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Abstract

In this paper, we propose a new construction method for a novel class of parametric reciprocal-orthogonal jacket
transform (PROJT) having 9

4N parameters for a sequence length N = 2r+1 that is a power of two, based on the
reciprocal-orthogonal parametric (ROP) transform and block diagonal matrices. It is shown that the inverse transform
of the proposed PROJT is conveniently obtained by the reciprocal of each elements of the forward matrix and
transpose operation. What is more, an efficient algorithm for the computation of the PROJT has been developed with
the aid of the matrix decomposition and Kronecker product. Further, the experiments show that the independent
parameters in the proposed PROJT are successfully used as additional secret keys for image encryption, watermarking,
and error-correcting codes.

1 Introduction
There are a variety of discrete signal orthogonal trans-
forms [1-3], such as discrete Fourier transform (DFT),
discrete Hartley transform (DHT), Walsh-Hadamard
transform (WHT), Haar transform, slant transform, and
discrete cosine transform (DCT), which have various
application in digital signal processing, image compress-
ing video processing, and pattern recognition. A lot of
services of these transforms are mainly due to their prac-
tical usefulness and the existence of fast and efficient
algorithms for their computation. However, since each
of the well-known transforms [4-9], for example DFT,
DHT, WHT, DCT, etc., is fixed without any parameters,
each single transform only deals with its special area of
applications. In order to best match the given input sig-
nal class or the application, many parametric transforms
[10-15] with matrices associating a set of parameters are
presented to fit the desirable signal by choosing appropri-
ate parameters. An advantage of parametric transforms is
the possibility to implement large families of transforms
with a unified software/hardware, which is efficient for
every representative of the family and may be tuned to the
desired transforms [16].

*Correspondence: moonho@jbnu.ac.kr
1Division of Electronics and Information Engineering, Chonbuk National
University, Jeonju 561-756, Korea
Full list of author information is available at the end of the article

On the other hand, the DCT and the Karhunen-Loeve
transform (KLT) have better compaction performance
than the slant transform [10,11]. Both the DCT and
KLT have more computational complexity than the slant
transform. Therefore, the need arises for slant transform
improvement schemes that yield performance comparable
to that of the KLT and DCT without incurring their com-
putational complexity [10-20]. Therefore, various general-
izations of the WHTs and DFTs have been attempted. Lee
[6] proposed a center weight Hadamard transform with
matrix of order 4. However, the proposed jacket transform
has only three parameters at most. Recently, Bouguezel
et al. [13] proposed a new class of reciprocal-orthogonal
parametric (ROP) transforms, which have 3N

2 indepen-
dent parameters for an input data vector of length N . Fur-
ther, they showed that the inverse of the ROP transforms
and matrices is easily obtained and has fast algorithm. Lee
et al. [18] proposed a novel class of element-wise inverse
jacket transforms (EIJTs) having 2N − 1 parameters for
an input data vector of length N = 3 · 2r . Moreover,
Bouguezel et al. [14] proposed new parametric discrete
Fourier transforms, Hartley transforms, and algorithms
for fast computation. Ding et al. [15] proposed arbitrary-
length Walsh-Jacket transforms. Agaian et al. [11] devel-
oped a class of generalized parametric Slant-Hadamard
transforms with fast algorithm, whose performance is bet-
ter than the classical one-transform-based model. Chen
et al. [21] proposed a fast cocyclic jacket transform
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over the complex number field. Moreover, many other
transforms based on complex field and finite fields were
proposed [19,20,22].
In recent years, enormous parametric transforms cor-

responding to the existing determined transforms have
been developed. It has been shown that parametric trans-
forms can have more flexibility and a wider range of
applications compared to its original transform. For exam-
ple, the independent parameters of the fractional dis-
crete transform are used as an additional secret key
for watermarking [5], encryption [4,17], error-correcting
codes, etc. From this point of view, parametric trans-
forms with matrices described in a unified form and
based on a set of parameters become more and more
important.
Themain purpose of this paper is to propose a fast para-

metric reciprocal-orthogonal jacket transform (PROJT)
having 9

4N parameters for an input data vector N = 2r+1,
which is reciprocal-orthogonal and has a fast and efficient
algorithm with special structure. In addition, this pro-
posed transform has more parameters than some known
proposed transforms. A lot of simulations show that the
independent parameters in the PROJT are able to be
used as additional secret keys for image encryption. The
rest of this paper is organized as follows. In Section 2,
jacket matrices and some preliminaries are recalled. In
Section 3, the PROJT is proposed and developed. In
Section 4, an efficient algorithm with special structure is
developed for the proposed PROJT having many param-
eters. Examples and computer simulations are given in
Section 5. We draw some conclusions and remarks in
Section 6.

2 Preliminaries and notations
In this section, we introduce some definitions and nota-
tions. For an N × N matrix [ J]N , the N × N associated
matrix [ J]RTN is obtained from matrix [ J]N by taking the
reciprocal of each entry and exchanging its row and col-
umn indices. In other words, the (k, i) entry of [ J]RTN is
equal to the reciprocal of the element in the (i, k) position
in [ J]N . We now recall the definition of a jacket matrix
which is reciprocal-orthogonal in [7].

