very well and is much faster than a more general pur-
pose optimization algorithm such as Newton–Raphson
[23]. In [22], it has been reported that for the case of large
enough M, asymptotic efficiency of the ML approach can
be achieved without iterating. Moreover, it is reported
in [23,36] that if (M − 1)N ≥ L and (M − 1) L ≥ N ,
or equivalently M ≥ max (N/L; L/N) + 1, then every
iterate in the Flip-Flop algorithm results in positive defi-
nite �̂A ⊗ �̂T with probability one. Taking into account
this fact, in order to get �̂, we adopt a non-iterative
Flip-Flop approach and only perform the steps given in
Algorithm 1, with an initial value of �̂

0
A = IL×L. On the

other hand, underH0, we have the estimate of�0 as: �̂0 =
�̂A,0⊗IN×N . Having all of the maximum likelihood-based
estimates, and solving (21), we can get the expression:

Algorithm 1 ML based Non-Iterative
Flip-Flop

• Choose a starting value for �̂
0
A as

IL×L.

• Estimate �̂
1
T from (25) with �̂A = �̂

0
A.• Find the following

1. Estimate �̂A from (26) with �̂
1
T.

2. Estimate �̂T from (25) with �̂A
from previous step.

�KR(Z) =
∣∣∣�̂T

∣∣∣L ∣∣∣�̂A

∣∣∣N∣∣∣�̂0

∣∣∣ ≷H0
H1

γ . (27)

The main advantage of the proposed GLRT (27) over
the traditional is that under H1 instead of 1

2LN(LN + 1)
parameters, it has only 1

2L (L + 1) + 1
2N (N + 1) parame-

ters to estimate. Furthermore, the dimensions of these two
covariance matrices �T and �A are much smaller than
the dimension of full covariance matrix �, that is why
the computations are much less demanding. Hence, the
Kronecker model is a good approximation that captures
important information about the correlations, while it is
positive definite forM ≥ max (N/L; L/N) + 1, i.e. a much
smaller number of samples.

5.2 PK-GLRT
In Section 4, we have assumed that the covariance matrix
� has a block-Toeplitz (with Toeplitz blocks) structure.
Keeping this in mind, in this section, we assess the
possible improvement in the detection performance of

(27) by exploiting the fact that the factored matrices �T
and �A have persymmetric structures. We show that it
is possible to account for the persymmetric structure by
a simple modification of the Flip-Flop algorithm. Hence,
as we did in Section 4.1, the persymmetric structures are
exploited by imposing the constraints [21]:

�T = JN�T
TJN, (28)

�A = JL�T
AJL, (29)

where JL and JN are the reversal matrices of dimensions
(L × L) and (N × N), respectively. The modified version
of KR-GLRT (21) that we denoted as PK-GLRT can be
written as:

�PKR(Z) =
max
�0

fz (Z;�0)

max
�T,�A

fz (Z;�A ⊗ �T)

s.t �A = JL�T
AJL

�T = JN�T
TJN

(30)

We see that in the expression (30), under hypothesisH0,
the solution is the same as in (14) and (21). The difference
lies in the case of hypothesisH1, where we need to solve

max
�A,�T

log fZ (Z;�A ⊗ �T) ,

s.t �A = JL�T
AJL

�T = JN�T
TJN

(31)

As in Section 4.1, to obtain the ML estimate of a
persymmetric covariance matrix, we need the forward-
backward (FB) log likelihood, which is the combination of
the forward-looking and the backward-looking log like-
lihoods. In this case, the forward-looking log-likelihood
function for estimating �T can be written as:

log f Fz (Z;�A⊗�T) = −N log |�A| − L log |�T|

− 1
M

M∑
m=1

tr
{
�−1

T XH(m)�−1
A X(m)

}
.

