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1 Introduction and preliminaries

In recent years, the boundary value problems of fractional order differential equations
have emerged as an important area of research, since these problems have applications in
various disciplines of science and engineering such as mechanics, electricity, chemistry,
biology, economics, control theory, signal and image processing, polymer rheology, regu-
lar variation in thermodynamics, biophysics, aerodynamics, viscoelasticity and damping,
electro-dynamics of complex medium, wave propagation, blood flow phenomena, etc. [1-
5]. Many researchers have studied the existence theory for nonlinear fractional differential
equations with a variety of boundary conditions, for instance, see the papers [6—18], and
the references therein.

The Langevin equation (first formulated by Langevin in 1908) is found to be an effective
tool to describe the evolution of physical phenomena in fluctuating environments [19]. For
some new developments on the fractional Langevin equation, see, for example, [20-27].

Nowadays there is a significant increase of activities in the area of g-calculus due to
its applications in various fields such as mathematics, mechanics, and physics. The book
by Kac and Cheung [28] covers many of the fundamental aspects of the quantum calcu-
lus. A variety of new results can be found in the papers [29-41] and the references cited
therein.

Impulsive differential equations serve as basic models to study the dynamics of processes
that are subject to sudden changes in their states. Recent development in this field has
been motivated by many applied problems, such as control theory, population dynamics
and medicine. For some recent works on the theory of impulsive differential equations,
we refer the interested reader to the monographs [42—44].

Recently in [45] the notions of gx-derivative and gi-integral on finite intervals were in-
troduced. Let us recall here these notions. For a fixed k € N U {0} let J := [£, tx.1] C R be
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an interval and 0 < gx < 1 be a constant. We define gx-derivative of a function f : Jy - R

at a point ¢ € J; as follows.

Definition 1.1 Assume f : Jy — R is a continuous function and let ¢ € J. Then the ex-

pression

S@&) —flgrt + A —gte)
(1 - qu)(t-t)

Dy, f(t) = lim Dy )

Dy, f(t) = , tF b

(1.1)

is called the gx-derivative of function f at .

We say that f is gx-differentiable on j; provided D, f(t) exists for all £ € /. Note that if
tr = 0 and g = g in (1.1), then D, f = D,f, where D, is the well-known g-derivative of the
function f(¢) defined by

fO-flqt)

Dof (1) = (I-g)t

In addition, we should define the higher gx-derivative of functions.
Definition1.2 Letf : Jy — R bea continuous function, we call the second-order g;-deriv-
ative Dif provided D, f is gx-differentiable on J; with D? Af =Dy, (Dg,f) : Jk = R. Simi-
larly, we define higher order gi-derivative Dy ik — R.

The gi-integral is defined as follows.

Definition 1.3 Assume f : Jy — R is a continuous function. Then the gj-integral is de-
fined by

o0
/f Vs = —qt—t) Y qif (gt + (1-qf)t) (1.3)
n=0

for ¢ € Ji. Moreover, if a € (¢, t) then the definite gx-integral is defined by

/:f(s)qus = [t:f(s)qus— /:f(s)qus

= (-q)t-t) Y aif (it + (1-g¥)t)

n=0
oo
-(I—qi)(a—t) Zq o (qia+ (1-q)t).
n=0

Note that if £, = 0 and gx = g, then (1.3) reduces to g-integral of a function f(¢), defined

by fotf(s) dgs=Q1-q)ity 20 q"f(q"t) for t € [0,00).
For the basic properties of the gi-derivative and g-integral we refer to [45].
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In this paper we combine all the above subjects and investigate the nonlinear second-
order impulsive gx-difference Langevin equation with boundary conditions of the form

Dy, (Dy, + Mx(t) =f(t,x(2)), te],t#t,

Ax(ty) = L(x(t)), k=1,2,...,m,

Dy x(t;) = Dg_,x(ty) = [E(x(t)), k=1,2,...,m,

ax(0) + BD4yx(0) = x(T), y%(0) + nDyyx(0) = Dy, x(T),

(1.4)

where 0 =) <ty <ty < - <t < <ty<tya=7T,f:] xR — Risa continuous
function, A is a given constant, Iy, I} € C(R,R), Ax(ty) = x(£;) — x(&) for k = 1,2,...,m,
x(ty) =limy, o, x(tx + h), 0 < gx <1fork=0,1,2,...,m,and «, B, y, n are given constants.
The rest of this paper is organized as follows. In Section 2, we present a preliminary
result which will be used in this paper. In Section 3, we will consider the existence results
for problem (1.4) while in Section 4, we will give examples to illustrate our main results.