Definition 2.1. An N ×N complex matrix [ J]N = (ji,k) is
called a jacket matrix, if [ J]N is invertible and the element
in the entries (i, k) of its inverse matrix is equal to the prod-
uct of 1

N and the inverse of the element in the entries (k, i)
of [ J]N . In other words, if

[ J]N =

⎛⎜⎜⎝
j0,0 j0,1 · · · j0,N−1
j1,0 j1,1 · · · j1,N−1
· · · · · · · · · · · ·

jN−1,0 jN−1,1 · · · jN−1,N−1

⎞⎟⎟⎠ , (1)

then

[ J]−1
N = 1

N
[ J]RT =

⎛⎜⎜⎜⎝
1
j0,0

1
j1,0 · · · 1

jN−1,0
1
j0,1

1
j1,1 · · · 1

jN−1,1
· · · · · · · · · · · ·
1

j0,N−1
1

j1,N−1
· · · 1

jN−1,N−1

⎞⎟⎟⎟⎠ . (2)

For example, the well-known Hadamard matrices are
jacket matrices. A 2 × 2 jacket matrix is as follows:

[ J]2 =
(
a b
c − bc

a

)
, (3)

where a, b, c are nonzero complex numbers, since

[ J]2 [ J]RT2 =
(
a b
c − bc

a

) ( 1
a

1
c1

b − a
bc

)
= 2[I]2 . (4)

Clearly, this 2 × 2 jacket matrix has three parameters.
The proposed jacket matrix of order 4 [6]

[ J]4 =

⎛⎜⎜⎜⎝
b f g h
c − acf

b
acg
b − ch

b
d adf

b − adg
b −dh

b
e − ef

b − eg
b

eh
b

⎞⎟⎟⎟⎠ (5)

has eight parameters and [ J]4 [ J]RT4 = 4[ I]4, which is a
generalization of the 4 × 4 center-weighted Hadamard
matrix

[CWH]4 =

⎛⎜⎜⎝
1 1 1 1
1 −w w −1
1 w −w −1
1 −1 −1 1

⎞⎟⎟⎠ (6)

with only one nonzero complex parameter and
[CWH]4 [CWH]RT4 = 4[I]4. Bouguezel et al. [13] pro-
posed the following ROP transform of order 8 that is (7)
and [P]8 [P]RT8 = 8[I]8.

[P]8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
1 −a1,−1 a2,−1 −a3,−1 a3,−1 −a2,−1 a1,−1 −1
1 a1,−1 −a2,−1 −a3,−1 a3,−1 a2,−1 −a1,−1 −1
1 −1 −1 1 1 −1 −1 1
1 a1,−1 a2,−1 a3,−1 −a3,−1 −a2,−1 −a1,−1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −a1,−1 −a2,−1 a3,−1 −a3,−1 a2,−1 a1,−1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(7)

3 Proposed PROJT withmany parameters
Before proposing a desired PROJT, we also need to intro-
duce some notations and definitions. For a given integer
N = 2r+1, any integer 0 ≤ n ≤ N − 1 can be written as

n = nr2r + nr2r−1 + · · · + n12 + n0 (8)

where ni is 0 or 1 for 0 ≤ i ≤ r + 1. For two integers n and
k = kr2r + kr−12r−1 + · · · + k12 + k0, we define

< k, n >= krnr + kr−1nr−1 + · · · + k1n1 + k0n0.
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Further, we denote the two sets as follows:

Se ≡
{
n | 0 ≤ n ≤ N − 1,

r∑
i=0

ni is even
}

and

So ≡
{
n | 0 ≤ n ≤ N − 1,

r∑
i=0

ni is odd
}
.

Moreover, let

p(n) =
{
0, if n ∈ Se,
1, if n ∈ So,

and

ñ =
{
0, if n is even,
1, if n is odd.

Let

V (i) =
(
V0,2i V0,2i+1
V1,2i, V1,2i+1

)
,

for i = 0, 1, 2 · · · ,N/2 − 1 = 2r − 1, where V1,2i+1 =
−V1,2iV0,2i+1

V0,2i
. Therefore, we have

V0,2iV1,2i+1 + V0,2i+1V1,2i = 0, (9)

where i = 0, 1, · · · ,N/2 − 1. Moreover, it is easy to see
that V (0),V (1), · · · ,V (2r−1) are 2× 2 jacket matrices, each
of which has three independent parameters. Let

α = (
a0,0, a0,1, · · · , a0,N/4−1, a0,N/4, · · · , a0,N/2−1

)
and

β = (
a1,0, a1,1, · · · , a1,N/4−1, a1,N/4, · · · , a1,N/2−1

)
where a1,i = a0,i

a0,N/2−i−1
a1,N/2−i−1 for i = N/4,N/4 +

1, · · · ,N/2 − 1.
Based on the above two vectors Bouguezel et al. [13]

constructed a class of ROP transforms having 3
4N inde-

pendent parameters for a sequence length N/2. The ROP
transform of a complex input data X(k) of orderN/2 = 2r
can be stated as follows [13]:

Y (n) =
N/2−1∑
k=0

(−1)<k,n>ap(n),kX(k), (10)

where n = 0, 1, · · · ,N/2−1. Further, they proved that the
inverse of the ROP transform by (10) is fastly decoded by