(32)

Similarly, the backward-looking log likelihood is

log f Bz (Z;�A ⊗ �T) = −N log |�A| − L log |�T|
− 1

M
tr
{
�−1

T JNQHJN
}
,

(33)

where in (33),Q �
∑M

m=1 XH (m)�−1
A X (m). Adding (32)

and (33) gives us the Kronecker product-based forward-
backward log-likelihood log f BFz (Z;�A ⊗ �T), required
for estimating the persymmetric estimate of �T. Follow-
ing similar steps as in (32) and (33), we can find forward-
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and backward-looking log-likelihood functions for finding
the persymmetric estimate of �A. To find the ML esti-
mates of the covariance matrices, in the first step, we
fix �A and find �T that maximizes log f BFz (Z;�A ⊗ �T).
Taking into account these results, the estimator of the
persymmetric �T can be found as:

�̂PS,T = 1
2ML

M∑
m=1

XH (m) �̂
−1
PS,AX (m)

+ 1
2ML

M∑
m=1

JN
(
XH (m) �̂

−1
PS,AX (m)

)T
JN,

(34)

Similarly, by following the same process with fixed �T,
the estimator of the persymmetric �A can be written as:

�̂PS,A = 1
2MN

M∑
m=1

X (m) �̂
−1
PS,TXH (m)

+ 1
2MN

M∑
m=1

JL
(
X (m) �̂

−1
PS,TXH (m)

)T
JL

(35)

As it was in the case of expressions (25) and (26), both of
the expressions (34) and (35) suggest that �̂PS,T and �̂PS,A
can be estimated using an iterative method such as the
Flip-Flop algorithm, as shown in Algorithm 2. Using (34)
and (35), the final expression for the GLRT becomes

�PKR(Z) =
∣∣∣�̂PS,T

∣∣∣L ∣∣∣�̂PS,A

∣∣∣N∣∣∣�̂0

∣∣∣ ≷H0
H1

γ . (36)

Compared to (27), (36) provides better detection perfor-
mance in the small sample support regime. It is because,
finding the estimates of �T and �A, (34) and (35) require
smaller M compared to (25) and (26). In conclusion,
by exploiting the underlying structure of the covariance
matrix � via the persymmetric ML estimates of the
covariance matrices �T and �A, it further increases the
robustness of (27) at small sample support.

Algorithm 2 Non-Iterative Flip-Flop
(persymmetric)

• Choose a starting value for �̂
0
A as

IL×L
• Estimate �̂

1
T from (25) with �̂

1
A = �̂

0
A.• Find the following

1. Estimate �̂PS,A from (35) with �̂
1
T.

2. Estimate �̂PS,T from (34) with �̂PS,A
from step 1.

6 Numerical results
In this section, we present numerical results to evaluate
the performance of the proposed detection schemes, pre-
sented in the preceding sections. For the analysis to be
conducted herein, we use the receiver operating charac-
teristic (ROC) curve and the area under the ROC curve
(AUC), which varies between 0.5 (poor performance) and
1 (good performance) [37], as the performance measures.
We also evaluate the performance by the probability of
detection vs the signal-to-noise ratio for a fixed false
alarm probability. For the evaluation, we performed the
following two experiments:

6.1 Experiment no. 1: detection of a WSS signal at
multiple antennas

In this experiment, we assume that the signal received at
the multi-antenna receiver is a vector WSS Gaussian pro-
cess corrupted by uncorrelated noise. In order to assess
the detectors with this assumption, the SNRs (expected)
κl, l = 1, 2, · · · , L are allocated differently, with average
SNR of all antennas is: κ̄ = 1

L
∑L

l=1 κl. For a speci-
fied received signal power (equal at different antennas)
and κ̄ , we find Pn, the mean noise power. Noise powers
(expectedb) at L different antennas σ 2

n,l, l = 1, 2, · · · , L
are kept different while Pn = 1

L
∑L

i=1 σ 2
n,l. Moreover, we

assume L = 4 antennas and a separable spatio-temporal
correlation. The spatial covariance matrix is generated
as [�A]i,j = 0.3|i−j|, i, j = 1, . . . , L, and the temporal
covariance matrix is generated as [�T]i,j = 0.9|i−j|, i, j =
1, . . . ,NT . The remaining parameters for each experi-
ment are described in the captions of the corresponding
diagrams.
In the first experiment, we obtain the ROC curves

using Matlab to compare the performance of the pro-
posed schemes to that of the traditional schemes (GLRT
that ignores temporal correlation �TR (XT), the energy
detector �Eng (XT)) and the ST-GLRT and its frequency-
domain approximation for WSS series. In particular, the
energy detector can be expressed as:

�Eng (XT) =
M∑

m=1

N∑
n=1

L∑
l=1

∣∣xl,n (m)
∣∣2 ≷H1

H0
γ , (37)

and the frequency-domain detector is given by (39) in
Appendix A. It is to be noted that the energy detector
assumes known noise power.
In this experiment, we plot ROC curves for two differ-

ent cases. In the first case, we assume that the unknown
noise powers at different antennas are perfectly estimated
and there is no noise power uncertainty. The ROC plots
are given in Figure 3. In the second part of this experi-
ment, shown in Figure 4, we repeat the same experimental
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Figure 3 ROC curves for comparison of detection schemes: sample support sizeM = 70, number of vector samples per sub-block N = 10,
number of antennas L = 4, noise uncertainty αnu = 1, and average SNR κ̄ = −10 dB.

setup for the case with noise power uncertainty. Note that
we model the noise power uncertainty by generating the

noise power at the l-th antenna as σ 2
w,l ∼ U

(
σ 2
n,l

αnu
,αnuσ

2
n,l

)
,

where αnu ≥ 1, and αnu = 1 means no noise uncer-
tainty [1]. From the results, it is clear that the proposed

schemes clearly outperform traditional schemes. More-
over, from the experiment, we can also conclude that
the noise power uncertainty slightly deteriorates the per-
formance of all detectors. However, the energy detector
completely collapses at αnu = 2. To further analyze the
effects of the sample support, noise power uncertainty,
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Figure 4 ROC curves for comparison of detection schemes: sample support sizeM = 70, number of vector samples per sub-block N = 10,
number of antennas L = 4, noise uncertainty αnu = 2, and average SNR κ̄ = −10 dB.
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and shadowing parameters, we need to have a single and
quantitative figure of merit. This metric is the area under
the ROC curve (AUC), which varies between 0.5 (poor
performance) and 1 (good performance). Hence, next,
we use AUC curves to see effects of the sample sup-
port, noise power uncertainty, and shadowing parameters
on the detection performance of the spectrum sensing
schemes. We model the shadowing effect by using log-
normal random variable as: psh = pm10xσ /10, where pm
is the expected signal power at the receiver (equal for all
antennas), psh is the signal power after shadowing effect,
and xσ is Gaussian random variable with 0 mean and
standard deviation σSh. The log-normal shadow fading is
often characterized by its dB spread, σdB, which has the
relationship σSh = 0.1σdB log10 [38].
In Figure 5, we plot the AUC curves to analyze the

effects of sample size in the presence of shadowing, with
and without the effects of noise power uncertainty. In
this figure, the curves with dashed lines represent the
case where both shadowing and noise power uncertainty
with αnu = 1.5. On the other hand, the curves with
solid lines show the case with no noise power uncertainty
(i.e. αnu = 1). From these plots, it can be concluded that
the proposed schemes �KR(Z) and �PKR(Z) are robust
against the small sample support both in the presence and
absence of noise power uncertainty. Particularly, in the
region 20 ≤ M ≤ 80, the detectors �KR(Z) and �PKR(Z)

clearly outperform the other detectors. As expected, we
can also see that in the small sample regime,�PKR(Z) per-
forms better than �KR(Z). The obvious reason for this is
that underH1 instead of 1

2L(L+1)+ 1
2N(N+1) parameters

in the case of �KR(Z), the detection scheme �PKR(Z)

has approximately only (2L − 1) + (2N − 1) parameters
to estimate. In order to confirm this, in Figure 6, we
plot the normalized minimum square error (MSE) of the
estimator of the covariance matrix under hypothesis H1,
expressed as:

RNMSE =

√√√√√ 1
Javg

Javg∑
j=1

∥∥∥�̂j − �

∥∥∥2
F

‖�‖2F
(38)

where � is the true spatio-temporal covariance matrix,
�̂j is the estimated covariance for each estimator in the
Monte Carlo simulation j, ‖.‖2F is the Frobenius norm, and
Javg is the number of Monte Carlo simulations. The results
confirm that for small sample support, estimators of �

used in the case �KR(Z) and �PKR(Z) have smaller error.
In Figure 7, we show the AUC plots to analyze the