2 An auxiliary lemma
In this section, we present an auxiliary lemma which will be used throughout this paper.
Let/ = [0’ T]r ]0 = [tO, tl], ]k = (tk: tk+1] for k = 1: 27 oo, M.

Lemma2.1 Let A\ T(n+ Br—a) # (e —1)(n—1) + y(T — B). The unique solution of problem
(1.4) is given by

5 5 m ti s ti
x(t) = 1 ‘;2 2l {Z(/tH /tk-lf(r,x(r)) dg, vdg s— A/t x(s)dg, s+ Ik(x(tk))>

k=1 k-1
+ Z(f S(5,%(5)) dg s + I (x(t0)) + Ak (x(tk))) (T-t)
k=1 Y lk-1
T ps T
+/ / Sf(rx(r)) dy,rdg,,s - A/ x(s) dqms}
83+ 84t | e[ [
L8 ; 4 {;(/tk-lf(s,x(s)) dg ,s+I; (x(tk)) + M (x(tk))>

+‘/t.mTf(s,x(s)) dqms}
([

O<t<t N k-1

/ S (rx(r)) dg, \rdg, ;s / ‘ x(s) dg,_,s + I (x(tk)))

k-1

£y < / ' £(5,%(5)) dyy s + I (x(tx)) +)Jk(x(tk))>(t—tk)

O<t<t k-1
t s t
+/ / f(r,x(r)) dgrdgs— k/ x(s)dg,s, (2.1)
be Jt 73

with ) y_o(-) = 0, where

Q=(a-Dn-1)-AT(n+pr-a)+y(T - p),
S1=n-1+p82, S=An+Br-1-a)+1-vy,
83=T—p, Ss=a—-1-pa
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Proof For t € ]y using go-integral for the first equation of (1.4), we get

t
Dy x(t) = Dgyx(0) + Ax(0) + / f(s,x(s)) dyys — Ax(t).
0
Setting x(0) = A and D,,x(0) = B, we have
t
Dgox(t) =2A+B+ / f(s,x(s)) dgos — Ax(t), (2.2)
0
which leads to
51
Dyox(t1) =1A + B+ / S (5,2()) dgys — Ax(ty). (2.3)
0
For t € Jy we obtain by go-integrating (2.2),
t s t
x(t)=A+(AA+B)t+ / / S (rx(r)) dgyrdgys - A/ x(s) dgqs.
0 Jo 0
In particular, for t =
15} s 5]
x(t1)) =A+ (MA+B)t + / / f(r,x(r)) Ayt dgys — A/ x(s) dgqs. (2.4)
0o Jo 0
For t € J; = (t1, 2], q1-integrating (1.4), we have
t
Dy x(t) = Dqlx(tf) +Ax(t]) + / S (5,%(5)) dgys — Ax(2).
51
From the second impulsive equations of (1.4), we have
5]
Dy x(t) =2A + B+ / f(s,x(s)) dgs + 17 (x(tl))
0
t
+ M0 (x(11)) + / S (s,%(5)) dgys — Ax(2). (2.5)
5]
Applying g, -integral to (2.5) for ¢ € J;, we obtain
fn
x(t) = x(t]) + |:AA +B+ / S (5,%(5)) dgos + I (x(t1)) + ALy (x(tl))] (t—1)
0
t s t
+f / f(r,x(r)) dgrdgs— Af x(s) dg,s. (2.6)
n J

i

Using the second impulsive equation of (1.4) with (2.4) and (2.6), one has

x(t)=A+ (A +B)t + /Otl /Osf(r,x(r)) Ay dgys — A /Otl x(s)dgos + 11 (x(tl))

+ [AA +B+ /tlf(s,x(s)) dgos + I} (x(51)) + ALy (x(tl))] (t-1)
0
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+/ /f(r,x(r))dqlrdqls—)»/ x(s) dy s
+(AA +B)t+/ /fr, ) dgor dgys — /tlx(s)dqos+11(x(t1))
0

+ |:/(; 1f(s,x(s)) dgys + 1T (x(tl)) + AL (x(tl))] (t-t)

+/:/t:f(r’x(r))dqlrdqls—)»/;ltx(s)dqls.