X(k) = 1
N

N/2−1∑
n=0

(−1)<k,n>

ap(n),k
Y (n), (11)

where k = 0, 1, · · · ,N/2 − 1.
For two N × N matrices [A]N = (aij) and [B]N = (bij),

the Hadamard product [C]N = (cij) of the two matrices

[A] and [B] is defined as cij = aijbij and denoted [C]N =
[A]N ◦[B]N . For the proposed ROP transform, Bouguezel
et al. also gave the method on how to construct the
transform matrix associated with the ROP transform. Let
[A]N/2 be the matrix, whose k−th row equals to the k−th
row of [A]N/2, to be α if p(k) = 0 and to be β if p(k) =
1. Moreover, let [H]N/2 =[H]2 ⊗[H]2 ⊗ · · · ⊗[H]2 be the
Hadamard matrix of order N/2. Then the proposed ROP
matrix [P]N/2 is just [A]N/2 ◦[H]N/2. Therefore, it is easy
to see that [P]N/2 is orthogonal and

[P]N/2 [P]RTN/2 =[P]RTN/2 [P]N/2 = N/2[I]N/2 ,

where [I]N/2 is the N/2 × N/2 identity matrix. In other
words, we have the following equation:

N/2−1∑
s=0

(−1)<k,s>ap(k),s
(−1)<l,s>ap(l),s

=
{
N/2 if k = l
0 if k �= l , (12)

where k, l = 0, 1, · · · ,N/2 − 1. With the above notations
and symbols, we are ready to propose a novel class PROJT
as follows.

Definition 3.1. A PROJT of a complex sequence X(n) of
order N = 2r+1 is defined as

Y (n) =
N−1∑
i=0

(−1)<� n
2 	,� i

2 	>ap(� n
2 	),� i

2 	Vñ,iX(i), (13)

n = 0, 1, · · · ,N − 1, and �n
2 	 stands for the largest integer

no more than n
2 .

The PROJT matrix of order N = 2r+1 have 9
4N inde-

pendent parameters, since there are 3
4N nonzero inde-

pendent parameters a00, · · · , a0,N/2−1, a1,0, · · · , aN/4−1
and 3

2N independent parameters V00, · · · ,V0,N ,V1,0, · · · ,
V1,N/2−1. It is known that the more independent param-
eters a transform has, the more it has applications. Note
that the PROJT has 9

4N parameters while the ROP has 3
2N

parameters, which implies that the PROJT hasmore appli-
cations in watermarking, encryption, and error-correcting
codes than the ROP. Further, it can be shown that the
inverse transform of the proposed transform is easily
obtained and has an efficient algorithm.

Theorem 3.2. The inverse transform of the PROJT defined
by (13) is given as follows:

X(i) = 1
N

N−1∑
n=0

(−1)<� i
2 	,� n

2 	>

ap(� n
2 	),� i

2 	Vñ,i
Y (n), (14)

where i = 0, 1, · · · ,N − 1.
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Proof. We establish the above theorem by proving that
the following equation holds

N−1∑
i=0

(−1)<� n
2 	,� i

2 	>ap(� n
2 	),� i

2 	Vñ,i

(−1)<� i
2 	,� t

2 	>ap(� t
2 	),� i

2 	Ṽt,i
=

{
N if t = n
0 if t �= n , (15)

where n, t = 0, 1, · · · ,N − 1.
Case 1:We first consider t = n. Then

N−1∑
i=0

(−1)<� n
2 	,� i

2 	>ap(� n
2 	),� i

2 	Vñ,i

(−1)<� i
2 	,� t

2 	>ap(� t
2 	),� i

2 	Ṽt,i

=
N−1∑
i=0

(−1)<� n
2 	,� i

2 	>ap(� n
2 	),� i

2 	Vñ,i

(−1)<� i
2 	,� n

2 	>ap(� n
2 	),� i

2 	Vñ,i

=
N−1∑
i=0

1

= N .

Case 2. Next, we consider that t �= n. There are four
subcases.
Subcase 2.1 n = 2k and t = 2l. Then

N−1∑
i=0

(−1)<� n
2 	,� i

2 	>ap(� n
2 	),� i

2 	Vñ,i

(−1)<� i
2 	,� t

2 	>ap(� t
2 	),� i

2 	Ṽt,i

=
N−1∑
i=0

(−1)<k,� i
2 	>+<l,� i

2 	> ap(k),� i
2 	V0,i

ap(l),� i
2 	V0,i

=
N−1∑

i=0,i=2s
(−1)<k,� i

2 	>+<l,� i
2 	> ap(k),� i

2 	
ap(l),� i

2 	

+
N−1∑

i=0,i=2s+1
(−1)<k,� i

2 	>+<l,� i
2 	> ap(k),� i

2 	
ap(l),� i

2 	

=
N/2−1∑
s=0

(−1)<k,s>+<l,s> ap(k),s
ap(l),s

+
N/2−1∑
s=0

(−1)<k,s>+<l,s> ap(k),s
ap(l),s

= 0 + 0 = 0,

where the last equality follows from (12).