effect of shadowing (i.e. σdB) both in the presence and
absence of noise uncertainty, αnu = 1.5 and αnu = 1,
respectively. It is clear from these results that the effects
of shadowing are very small on the performance of the
detection schemes. However, we can see that by incre-
menting σdB, a slight improvement occurs in the perfor-
mance of the detection schemes �TR (Z), �ST (Z), and
�PS (Z). The most obvious reason for this interesting
outcome can be the heavy-tailed distribution of the pri-
mary signal strength due to the log-normally-distributed
shadow fading that behaves in such a way at lower
SNR [39].
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Figure 5 AUC curves (solid lines for αnu = 1 and dashed lines for αnu = 2) to assess the effects of number of samplesM: number of vector
samples per sub-block N = 15, number of antennas L = 4, shadowing σdB−spread = 4, and average SNR κ̄ = −12 dB.
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In Figure 8, we show the AUC plots to analyze the
effects of noise power uncertainty. The results show a
robust behavior for the detection schemes against the
noise power uncertainty. Once again, we observe that
the performance of the proposed schemes �KR(Z) and
�PKR(Z) is better than other schemes that do not exploit
the underlying structure of the received signal.

Finally, keeping the probability of false alarm PF fixed,
we simulate the performance of the detection schemes
by plotting PD against different values of average SNR κ̄ .
The simulation results are shown in Figure 9. The results
clearly show that for different SNR values, the proposed
schemes consistently perform better than the detection
schemes that do not exploit the covariance structure.
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Figure 7 AUC curves (solid lines for αnu = 1.5 and dashed lines for αnu = 1) to assess the effects of shadowing σdB: sample sizeM = 80,
number of vector samples per sub-block N = 15, number of antennas L = 4, and average SNR κ̄ = −8 dB.
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Figure 8 AUC curves to assess the effects of noise uncertainty αnu: with sample sizeM = 80, number of vector samples per sub-block
N = 15, number of antennas L = 4, effect of shadowing σdB−spread = 4, and average SNR κ̄ = −8 dB.

In conclusion, we can say that the exploitation of inher-
ent structure of covariance matrix both in frequency and
time domain leads us to robustness against the small
sample support compared to the ST-GLRT in (9).

6.2 Experiment no. 2: cognitive radio
In the previous set of experiments, we analyzed the pro-
posed schemes for detection of a Gaussian signal with

separable spatio-temporal covariance matrix in unknown
additive uncorrelated noise. In the present set of exper-
iments, we perform simulations to illustrate the appli-
cation of the proposed detection schemes in cognitive
radio, i.e. with an actual communication signal instead of a
Gaussian signal and with a non-separable spatio-temporal
covariance matrix. For the simulations, we have used an
ODFM-modulated DVB-T signal (8-K mode, 64 − QAM,
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Figure 9 PD vs average SNR: number of vector samples per sub-block N = 15, number of antennas L = 4,M = 80.
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Figure 10 ROC curves (solid lines for αnu = 2 and dashed lines for αnu = 1): sample support sizeM = 70, number of vector samples per
sub-block N = 15, number of antennas L = 4, channel delay spread 0.779 μs, and average SNR κ̄ = −8 dB.

guard interval 1/4, and inner code rate 2/3) with a band-
width of 7.61 MHz. We have considered a 4 × 4 Rayleigh
channel with unit power and an exponential power delay
profile with length 64 samples (at a sampling frequency
of 7.61 MHz). The additive noises at each antenna are
generated as a zero-mean complex Gaussian process. We
used a noise power different at each antenna with average

SNR κ̄ = −8 dB. To analyze the schemes, we plot ROC
curves with N = 15 vector samples per sub-block. The
rest of the parameters are given in the captions of the
figures.
In Figure 10, we plot the ROC curves for the case

when the channel delay spread is 0.779 μs with and
without noise power uncertainty. In this figure, we can
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Figure 11 ROC curves (solid lines for αnu = 2 and dashed lines for αnu = 1): sample support sizeM = 70, number of vector samples per
sub-block N = 15, number of antennas L = 4, channel delay spread 0.097 μs, and average SNR κ̄ = −8 dB.
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easily see that the detectors �KR(Z) and �PKR(Z) clearly
outperform the other detectors, even for this realistic
spatio-temporal correlation. In Figure 11, we repeat
the experiment of Figure 10 for a channel delay spread
0.097μs (almost flat fading channel). Even for channels
with low-frequency selectivity, we can see that the detec-
tion schemes �KR(Z) and �PKR(Z) consistently perform
better compared to the rest of the detection schemes.
However, compared to Figure 10, in Figure 11, we can
see interesting results that the detector which ignores
temporal correlation outperforms spatio-temporal
correlation-based schemes due to the low selectivity of the
channel.
Before commenting on these interesting results, for