Repeating the above process, for ¢ € J, we get

x(t)=A+(MA+B)t

73 tx
</ / dg 7 dg s / x(s) dg s + I (x(tk))>
O<ty<t L1 b1

+ Z <[kk1f(5,x(8)) dg s +1; (x(tk)) + My (x(tk))> (t - ti)

O<ty<t
//fr,x(r) d T g s — / x(s)dy,s. (2.7)
t
Fort =T, we get

x(T)=Q1+AT)A +BT

S tk
* Z(/tk ) _/tklf(”x(r)) Ay rdg 5= /tkl x(s) dg, s+ I (x(tk)))
+ Z</tk (5,2(5)) dg_y s + I (x(t)) + Al (x(tk))> (T - t)

/ /f X rdqms—A/tme(s)dqms. (2.8)

It is easy to see that
Dy x(t)=AA +B

+ Z (/tk 1 S, % S) - 1S+I,f(x(tk)) + Mk(x(tk))>

O<ty<t
t
+ / f(s,x(s)) dg,s — x(t).
73
For t = T and using x(T) = «A + BB, we have

D, x(T)=1A+B

+ Z(/k 1 (5,%(5)) dgy s + I (%(8)) + )Jk(x(tk)))

T
+ f f(s,%(5)) dy,,s — Ax(T)

Page 5 of 19
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=(1-a)AA+(1-AB)B
+ Z(/ s x s) S+ IE (x(tk)) + Mk(x(tk)))
T
+/ S (s,%(5)) dg,s. (2.9)

Applying the boundary conditions of (1.4) with (2.8) and (2.9), it follows that

n+k;3 1
A= r,x(r) a7 gy
k-1 tkl

- A/ ’ x(s) dg,_ s+ Ik(x(tk)))

k-1

+ Z(/ S,x(s) S I (x(tk)) + Mk(x(tk))> (T -t)

/tm /mf 1,%(r)) dg,, 1 dg,,,s — A /x(S)dqms}

_ m 4 T
_ %[Z(/ kf(s,x(s)) Ay ,s+ I (x(80)) + )Jk(x(tk))> + / S (s,x(5)) dqms}

k=1
and
B- # {Z( / ' F(s:%(8)) dgy_ys + If (%(t6)) + Ak (x(tk)))
k=1 1

T
+/ f(s,x(s)) dqms}
_)’—1+a)»[ (/ / (r,x(r)) dg,_rdg, ;s

_ A/ ‘ x(8) dg,_,s + Ik(x(tk))>

k-1

+Z< / - (s,%(5)) dy,_ 1s+1;(x(tk))+Mk(x(tk)))(T-tk)

/ /fn () qmrdqms—)»/t:x(s)dqms}.

Substituting the values of A and B into (2.7), we get (2.1) as required. The proof is com-
pleted. |

3 Main results

Let PC(J,R) = {x: ] — R: x(¢) is continuous everywhere except for some ; at which x(¢{)
and x(t;) exist and x(¢) = #(t), k =1,2,...,m}. PC(J,R) is a Banach space with the norm
lxllpc = sup{|x(2)[; £ € J}.

Page 6 of 19
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From Lemma 2.1, we define an operator S : PC(J,R) — PC(J,R) by

81 +82t
(Sx)(t) = < ,x(r)) dgy_y 7y s
{ ftm /tk 1 X ’” ka7 Ay

_ )L/tk x(s) dg,_, s+ Ik(x(tk)))

tk-1

+ Z(/k 1 $,%(5)) dg, s + I} (x(t0)) + Mk(x(tk)))(T— £)

/ ffr, d ot AgpnS — /tme(s)dqms}

83+ 6 " t
+ 3B ; at {Z(/tk-lf(S,x(S)) dg s+ I (x(t0)) + Mk(x(tk))>

k=1

T
+/ f(s,x(s)) dqms}

+ Z </ / f(r,x(r)) Ay ¥y, 5 — A/ ‘ x(s)dg, s +Ik(x(tk))>
-1 ¥ b1

O<ty<t k-1

+ Z (/;k_klf(S,x(S)) Ay 13+Ik( (¢ )) +)Jk(x(tk))>( —t)

O<tg<t

+/tk /tkf(r,x(r)) qurqus—)»/tk x(s) dg, s, (3.1)

where constants 81, 82, 83, 84, and 2 are defined as in Lemma 2.1. It should be noticed that
problem (1.4) has solutions if and only if the operator S has fixed points.