Subcase 2.2: n = 2k and t = 2l + 1. Then
N−1∑
i=0

(−1)<� n
2 	,� i

2 	>ap(� n
2 	),� i

2 	Vñ,i

(−1)<� i
2 	,� t

2 	>ap(� t
2 	),� i

2 	Ṽt,i

=
N−1∑
i=0

(−1)<k,� i
2 	>ap(k),� i

2 	V0,i

(−1)<l,� i
2 	>ap(l),� i

2 	V1,i

=
N−1∑

i=0,i=2s

(−1)<k,� i
2 	>ap(k),� i

2 	V0,i

(−1)<l,� i
2 	>ap(l),� i

2 	V1,i

+
N−1∑

i=0,i=2s+1

(−1)<k,� i
2 	>ap(k),� i

2 	V0,i

(−1)<l,� i
2 	>ap(l),� i

2 	V1,i

=
N/2−1∑
s=0

(−1)<k,s>ap(k),sV0,2s

(−1)<l,s>ap(l),sV1,2s

+
N/2−1∑
s=0

(−1)<k,s>ap(k),sV0,2s+1

(−1)<l,s>ap(l),sV1,2s+1

=
N/2−1∑
s=0

(−1)<k,s>ap(k),s
(−1)<l,s>ap(l),s

(
V0,2s
V1,2s

+ V0,2s+1
V1,2s+1

)

=
N/2−1∑
s=0

(−1)<k,s>ap(k),s
(−1)<l,s>ap(l),s

0,

where the last equality follows from (9).
Subcase 2.3 n = 2k + 1 and t = 2l; and Subcase 2. 4

n = 2k + 1 and t = 2l + 1 are similar to Subcase 2.2 and
Subcase 2.1. Hence we omitted the detail. Therefore,

1
N

N−1∑
n=0

(−1)<� i
2 	,� n

2 	>

ap(� n
2 	),� i

2 	Vñ,i
Y (n)

= 1
N

N−1∑
n=0

(−1)<� i
2 	,� n

2 	>

ap(� n
2 	),� i

2 	Vñ,i

×
N−1∑
t=0

(−1)<� n
2 	,� t

2 	>ap(� n
2 	),� t

2 	Vñ,tX(t)

= 1
N

N−1∑
t=0

N−1∑
n=0

(−1)<� t
2 	,� n

2 	>ap(� n
2 	),� t

2 	Vñ,t

(−1)<� n
2 	,� i

2 	>ap(� n
2 	),� i

2 	Vñ,i
X(t)

= 1
N

N−1∑
n=0,

(−1)<� i
2 	,� n

2 	>ap(� n
2 	),� i

2 	Vñ,i

(−1)<� n
2 	,� i

2 	>ap(� n
2 	),� i

2 	Vñ,i
X(i)

+ 1
N

N−1∑
t=0,t �=i

N−1∑
n=0,

(−1)<� t
2 	,� n

2 	>ap(� n
2 	),� t

2 	Vñ,t

(−1)<� i
2 	,� n

2 	>ap(� n
2 	),� i

2 	Vñ,i
X(t)

= 1
N

N−1∑
n=0,

X(i) + 1
N

N−1∑
t=0,t �=i

0

= X(i),
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where the second last equality follows from (15) and i =
0, 1, · · · ,N − 1. Hence we finish our proof.

From the above theorem, the inverse transform of the
proposed PROJTs is easily obtained by the reciprocal of
the forward matrix. Next, we give the matrix form of the
PROJTs. Moreover, this matrix has a simple structure and
interesting properties. Assume that the input sequence is
theN×1 vectorX = (x(0), · · · , x(N−1))T and the output
sequence is the N × 1 vector Y = (y(0), · · · , y(N − 1))T ,
where T denotes the transpose of a vector or matrix. Then
the proposed PROJT and its inverse transform can be
presented in terms of the matrix form as follows:

Y = [ J]N X

and

X = [ J]−1
N Y = 1

N
[ J]RTN Y .

By Theorem 3.2, the inverse matrix [ J]−1
N of the inverse

transform can be obtained from the forward matrix with
the two reciprocal-orthogonal and transpose operation.
The (k,m) entry of [ J]−1

N equals to the reciprocal of the
(m, k) entry of the forward matrix [ J]N up to a scaling
factor 1

N . Hence the inverse matrix [ J]−1
N can be obtained

by the following operation from the forward matrix [ J]N .
First, the matrix [ J]RN is obtained by taking the recipro-
cal of each entry of [ J]N . Second, the matrix ([ J]RN )T is
obtained by transposing [ J]RN . Last, [ J]

−1
N is obtained by

the product scaling factor 1
N and the matrix

(
[ J]RN

)T =
[ J]RTN . In other words,(

[ J]N×N
)−1 = 1

N

(
1

pmk

)
N×N

. (16)

In order to understand the proposed PROJT, we give
some examples to illustrate how to construct it.

Example 1. For N = 4 = 21+1 and r = 1. Since the
indices of the row [H]2 are 0 and 1, we have Se = {0} and
So = {1}. Let [A]2 be the 2 × 2 matrix

[A]2 =
(
a0,0 a0,1
a1,0 a0,1a1,0

a0,0

)
.

Then the 2 × 2 forward matrix [P]2 is

[P]2 = [A]2 ◦[H]2 =
(
a0,0 a0,1
a1,0 − a0,1a1,0

a0,0

)
.

Let

V (0) =
(
V0,0 V0,1
V1,0 −V1,0V0,1

V0,0

)
and

V (1) =
(
V0,2 V0,3
V1,2 −V1,2V0,3

V0,2

)
.

