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Abstract
In this paper we prove the pointwise convergence and the rate of pointwise
convergence for a family of singular integral operators with radial kernel in
two-dimensional setting in the following form: Lλ(f ; x, y) =

∫∫
D f (s, t)Hλ(s – x, t – y)ds dt,

(x, y) ∈ D, where D = 〈a,b〉 × 〈c,d〉 (〈a,b〉 × 〈c,d〉 is an arbitrary closed, semi-closed or
open region inR2) and λ ∈ �,� is a set of non-negative numbers with accumulation
point λ0. Also we provide an example to support these theoretical results.
MSC: Primary 41A35; secondary 41A25
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1 Introduction
Taberski [] studied the pointwise convergence of integrable functions and the approxi-
mation properties of derivatives of integrable functions in L(–π ,π ) by a family of convo-
lution type singular integral operators depending on two parameters of the form:

Uλ(f ;x) =
∫ π

–π

f (t)Kλ(t – x)dt, x ∈ (–π ,π ), ()

where Kλ(t) is the kernel satisfying suitable assumptions and λ ∈ � (where� is a given set
of non-negative numbers with accumulation point λ).
Based on Taberski’s study [], Gadjiev [] investigated both the pointwise convergence

theorems and the order of pointwise convergence theorems for operators type () at a gen-
eralized Lebesgue point. Then Rydzewska [] conducted a similar study by changing the
point to aμ-generalized Lebesgue point of f ∈ L(–π ,π ) instead of a generalized Lebesgue
point.
Further, in [, ], Karsli and Ibikli extended the results of [, ], and [] by considering

the more general integral operators defined by

Tλ(f ;x) =
∫ b

a
f (t)Kλ(t – x)dt, x ∈ 〈a,b〉,λ ∈ � ⊂R ()

for functions in L〈a,b〉 where 〈a,b〉 is an arbitrary interval in R such as [a,b], (a,b), [a,b)
or (a,b].
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In [, ], Karsli obtained the pointwise convergence theorems and the rate of pointwise
convergence theorems for a family of nonlinear singular integral operators at a μ-gener-
alized Lebesgue point and a generalized Lebesgue point of f ∈ L〈a,b〉, respectively.
In , Bardaro and Gori Cocchieri [] estimated the degree of pointwise conver-

gence of Fejer-Type singular integrals at the generalized Lebesgue points of the functions
f ∈ L(R). Also, Bardaro [] studied similar convergence results concerning moment type
operators.
In [], Bardaro andMantellini investigated the pointwise convergence of family of non-

linear Mellin type convolution operators at Lebesgue points.
In paper [], Bardaro et al. obtained some approximation results concerning the point-

wise convergence and the rate of pointwise convergence for non-convolution type linear
operators at a Lebesgue point. In [], the same authors also obtained similar results for
its nonlinear counterpart and then in [], they explored the pointwise convergence and
the rate of pointwise convergence results for a family of Mellin type nonlinearm-singular
integral operators at m-Lebesgue points of f .
In this study, we also investigated the pointwise convergence and the rate of conver-

gence of the operators similar to the studies above. However, this study considers the two-
dimensional singular integral instead of one-dimensional integral similar to what Taberski
[] investigated in . In [], Taberski explored the pointwise convergence of inte-
grable functions in L(Q) by a three-parameter family of convolution type singular integral
operators of the form

Uλ(f ;x, y) =
∫∫

Q
f (s, t)Kλ(s – x, t – y)dsdt, (x, y) ∈Q, ()

whereQ denotes a given rectangle. Based on Taberski’s study [], Siudut [, ] obtained
significant results relating the pointwise convergence of singular integrals by considering
the operators of type ().
In [] Yilmaz et al. studied the pointwise convergence of the singular integral operators

in the following form:

Lλ(f ;x, y) =
∫ π

–π

∫ π

–π

f (s, t)Hλ(s – x, t – y)dsdt, (x, y) ∈ 〈–π ,π〉 × 〈–π ,π〉 ()

to the function f (x, y) in the case (x, y,λ) → (x, y,λ) in L(〈–π ,π〉 × 〈–π ,π〉), where
〈–π ,π〉×〈–π ,π〉 is a closed, semi-closed or open region inR

 and (x, y) is a generalized
Lebesgue point of the function f ∈ L(〈–π ,π〉×〈–π ,π〉). In this study, the kernel function
Hλ(s, t) is chosen as a radial function.
Very recently, [] Serenbay et al. investigated the pointwise convergence of the operator

of type () at a μ-generalized Lebesgue point.
The purpose of this paper is to investigate the pointwise convergence and the rate of

convergence of the operators in the following form:

Lλ(f ;x, y) =
∫∫

D
f (s, t)Hλ(s – x, t – y)dsdt, (x, y) ∈D, ()

where D = 〈a,b〉 × 〈c,d〉 (〈a,b〉 × 〈c,d〉 is an arbitrary closed, semi-closed or open region
in R

), at a p-generalized Lebesgue point of f ∈ Lp(D) as (x, y,λ)→ (x, y,λ). Here Lp(D)
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is the collection of all measurable functions f for which |f |p is integrable onD ( ≤ p < ∞),
� is a set of non-negative numbers with accumulation point λ and the kernel function
Hλ(s, t) is a radial function.
The paper is organized as follows: In Section , we introduce the fundamental defini-

tions. In Section , we prove the existence of the operator of type (). In Section , we
obtain two theorems concerning the pointwise convergence of Lλ(f ;x, y) to f (x, y) when-
ever (x, y) is a p-generalized Lebesgue point of f in bounded region and unbounded re-
gion. In Section , we establish the rate of convergence of operators of type () to f (x, y)
as (x, y,λ) tends to (x, y,λ) and we conclude the paper with an example to support our
results.