Our first result is an existence and uniqueness result for the impulsive boundary value
problem (1.4) by using the Banach contraction mapping principle.

For convenience, we set

m+l

81+ 18] T + 192 te—t
A1:(—| 1|+||§l| + ')[le(i ) |)»|Ztk—tkl)
k=1

m
+mLy+ Y (Lt = tea) + Ls + |A|L) (T — tk)]
k=1
(I83| + 84| T
+ e —

Q )[L1T+mL3 +m|A|Ly ] (3.2)

and

S+ 162|T + |22 T2 (b - t)?
Az:(|1|+||§2|| + |>[K12(k 1) + mk,

o Lt

o

(Ki(tk = tie1) + K3 + | M| K) (T - L‘k)i|

>~
1l

1

<|53| +184|T
|€2]

+ )[1<1T + mKs + mIA| K. (3.3)

Page 7 of 19
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Theorem 3.1 Assume that the following conditions hold:

(Hi1) f:10,T] x R — Risa continuous function and there exists a constant Ly > 0 such that
[ft,%) —f(&p)| < Lilx -yl

foreachte] andx,y € R.
(Hy) The functions It, I} : R — R are continuous and there exist constants Ly, L3 > 0 such
that

|k x) = k)| < Lolw—y| and  |I;(%) - I;(9)| < Lslx -y
foreachx,ye R, k=1,2,...,m
If
A1§6<1) (34)

where A, is defined by (3.2), then the impulsive qi-difference Langevin boundary value
problem (1.4) has a unique solution on J.

Proof Firstly, we transform the impulsive g -difference Langevin boundary value problem
(1.4) into a fixed point problem, x = Sx, where the operator S is defined by (3.1). Applying
the Banach contraction mapping principle, we shall show that S has a fixed point which
is the unique solution of the boundary value problem (1.4).

Let Kj, K3, and K3 be nonnegative constants such that Kj = sup,; |[f(£,0), K, =
sup{|[x(0)| : k = 1,2,...,m}, and K3 = sup{|[}(0)| : k = 1,2,...,m}. We choose a suitable
constant p by

As
1-¢

p=

’

where § < <1and A, defined by (3.3). Now, we will show that SB, C B,, where a set B,
is defined as B, = {x € PC(J,R) : ||| < p}. For x € B,, we have

181] + 18212
|Sx|| < sup ) r,x(r) |qu (T g8
te] | | b1 Vg 1

4 1Al f " )] dyy s + |Ik(x(tk))|)
+Z(/ N daras + [ B (@) + M1 tk))\)(T—tk)

T s T
+/ / [f(r,x(r))|dqmrdqms+|k|/ \x(s)\dqms}
185] + 1841 |
MY {Z<

k=1

. /t:ws,x(s))wqms}

[ 1636 5 1 60+ )

-1
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+ Z (/tk 1 /t‘k 1 | (r,2(r)) | gy 7 gy + IAI/ ()| dgyy s + [T (#(&) )|>

O<ty<t

+ Z(/ If (5,%(5)) | g s+|I,f(x(tk))|+|A||Ik(x(tk))|)(t—tk)

O<ty<t

+ /tk 5 If (r,2(r)) | dger dggs + 1] /tk |x(s)|qus}

81| + 82T | & b s
- 61 |+QI|2| !;(/tkl /tk1(|f(r,x(r)) —f(r,0)] + [f(r,0)|) dg_ 7 dy ;s
el [ el + (|B(e(e0) -1 }+}1k(0)y))
k-1

+Z( / If (s,%(5)) =£(5,0)| + |£(5,0)|) dy_, s
+ (|5 (x(80)) = :(0)] + | I (0)])
(B (x(00) - T (x(0)) | + |1k(x<o))|>)<T ~4)

T s T
+/ / (V(r,x(r)) —f(r,())|+[f(r,0)|)dqmrdqms+|k|/ ||x||dqms]
J T {Z( [ (7069) 1600 + 6 0] s
-1

k=1 -
(5 6500) = O]+ 00 1 (e 30) = e (50) | + ) )
T
o [ (r6.56) -16.0)] + 50 }
([ [ 00w 00+ 00 s
k=1 “Ylk-1Ytk-1