Then, the forward matrix associated with the PROJT
is (17).

z[ J]4 =

⎛⎜⎜⎜⎜⎜⎝
a0,0V0,0 a0,0V0,1 a0,1V0,2 a0,1V0,3

a0,0V1,0 − a0,0V0,1V1,0
V0,0

a0,1V1,2 − a0,1V0,3V1,2
V0,2

a1,0V0,0 a0,0V0,1 − a0,1a1,0V0,2
a0,0 − a0,1a1,0V0,3

a0,0

a1,0V1,0 − a1,0V0,1V0,1
V0,0

− a0,1a1,0V1,2
a0,0

a0,1a1,0V1,2V0,3
a0,0V0,2

⎞⎟⎟⎟⎟⎟⎠
(17)

Example 2. For N = 8 = 22+1 and r = 2. Since 0 =
0 ·22 +0 ·21 +0, 1 = 0 ·22 +0 ·2+1, 2 = 0 ·22 +1 ·2+0,
3 = 0 · 22 + 1 · 2 + 1, we have Se = {0, 3} and So = {1, 2}.
Let [A]2 be the 4× 4 matrix obtained by α and β and their
indices, i.e.,

[A]4 =

⎛⎜⎜⎜⎜⎝
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a0,2a1,1

a01
a0,3a1,0
a0,0

a1,0 a1,1 a0,2a1,1
a01

a0,3a1,0
a0,0

a0,0 a0,1 a0,2 a0,3

⎞⎟⎟⎟⎟⎠ .

So the 4 × 4 forward ROP matrix associated with the
ROP transform is

[P]4 =

⎛⎜⎜⎜⎜⎝
a0,0 a0,1 a0,2 a0,3
a1,0 −a1,1 a0,2a1,1

a01 − a0,3a1,0
a0,0

a1,0 a1,1 − a0,2a1,1
a01 − a0,3a1,0

a0,0
a0,0 −a0,1 −a0,2 a0,3

⎞⎟⎟⎟⎟⎠ .

Moreover,

V (0) =
(
V0,0 V0,1
V1,0 −V1,0V0,1

V0,0

)
,

V (1) =
(
V0,2 V0,3
V1,2 −V1,2V0,3

V0,2

)
,

V (3) =
(
V0,4 V0,5
V1,4 −V1,4V0,5

V0,4

)
,

V (4) =
(
V0,6 V0,7
V1,6 −V1,6V0,7

V0,6

)
.

Hence we obtain the proposed PROJT involving matrix
[ J]8 (see (18))
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[ J]8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,0V0,0 a0,0V0,1 a0,1V0,2 a0,1V0,3 a0,2V0,4 a0,2V0,5 a0,3V0,6 a0,3V0,7
a0,0V1,0 − a0,0V0,1V1,0

V00
a0,1V1,2 − a0,1V0,3V1,2

V0,2
a0,2V1,4 − a0,2V0,5V1,4

V0,4
a0,3V1,6 − a0,3V0,7V1,6

V0,6

a1,0V0,0 a1,0V0,1 −a1,1V0,2 −a1,1V0,3
a0,2a1,1V0,4

a0,1
a0,2a1,1V0,5

a0,1 − a0,3a1,0V0,6
a0,0 − a0,3a1,0V0,7

a0,0
a1,0V1,0 − a1,0V0,1V1,0

V0,0
−a1,1V1,2

a1,1V1,2V0,3
V0,2

a0,2a1,1V1,4
a0,1 − a0,2a1,1V0,5V1,4

a0,1V0,4
− a0,3a1,0V1,6

a0,0
a0,3a1,0V0,7V1,6

a0,0V0,6

a1,0V0,0 a1,0V0,1 a1,1V0,2 a1,1V0,3 − a0,2a1,1V0,4
a0,1 − a0,2a1,1V0,5

a0,1 − a0,3a1,0V0,6
a0,0 − a0,3a1,0V0,7

a0,0
a1,0V1,0 − a1,0V0,1V1,0

V0,0
a1,1V1,2 − a1,1V1,2V0,3

V0,2
− a0,2a1,1V1,4

a0,1
a0,2a1,1V0,5V1,4

a0,1V0,4
− a0,3a1,0V1,6

a0,0
a0,3a1,0V0,7V1,6

a0,0V0,6
a0,0V0,0 a0,0V0,1 −a0,1V0,2 −a0,1V0,3 −a0,2V0,4 −a0,2V0,5 a0,3V0,6 a0,3V0,7
a0,0V1,0 − a0,0V0,1V1,0

V00
−a0,1V1,2

a0,1V0,3V1,2
V0,2

−a0,2V1,4
a0,2V0,5V1,4

V0,4
a0,3V1,6 − a0,3V0,7V1,6

V0,6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(18)

4 Fast and efficient algorithm for the proposed
PROJT

In this section, we analyze some properties of the pro-
posed PROJT, which are used to present an efficient
algorithm for a fast computation of the proposed PROJT
by (13) and (14).
In order to give an algorithm, we may rewrite (13) in

another form so that we can analyze the PROJT by split-
ting the summation in (13) into a sum of two summations
and for even and odd indices. For every output vector
components we have

Y (2k) =
N−1∑
i=0

(−1)<k,� i
2 	>ap(k),� i

2 	V0,iX(i)

=
N−1∑

i=0,i=2t
(−1)<k,� i

2 	>ap(k),� i
2 	V0,iX(i)

+
N−1∑

i=0,i=2t+1
(−1)<k,� i

2 	>ap(k),� i
2 	V0,iX(i)

=
N/2−1∑
t=0

(−1)<k,t>ap(k),tV0,2tX(2t)

+
N/2−1∑
t=0

(−1)<k,t>ap(k),tV0,2t+1X(2t + 1)

=
N/2−1∑
t=0

(−1)<k,t>ap(k),t(V0,2tX(2t)