further confirmation, we need to have a single and
quantitative figure of merit, so we plot AUC curves in
Figure 12.
The AUC curves in Figure 12 demonstrate that the

proposed detectors have better performance compared
to the traditional detection schemes, for different val-
ues of sample support. In order to see the effect of
delay spreads, we consider two types of channel delay
spreads (0.097 and 0.779 μs). The results in Figure 12
confirm that the proposed schemes �KR(Z) and �PKR(Z)

consistently outperform other schemes in small sample
support regime. We can also see that in general, the per-
formance of all schemes is degraded for different values
of delay spreads; since the larger the delay spread, the
larger the degradation incurred. However, we can see that
compared to rest of the detection schemes, �KR(Z) and

�PKR(Z) show more robustness against changes in the
delay spread. We can further observe an interesting out-
come in the case of the detector that ignores temporal
correlation and the frequency-based approximate GLRT,
where we can see that the performances of these two
detection schemes are quite different for the two chan-
nel delay spreads. This is also evident from comparison
of ROC curves in Figures 10 and 11. The possible expla-
nation for this can be that for a short channel delay
spread (i.e. 0.097 μs), the multi-tap channel adds neg-
ligible temporal correlation. On the other hand, in the
case of channel delay spread 0.779μs, we have tempo-
ral correlation imposed by the channel on the temporally
uncorrelated transmitted OFDM signal. Therefore, the
inclusion of temporal correlation as an additional detec-
tion metric is not helping in the case of delay spread
(i.e. 0.097 μs).
In order to further analyze the detection performance

of the proposed schemes, in Figure 13, we compare the
results by plotting PD vs average SNR κ̄ . Once again, we
can observe that the proposed schemes outperform the
remaining detection schemes presented in this paper.

7 Conclusion
In this paper, we have proposed novel detection schemes
that exploit the spatio-temporal correlation present in
the received observations at a multi-antenna receiver.
When exploiting the spatio-temporal correlation, we have
observed that the GLRT performs poorly when the sam-
ple support is small. To cope with this problem, we
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Figure 12 AUC curves (solid lines for channel delay spread 0.779 μs and dashed lines for channel delay spread 0.097μs) to assess the
effects of number of samplesM: number of vector samples per sub-blockN = 15, number of antennas L = 4, and average SNR κ̄ = −8 dB.
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have proposed detectors that are robust against the
sample support. The proposed detectors (approximately)
exploit the inherent spatio-temporal structure of the
received covariance matrix by using the properties of
persymmetric matrices and the Kronecker product of
the spatial and temporal covariance matrices. The per-
formance of the proposed detectors has been evaluated
with the help of numerical simulations, which show
important improvements compared to the traditional
schemes.

Endnotes
aWe begin with the complex base-band signal sampled

at the specific Nyquist rate.
bThese values are maintained during Monte-Carlo

process. In order to create noise power uncertainty, these
values are affected by random uncertainty at each run.

Appendix
A Approximated GLRT in the frequency domain
For the interested readers, herein, we reproduce the
approximated GLRT in the frequency domain, originally
presented in [15]. While considering the case in which
the received signals are jointly WSS, the limiting form
(L fixed and M,N → ∞) of the the frequency domain
GLRT statistic is written as [15]:

�ST
(
Zf

) −→
M,N→∞ exp

⎧⎨
⎩
∫ π

−π

log

⎡
⎣det

(
Ŝ
(
e jθn

))
∏L

i=1 ŝii
(
e jθn

)
⎤
⎦ dθn

2π

⎫⎬
⎭ ,

(39)

where
[
Ŝ
(
e jθn

)]
l,k

= fH
(
e jθn

)
�̂l,kf

(
e jθn

)
is a quadratic

estimator and the Fourier vector is given by

f
(
e jθn

) =
[
1, e−jθn , e−j2θn , e−j3θn , . . . , e−j(N−1)θn

]T
.

(40)
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