+|/\|/k )l dge_ys + ([ (%(8)) = Ik ((0)) | + |Ik(x(0))|)>

+Z<[ sx(s s,0)| VsO)’) S
k=1

+ (11 (3(0) - )] + |5 O))

(|5 (80) - L (+(0)) | + |1k(x<o>)|))<T 1)

T ps .
+/tm /tm(V(r,x(r)) _f(r,0)|+Lf(r,0)|)dqmrdqms+|x|/ ]l d,, s

181 + 1821 T | o [ [
< 1] Z - (Lip+Ki)dg,_rdg_ s+ |A| ,oqu L
k=1 k-1 ¥ tk-1

m [k
+(Lop + 1<2)) + Z(/ (Lip +Ki)dy, s+ (Lsp + K3)
k=1
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T s T
+ [A(Lyp +K2)>(T— t) +/ / (Lip + K1) dy,,rdg,,s + Ikl/ pdqms}
tm Jim tm

1851 + 184 T ’”(
+7
[l {Z

k=

+/ (Lip + K7) dqms} + Z(/ / (Lip+Ki)dy, rdg s
tm -1 ¥ b1

tk
|| o Kdy s+ Wap K + (Lo + 1@))

-1

73 m tx
+ |,\|/ pdg s+ (Lap + 1<2)) + Z(/ (Lip +Ki)dy, s
tk-1 k=1 k-1

+(L3p + K3) + [A[(Lap + Kz))(T — )

T ps T
+/ / (Lip +K1)dqmrdqms+|k|/ pdg,s
tm

=Mp+ A =(8+1-¢e)p=<p,

which implies that SB, C B,,.
For any x,y € PC(J,R) and for each ¢ € ], we have

|Sx(t) - Sy(®)|

I5 |+ |3 |t t
1 2 { (/ / If (r,(r)) = f (r,y(r) | dg_y 7 gy,
tk-1

73

el [ 15 = 5(9)| dyy s+ | (x(20) -1k<y<tk>>|)

tk-1

+ Z(/ (5,%(8)) =f (s:9(9)) | dgp_y

17 (x(800) — T (0000 | + 12 [ (320) - (y(tk>>|)<T—tk>

+ /;:mT /t; [f(r,x(r)) —f(r,y(r))|dqmrdqms + A /tmT|x(s) —y(s )| dqms}

+ % {Z<f k lf(S,x(S)) _f(S’y(s))|qu715
tg-1

k=1

+ | (x(8) = I (@) | + 1A | T ((80)) — L (v(5)) |>

T
+ / [f(s,x(s)) —f(s,y(s)) | dqms]
X ([ [ 1) A0 d e

O<tp<t

+ ] ' |%(s) = ¥(5)| dgy s+ [T (2(t0)) — L (¥(t)) I)

k-1

> ( / - ) =S (5:56) | dgs s+ [T (x()) = I (v(20) |

O<ty<t
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+ A |Ik(x(tk)) - Ik(y(tk)) |>(t — ) + / / [f(r,x(r)) —f(r,y(r)) | dgrdgs

+ |A|/ \x(s) —y(s)|qus
3

[81] + 82| T = (tk — tr1)?
< — | — L — At — L
< 2 [l = ylI E 1 17 g + Atk — tio1) + Lo

k=1 B

T —t,)?
+ ) (Lt = tia) + Ls + ML) (T - ) +L1(1—t)

m
k=1 m

+ |)¥|(T_ tm)}

18| + 18| T N

3l +104

+ Tllx—yll :Z(Ll(tk —tia) + Ly + ML) + Li(T - tm)}
k-1

+ [l =yl i(m“ﬁ‘ﬂ 1At = ten) +L2)
P + qi-1

= (T —t,)?
- Li(tx — tr— L ML) (T -t Li——||x -
+lx =yl E (L1t = tee1) + Ls + |AILo)( ©) + L 1+q llx -yl

k=1 m
+ AT =)l =yl
= MAlx-yll,
which implies that ||Sx — Sy|| < A1llx — y|l. As A1 <1, S is a contraction. Therefore, by

the Banach contraction mapping principle, we find that S has a fixed point which is the
unique solution of problem (1.4). O

The second existence result is based on Schaefer’s fixed point theorem.