+V0,2t+1X(2t + 1)),

where k = 0, 1, . . . ,N/2 − 1. Similarly, for odd output
vector components, we have Y (2k + 1) =

N/2−1∑
t=0

(−1)<k,t>ap(k),t
(
V1,2tX(2t) + V1,2t+1X(2t + 1)

)
,

where k = 0, 1, . . . ,N/2 − 1. Now let

Z(0)(t) = V0,2tX(2t) + V0,2t+1X(2t + 1) (19)

and

Z(1)(t) = V1,2tX(2t) + V1,2t+1X(2t + 1). (20)

where t = 0, 1, . . . ,N/2−1. Nowwe are able to analyze the
fast and efficient algorithm for the proposed ROP trans-
form. Since the set {0, 1, . . . ,N/2−1} can be split into two
sets Se and So, using the result of the paper [13], we are
able to obtain

Y (2k) =
N/2−1∑
t=0

(−1)<k,t>ap(k),tZ(0)(t)

=
N/4−1∑
i=0

(−1)<k,i>
(
a0,iZ(0)(i)

+ a0,N/2−i−1Z(0)(N/2 − i − 1)
)

for k ∈ Se and 1 ≤ k ≤ N/2 − 1. Similarly, we obtain

Y (2k) =
N/4−1∑
i=0

(−1)<k,i>
(
a1,iZ(0)(i)

− a1,N/2−i−1Z(0)(N/2 − i − 1)
)

for k ∈ So and 1 ≤ k ≤ N/2 − 1.
Let (

f (0)
e (i)
f (0)
o (i)

)
=

(
a0,i a0,N/2−i−1
a1,i −a1,N/2−i−1

)
×

(
Z(0)(i)

Z(1)(N/2 − i − 1)

)
=

(
1 0
0 a1,i

a0,i

) (
1 1
1 −1

)
×

(
a0,i 0
0 a0,N/2−i−1

)
×

(
Z(0)(i)

Z(1)(N/2 − i − 1)

)
.

Then,

Y (2k) =
{ ∑N/4−1

i=0 (−1)<k,i>f (0)
e , k ∈ Se∑N/4−1

i=0 (−1)<k,i>f (0)
o , k ∈ Se.

Hence all the output points can be obtained from the
output sequence of the WHT of order of N/4 of the input
sequence.
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The N × N proposed matrix with the PROJT can be
stated as follows:

[W ]N = ([P]N/2 ⊗[I]2 )diag(V (0), . . . ,V (N/2−1))

where [I]2 is a 2 × 2 identity matrix and diag
(
V (0), . . . ,

V (N/2−1)) is theN×N block diagonal matrix whose block
is 2 × 2 matrices.
Let [Q](1)N/2 be an N/2×N/2 permutation matrix whose

entries (0, 0), (1,N/2 − 1), (2, 1), (3,N/2 − 2), (4, 2), . . . ,
(2i, i), (2i+1,N/2− i−1), . . . , (N/2−2,N/4−1), (N/2−
1,N/2 − (N/4 − 1) − 1) are 1, the other entries are 0.
Let [Q](2)N/2 be an N/2×N/2 permutation matrix whose

entries (0, 0), (1, 2), (2, 4), . . . , (i, 2i), . . . , (N/4 − 1,N/2 −
2), (N/4, 1), (N/4+1, 3), . . . , (N/4+ i, 2i+1), . . . , (N/4+
N/4 − 1,N/2 − 1) are 1, the other entries are 0.
Let n = nr2r + nr−12r−1 + · · · + n121 + n0, n =

0, 1, . . . ,N − 1, N = 2r+1. Define

S(1)
e = {

n, | p(n) = 0, 0 ≤ n ≤ N/4 − 1
}

S(2)
e = {

n, | p(n) = 0,N/4 ≤ n ≤ N/2 − 1
}

S(1)
o = {

n, | p(n) = 1, 0 ≤ n ≤ N/4 − 1
}

S(2)
o = {

n, | p(n) = 1,N/4 ≤ n ≤ N/2 − 1
}
.

Let [Q](3)N/2 be an N/2×N/2 permutation matrix whose
entries (n, n) for n ∈ S(1)

e
⋃

S(2)
o , (n, n + N/4) for n ∈ S(1)

o
and (n, n−N/4) for n ∈ S(2)

e are 1, the other entries are 0.
Let

A(i) =
(
a0,i a0,N/2−i−1
a1,i −a1,N/2−i−1

)
, i = 0, 1, . . . ,N/4 − 1

where a1,N/2−i−1 = a0,N/2−i−1a1,i
a0,i .

Then the ROP matrix by the ROP transform [13] can be
decomposed to

[P]N/2 = [Q](3)N/2
(
[I]2 ⊗HN/4

)
[Q](2)N/2

× diag
(
A(0),A(1), . . .A(N/4−1)

)
[Q](1)N/2 .

Hence, the proposed PROJT is as follows:

[W ]N = (
[P]N/2 ⊗[I]2

) × diag
(
V (0), . . . ,V (N/2−1)

)
.

Therefore, the decomposition of the proposed trans-
form is the following:

[W ]N =
((

[Q](3)N/2 ([ I]2 ⊗HN/4)[Q](2)N/2

× diag
(
A(0),A(1), . . . ,A(N/4−1)

)
[Q](1)N/2

)
⊗[I]2

)
× diag

(
V (0), . . . ,V (N/2−1)

)
.