Theorem 3.2 Assume that the following conditions hold:

(Hs) f:J x R— R is a continuous function and there exists a constant My > 0 such that
V(tr x)| = Ml

foreacht €] and all x € R.
(H4) The functions It, I} : R — R are continuous and there exist constants My, Mz > 0 such
that

forallxeR, k=1,2,...,m.
If

|81] + 82| T+ |€2]

a AT <1, (3.5)

then the impulsive qy-difference Langevin boundary value problem (1.4) has at least one
solution on J.

Page 11 of 19
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Proof We shall use Schaefer’s fixed point theorem to prove that the operator S defined by
(3.1) has a fixed point. We divide the proof into four steps.

Step 1: Continuity of S.

Let {x,} be a sequence such that x, — x in PC(J,R). Since f is a continuous function on

J x R and I, I}} are continuous functions on R for k =1,2,...,m, we have

F(tx,(0)) — f(6x(2)), Ie(%(t6)) = Le(x(t6))  and I} (x, () — I (%(5))

fork=1,2,...,m,as n — 00.

Then, for each ¢ € ], we get

|(Sx)(2) = (S®)(@)]

il - (/ [ 102 -0 o
|Q tk—1 Ytk

+ A/ ‘x,,(s) —x(s)| dg s+ }Ik(x,,(tk)) —Ik(x(tk)) ’)
k-1
+§:</' I (5,%4(5)) = £ (5,%(5)) | dgp_y + [ () = I (x(t) |

+ |)"| |Ik(xn(tk)) - Ik(x(tk)) ’) (T - tk)

+/£T/ts[f(r,x,,(r))— (r,x(r))| dg,,r dy s+|k|/ |(s) amS }

P Bl {Z(f 1 (50,09) — £ (5:506) | 15
tg-1

k=1

+ 15 (e (80) = I (x(80)|

T
+ |A||Ik(xn(tk)) —Ik(x(tk)) |) +/ [f(s,xy,(s)) —f(s,x(s))|dqms}
+Z</ _/ r,xn(r) f(r, r))|qu1rqu1

O<ty<t

tr

A | |xuls) = x(s)| dgy s+ (e (80)) — T (x(2)) |)

k-1

+ Z (/ (8, 24(5)) = £ (5:%(9)) | dg 8 + I (0 (t0)) = I ((80)) |

O<t<t Y k-1
+ | [ e (% (80)) = T (%(80)) |>(t - t)

+ / V(r,xn(r)) —f(r,x(r)) | dgrdgs+ | f |x,,(s) - x(s)| dy,s,
tre J it 73

which gives ||Sx, — Sx|| — 0 as n — oo. This means that S is continuous.
Step 2: S maps bounded sets into bounded sets in PC(J,R).
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Let us prove that for any p* > 0, there exists a positive constant ¢ such that for each
x € By ={x € PC(J,R) : ||x|| < p*}, we have ||Sx|| < 0. For any x € B+, we have

|(Sx)(2)]
8 5IT | & s ¢
< gl |+Q||2| [Z(/ f (r%(r)) | dgy 7 dgp s + 11| / ' |%(s)| dy,_,s
k=1 Wik-1 Y1 te1
+ [T (x tk))l) + Z( fkk If (5,%(5)) | dge_ys + I (x(@2)) |
k=1 N1

T s T
+ |)»|‘Ik(x(tk))|>(T—tk) +/ / [f(r,x(r))‘dqmrdqms+ |A|/ !x(s)’dqms}

5 SulT m 173
+ % {Z(/ If (5,%(9)) | dgy.s
tg-1

k=1

T
+ | (x(t0)) | + I)»||Ik(x(tk))|) +/ [f(s,x(s))|dqms}
S tk
,xX(r)) | Ay, v dg, 5 + A ()| gy, I (x(tz) )
+Z</f‘k1/tk1lf(rxr)| el Gt /tk1|xs| ! S+|/<(x k)|

+ Z(/t] (5,%(9)) | dgy_ys + |If (x(80)) | + |)\||Ik(x(tk))|>(T_ £)

/ / V r,x(r) }dmrdqms+|k|[mT|x(s)|dq s

1811+ 16,1 T ’”( (6 — )
< o Y (M p It — ) + M
I ; " lvagia R

m
(T - tn)?
+ Z(Ml(tk = teer) + Ms + |A|M) (T - &) +M11+7m + 0 [A(T = t)
k=1 m
185 + 1841 T | &
% Z(Ml(tk = tka1) + M3 + |A|My) + My(T = t,,)
k=1

+

= Il

“ (tx — tic)?
k — bk-1
<M17 + P Atk — ter) +M2> + 0" AT = t)
1+qra

(T -tm)*

(My(tx = treer) + Mz + [M|M) (T = 1) + My T+q

>
I

1

Hence, we deduce that ||Sx| < o.

Step 3: S maps bounded sets into equicontinuous sets of PC(J,R).

Let 71,79 € Ji = (t;,tin1] for some i € {0,1,2,...,m}, 11 < T, B,x be a bounded set of
PC(J,R) as in Step 2, and let x € B,«. Then we have

|(Sx)(z2) - (Sx)(n))|

182]172 — 71
<22 (/ / r’x(”)iqul k15
€2 k-1 Y -1
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+ 2] /t . |%(s)| dy_,5 + |Ik(x(tk))|)

+Z< / )|y 15+ 1 (x(80) | + |x||1k(x(tk>)\><:r—tk>
+/tmT/tr:[f(r,x(r))|dmrdqu+ I)»l/tmT|x(S)|dqu}

o :Lf(s’x<s>)|dqms} Y / " a(6) s - / " w0 dys

+|r2—r1|Z(fk £ (5,(5)
k=1 k-1

5 1 000) 1 500) )

(r,x(r)) dg,r dg,s - / 1 / S (rx(r)) dg,rdys

1821172 — 1] | (tk — te-1)?
—_ My ———— *IM (e = tre M
il E 1 17 2 + 0¥ M|t — tr_1) + Mo

k=1 B

IA

(T - t)?
N

m
+ Y (Mt = ticy) + M + [MM) (T = &) + My P*I(T = )
P 1+

m

8allT2 — 71l |
+ % {Z(Ml(tk — teer) + M + | M|My) + My(T - t,)

k=1

i
+lr = mlp Al + T =l ) (Mt — tia) + M + [A|My)
k=1

(10 + 71 +28)

+ |1 = T1|My
L+gq;

The right-hand side of the above inequality is independent of x and tends to zero as
71 — Tp. As a consequence of Steps 1 to 3, together with the Arzeld-Ascoli theorem, we
deduce that S : PC(J,R) — PC(J,R) is completely continuous.

Step 4: We show that the set

E= {xePC(],R):x:/chforsomeO<K <1}

is bounded.
Let x € E. Then x(t) = k(Sx)(t) for some 0 < k < 1. Thus, for each ¢ € J, we have

x(t) = k(Sx)(t)

K(81+32t) " ( $
f(rx(r)) dg, rdy, s
{zl [ sty ra,
A / C a9 dg 5 + I (tk)))

k-1
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+ Z(/ S (5,%(5)) dg s + I (x(t0)) + Ak (x(tk))) (T-1t)

/tm /mf (r,x(r)) qmrdqms—k[me(s)dqms}

. w {Z( /tkkl F(5,%(5)) dgy, s + I (x(t0)) + Mk(x(tk)))

k=1

+'/t f(s,x(s) d s} +K Z (ftk 1ftk_lf(r,x(r))afq,klrdq,kls

O<ty<t

_ A/ ‘ x(s) dg,_, +Ik(x(tk)))

k-1

+K Z <[kklf(5,x(s)) Ay, ,s+ I (x(8)) + Mk(x(tk))> (t—tz)

O<ty<t

t ps ¢
+"/ /f(r,x(r))qurqus—xkf x(s) dg, s
b Ik tk

This implies by (H3) and (H,) that for each ¢ € /, we have

81 + 1821 T |~ ([ [*
”xHET Z _/t. Mydy, rdg s
k=1

k-1 v tk-1

23
+|A |x(s)| dg, s+ Mz)

k-1

m te
+ Z(/ Mydy, s +M;+ |,\|M2)(T_ &)
k=1 k-1

T s T
+/ / Mldqmrdqms+|A|/ |x(s)|dqms}
tm Yitm tm

185] + 84| T
+T M1 G lS+A43+|)\.|M2 Ml amS

m 72 s ti
+ Z(/t Midy, rdg s+ |Al |x(s)| dg s+ M2>
k=1

k-1 tko1 Lk-1

m tk
+Z(/ Mydy, s +M;+ |A|M2)(T—tk)
k=1 W1

T s T
+/ / Mldqmrdqmsﬂ)LI/ |x(s)|dqms
tm Yitm tm

811 + 18217 + 12 {Ml’”z“ (1 = tir)?