By the mean of this decomposition of the proposed
matrix, we are able to get a fast and efficient algorithm.

Example 3. Let N = 2r+1 = 4. Then

[Q](4)4 =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠ .

[D](4)2 =
(
1 0
0 a1,0

a0,0

)
, [D](3)2 =

(
a0,0 0
0 a0,1

)
.

[D](2)4 =

⎛⎜⎜⎜⎝
1 0 0 0
0 V1,0

V0,0
0 0

0 0 1 0
0 0 0 V1,2

V0,2

⎞⎟⎟⎟⎠

[D](4)1 =

⎛⎜⎜⎝
V0,0 0 0 0
0 V0,1 0 0
0 0 V0,2 0
0 0 0 V0,3

⎞⎟⎟⎠ .

[Q](3)2 = [Q](2)2 = [Q](1)2 = [I]2, implies that the equation (21)

[W ]4 =[Q](4)T4

(
[I]2 ⊗

(
[Q](3)2 ([I]2 ⊗H1)[Q](2)2 [D](4)2

([I]1 ⊗[H]2) [D](3)2 [Q](1)2

))
[Q](4)4 [D](2)4

([I]2 ⊗[H]2)[D](1)4
(21)

Example 4. Let N = 2r+1 = 8. Then

[Q](1)4 =

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞⎟⎟⎠

[Q](2)4 =

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎠

[Q](3)4 =

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠
Hence we have the following equation (22):

[W ]8 =
((
[Q](3)4 ([I]2 ⊗[H]2 )[Q](2)4 diag

(
A(0),A(1)

)
[Q](1)4

)
⊗ [ I]2

)
diag

(
V (0),V (1),V (2),V (3)

)
(22)
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Example 5. Let N = 16 = 2r+1. Let

[Q](1)16/2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[Q](2)16/2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

[Q](3)16/2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Hence we have the equation (23).

[W ]16=
((
[Q](3)8 ([I]2⊗[H]4)[Q](2)8 diag

(
A(0),A(1),A(2),A(3)

)
[Q](1)8

)
⊗[ I]2

)
diag

(
V (0),V (1),V (2), . . . ,V (7)

)
(23)

Moreover, let [D](4)N/2 be an N/2 × N/2 diagonal
matrix whose diagonal entries are 1, a1,0a0,0 , 1,

a1,1
a0,1 , . . . ,

1, a1,ia0,i , . . . , 1,
a1,N/4−1
a0,N/4−1

. Let [D](3)N/2 be an N/2 × N/2 diag-
onal matrix whose diagonal entries are a0,0, a0,N/2−1,
a0,1, a0,N/2−2, . . . , a0,i, a0,N/2−i−1, . . . , a0,N/4−1, a0,N/4. Let
[D](2)N be anN×N diagonal matrix whose diagonal entries
are 1, V1,0

V0,0
, 1, V1,2

V0,2
, . . . , 1, V1,2i

V0,2i
, . . . , 1, V1,N−2

V0,N−2
. Let [D](1)N be

an N × N diagonal matrix whose diagonal entries are
V0,0,V0,1,V0,2, . . . ,V1,N−2,V0,N−1.
Let [Q](4)N be the N × N matrix whose entries (0, 0),

(1, 2), (3, 6), . . . , (i, 2i), . . . , (N/2 − 1,N − 2), (N/2, 1),
(N/2+ 1, 3), . . . , (N/2+ i, 2i+ 1), . . . , (N − 1,N − 1) are
1 and the other entries are 0. Then

[P]N/2 ⊗[I]2 = ([Q](4)N )T
(
[I]2 ⊗[P]N/2

)
[Q](4)N .

Hence the fast decomposed factor of the proposed
PROJT can be presented as (24).

[W ]N =
(
[Q](4)N

)T (
[I]2 ⊗

(
[Q](3)N/2 ([I]2 ⊗[H]N/4)[Q](2)N/2

[D](4)N/2 ([I]N/4 ⊗[H]2 )[D](3)N/2 [Q]
(1)
N/2

))
[Q](4)N

[D](2)N
(
[I]N/2 ⊗[H]2

)
[D](1)N

(24)

Moreover, the fast flows of orders 4 and 8 are presented
in Figures 1 and 2.
Now we compute the complexity of this decomposed

factor of the proposed PROJT. Since the permutation
matrices do not need any additions and multiplications,
we do not consider permutations in computing the

Figure 1 Fast flow of order N = 22. This figure depicts the fast flow of order N = 22.
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Figure 2 Fast flow of order N = 23. This figure depicts the fast flow of order N = 23.
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Table 1 Computation complexity of additions and
multiplications in conventional DFT [1], reciprocal-
orthogonal parametric [10], EIJT [18] N = 3 × 2r, and
proposed PROJT with N = 2r+1 matrix size, where r ≥ 2