=
|£2] L+ i

+ A%l T + mM,
k=1

+ Z(Ml(tk —trar) + Ms + |A|M)(T - tk)}
k=1
851 + 1841 T

Q {MLT + mMs + m|r|M,}.
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Setting

m+1

S|+ |82|T + |2 b — trr)?
F=|1|+|2| + (2] M1Z(k 1) + MM,

€2 = 1+

m

+ Z(Ml(tk = teer) + M + A M)(T — &)
k=1
183] + 184|T

2 {M1T+mM3+m|A|M2},

81] + 18| T + [$2|
llxll < TIMII?CIIT+ T,

which yields

F -
1— \51|+|1‘5?2||T+|Q| AT '

llxll <

This shows that the set E is bounded. As a consequence of Schaefer’s fixed point theorem,
we conclude that S has a fixed point which is a solution of the impulsive gi-difference
Langevin boundary value problem (1.4). O

4 Examples
Example 4.1 Consider the following boundary value problem for the second-order im-
pulsive g -difference Langevin equation:

x(2)] _
D(gl/:é)i( (é,’fﬁ)% + )x(t) 62L 10” m: te] - [0’1],t7'/tk:
_ _ lx®)l _k
Ax(tk) W lo’k = 1 2 9 (4 1)
D, 1x(t)) - M)mc(tk) = gtan‘l(ﬁx(tk)), t=1,k=1,2,...,9, ‘

(5k+2)2

1x(0) + gD%x(O) =x(1),  2x(0)+ %D%x(o) =D ‘/gx(l).

Here qx = /(2k +1)/(5k +2), k =0,1,2,...,9, m=9, T =1, A =1/10, « = 1/7, B = 2/9,
y =2/7,1=1/9,f(t,x) = (¢lx())/ (€ (10 + £)*(1 + |x(t)]), Ik (x) = |x[/(9(9 + |x])), and I} (x) =
(1/8) tan~1(x/10). Since

[f(t, %) - f(£,y)| < (1/100)]x - 1,
[Ix) - I(y)| < 1/81)|x —y| and |} (x) - I;(y)| < (1/80)x -y,

then (H;) and (H,) are satisfied with L; = (1/100), L, = (1/81), L3 = (1/80). We can find that
Q =3,103/3,150, 8; = (-13)/15, 8 = 46/75, 83 = 7/9, 84 = (=277)/315 and thus

A1 7~0.920497882 < 1.

Hence, by Theorem 3.1, the boundary value problem (4.1) has a unique solution on [0,1].
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Example 4.2 Consider the following boundary value problem for the second-order im-
pulsive gi-difference Langevin equation:

DegtyrPrgoye 3 D)= 2L, €)= (0,1t 41,

(4+x2)2
_ 2kcos“mt
Ax(t) = Zint g kok=12,.9, ws)
+ ___A4sin((y)/2)
D(%)Z“x(tk) _D(ﬁpx(tk) T Bk+|x(ty) cos? 2t” be = IO’k L2,....9,

1 1 2 1
14(0) + 1D,y %(0) =x(1),  3x(0) + 1D 1 x(0) = Do x(1).

Here gx = ((k + 1)/(3k + 42, k=0,1,2,...,9,m=9,T=1,A=1/5a =1/4, B = 1/5,
y =2/9, 1 =17, f(t,%) = (383)/(4 + ¥*)'?), Ik(x) = ((2k cos? rt)/(k + t*|x])), and [} (x) =
((4sin((7r)/2))/(3k + |x| cos? 2t)). Clearly,

3 2kcos®t
t, < - I =
y)]- ‘ x2)3 2’ )] ‘ k + £2|x|
and
4sin((t)/2) 4
If =T <
| k(x)| ‘3k+ |x|cos22¢| — 3
We can find that
1811 + 1821 T + |2 13,958
AT = <1,
[€2] 26,273

where Q = (¢ —1)(n =1) = AT(n + Br —«a) + y(T - B) =26,273/31,500, 81 =n -1+ BAr =
(-143)/175and 6, = A(n + BA—1—-a) +1 -y =17,777/31,500.

Hence, by Theorem 3.2, the boundary value problem (4.2) has at least one solution on
[0,1].
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