Conventional ROP [13] EIJT [18] Proposed
DFT [1] N = 2r+1 N = 3 × 2r N = 2r+1

Parameters 1 (fixed) 3N/2 2N − 1 9
4N

Additions (N − 1)N Nlog2N 3Nlog2N N + Nlog2N

Multiplications N2 3N/2 Nlog2N 3N

complex of the proposed PROJT. Firstly, for the diagonal
matrix [D](1)N , there are needs for N multiplications. Since
[H]2 needs 2 additions, [I]N/2 ⊗[H]2 needs N/2 × 2 = N
additions. Note that there are N/2 main diagonal ele-
ments which may be equal to 1. Then there are needs for
N/2 multiplications for the the diagonal matrix [D](2)N .
Hence there are needs for N + N/2 multiplications and
N additions for the matrix [D](2)N ([ I]N/2 ⊗[H]2 )[D](1)N .
Since [D](3)N/2 is the N/2 × N/2 diagonal matrix, there

are needs for N/2 multiplications. However [D](4)N/2 is the
N/2 × N/2 diagonal matrix in which there are at least
N/4 1’s on the main diagonal, so only N/4 multiplications
are needed. Clearly, ([I]N/4 ⊗[H]2 needs 2 × N/4 = N/2
additions. [I]2 ⊗[H]N/4 needs 2 × (N/4) log2(N/4)
additions. Therefore,

(
[Q](3)N/2

(
[I]2 ⊗[H]N/4

)
[Q](2)N/2 [D]

(4)
N/2×(

[I]N/4 ⊗ [H]2
)
[D](3)N/2 [Q]

(1)
N/2 needs N/2 + N/4 = 3N/4

multiplications and N/4 × 2 + 2
(
N/4 log2

(N/4) = N/2 log2N−N/2 additions. Hence
((

[Q](4)N

)T
(
[I]2⊗

(
[Q](3)N/2

(
[I]2 ⊗[H]N/4

)
[Q](2)N/2 [D]

(4)
N/2 × (

[ I]N/4 ⊗
[H]2 ) [D](3)N/2 [Q]

(1)
N/2

))
[Q](4)N needs 3N/2 multipli-

cations and N log2N − N additions. In sum, the
decomposed factor of the proposed PROJT needs 3N/2+
3N/2 = 3N multiplication and 2N + N log2N − N =
N logN +N addition operations. Table 1 shows that the
complexity of the proposed PROJT is better than conven-
tional DFT, but a litter less than the ROP. However, the
PROJT has a larger number of parameters than the ROP.

Figure 3 The PROJT encryption and decryption. (a) Original image. (b) Encrypted image. (c) Decrypted image with the correct parameters.
(d) Decrypted image with one minimized error.
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5 Simulations and discussion
In all of the following computer experiments, we use
the proposed PROJT and inverse PROJT for encryptions
and decryptions. Let V0,2i, V0,2i+1, V1,2i, a0,i for i =
0, 1, . . . ,N/2 − 1 and a1,j for j = 0, 1,N/4 − 1 denote
the

(
2 + 1

4
)
N independent parameters employed in the

encryption process. Let V ′
0,2i, V ′

0,2i+1, V ′
1,2i, a′

0,i for i =
0, 1, . . . ,N/2 − 1 and a′

1,j for j = 0, 1,N/4 − 1 denote the(
2 + 1

4
)
N parameters employed in the decryption pro-

cess. Figure 3a shows the 512 × 512 original image to be
encrypted, whose elements are integers in the range 0-255.
Figure 3b shows the magnitude image of its encryption
output using the proposed PROJT. Then, we use the cor-
rect parameter vectors for decryption, and the decrypted
output is shown in Figure 3c, which is the same as the orig-
inal image. To give a decryption example of the previous
encrypted image with one single wrong parameter of the(
2 + 1

4
)
N independent parameters, we use

V ′
0,2i = V0,2i + δ mod 255,

V ′
0,2i+1 = V0,2i+1,
V ′
1,2i = V1,2i,
a′
0,i = a0,i, (25)

where i = 0, 1, . . . ,N/2 − 1 and

a′
1,j = a1,j, (26)

where j = 0, 1,N/4 − 1. Error δ can be any integer uni-
formly distributed in the range 1-255. Figure 3d shows the
decrypted image with the minimized error δ = 1, which
shows that the original image is successfully protected.
Therefore, to successfully decrypt the 512 × 512 (N =

512) image, whose elements are integers in the range 0-
255, we need to know every parameter of V0,2i, V0,2i+1,
V1,2i, a0,i for i = 0, 1, . . . ,N/2 − 1 and a1,j for j =
0, 1,N/4 − 1. Intuitively, this is also true for N > 512.
Assume that the errors in V ′

0,2i, V ′
0,2i+1, V ′

1,2i, a′
0,i for i =

0, 1, . . . ,N/2 − 1 and a′
1,j for j = 0, 1,N/4 − 1 are uni-

formly distributed. Then, the probability of a successful
decryption without knowing all the

(
2 + 1

4
)
N = 1152

parameters correctly is 1/2561152.

6 Conclusions
In this paper, we have proposed a new class of PROJT of
order N = 2r+1 independent 3N parameters. The PROJT
is based on the the proposed ROP transform [13], block
diagonal matrices, and permutations. On one hand, the
critical usefulness of the PROJT generalized the proposed
ROP transform, which is a special case of the the PROJT.
On the other hand, the PROJT has more parameters than
the ROP transform. What is more important, some nice

properties are presented, in particular, the inverse trans-
form is fastly obtained by the reciprocal and transpose
operations. With the aid of matrix decomposition and
Kronecker product approach, a fast and efficient algo-
rithm for computing the proposed PROJT is obtained.
In fact, we show that the PROJT has 3N multiplica-
tions and N + N log2N addition operations. Therefore,
the proposed PROJT can be employed in watermaking
and encryption where the independent parameters can be
used as an additional secret key.
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