2 Preliminaries
In this section we introduce the main definitions used in this paper.

Definition . Let ϕ(x, y) be a function defined in the rectangle D, let

P =

{
a = x < x < · · · < xi < · · · < xm < xm+ = b,
c = y < y < · · · < yj < · · · < yn < yn+ = d

be a partition of D and

�ϕ(xi, yj) = ϕ(xi, yj) – ϕ(xi+, yj) – ϕ(xi, yj+) + ϕ(xi+, yj+).

If�ϕ(xi, yj) ≥  (i = , , . . . ,m; j = , , . . . ,n) for any partition of P, then it is said that ϕ(x, y)
satisfies the condition � in D [].
In other words, if �ϕ(xi, yj) ≥  for all partitions of D then it is said that ϕ(x, y) is bi-

monotonically increasing and if �ϕ(xi, yj) ≤  for all partitions of D, then it is said that
ϕ(x, y) is bimonotonically decreasing [].

Definition . A point (x, y) ∈ D is called a p-generalized Lebesgue point of function
f ∈ Lp(D) if

lim
(h,k)→(,)

(


hα+kα+

∫ h



∫ k



∣∣f (s + x, t + y) – f (x, y)
∣∣p dsdt) 

p
= 

( ≤ α < ;  ≤ p < ∞).

Definition . A function H ∈ L(R), is said to be radial if there exists a function K :
R

+
 → R such that H(s, t) = K(

√
s + t) a.e. [].

Example . LetH :R →R is given byH(s, t) = e–(s+t) and the corresponding function
K :R+

 →R is K (z) = e–z . Since the following equality holds for all (s, t) ∈ R
:

e–(s
+t) = e–(

√
s+t) ,

the function H(s, t) is a radial function.
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Definition . (Class A) Let Hλ : R × � → R be a radial function i.e., there exists a
function Kλ :R+

 × � →R such that the following equality holds for (s, t) ∈R
 a.e.

Hλ(s, t) := Kλ

(√
s + t

)
,

where � is a given set of non-negative numbers with accumulation point λ.
We will say that the function Hλ(s, t) belongs to class A, if the following conditions are

satisfied:
(a) Hλ(s, t) = Kλ(

√
s + t) is non-negative and integrable as a function of (s, t) on R

 for
each fixed λ ∈ �.

(b) For fixed (x, y) ∈D, Kλ(
√
x + y) tends to infinity as λ tends to λ.

(c) lim(x,y,λ)→(x,y,λ)
∫∫

R Kλ(
√
(s – x) + (t – y))dsdt = .

(d) limλ→λ [supξ≤√
s+t Kλ(

√
s + t)] = , ∀ξ > .

(e) limλ→λ [
∫∫

ξ≤√
s+t Kλ(

√
s + t)dsdt] = , ∀ξ > .

(f ) Kλ(
√
(s – x) + (t – y)) is non-increasing with respect to t on 〈x,d〉 and

non-decreasing on 〈c,x〉 and similarly Kλ(
√
(s – x) + (t – y)) is non-increasing

with respect to s on 〈y,b〉 and non-decreasing on 〈a, y〉, for any λ ∈ � and for
fixed (x, y) ∈D.

(g) ‖Kλ‖L(R) ≤M, ∀λ ∈ �.

Throughout this paper we suppose that the kernel Hλ(s, t) belongs to class A.

3 Existence of the operator
Lemma . Let  ≤ p < ∞. If f ∈ Lp(D), then the operator Lλ(f ;x, y) defines a continuous
transformation over Lp(D).

Proof The proof of the case p =  is quite similar to the proof in [].
We assume that  < p < ∞. By the linearity of the operator Lλ(f ;x, y), it is sufficient to

show that the following expression is bounded:

‖Lλ‖ = sup
f =

‖Lλ(f ,x, y)‖Lp(D)
‖f ‖Lp(D)

.

We define a function such that

g(s, t) =

{
f (s, t), (s, t) ∈ D,
, (s, t) ∈ R

\D,

and then we rearrange and rewrite the norm as follows:

∥∥Lλ(f ,x, y)
∥∥
Lp(D)

=
∥∥Lλ(g,x, y)

∥∥
Lp(D)

=
(∫∫

D

∣∣∣∣
∫∫

R
g(s, t)Hλ(s – x, t – y)dsdt

∣∣∣∣
p

dxdy
) 

p

=
(∫∫

D

∣∣∣∣
∫∫

R
g(s, t)Kλ

(√
(s – x) + (t – y)

)
dsdt

∣∣∣∣
p

dxdy
) 

p

=
(∫∫

D

∣∣∣∣
∫∫

R
g(s + x, t + y)Kλ

(√
s + t

)
dsdt

∣∣∣∣
p

dxdy
) 

p
.
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By using the generalized Minkowsky inequality and by condition (g) of class A, we have

∥∥Lλ(f ,x, y)
∥∥
Lp(D)

≤
∫∫

R

(∫∫
D

∣∣g(s + x, t + y)
∣∣p∣∣Kλ

(√
s + t

)∣∣p dxdy) 
p
dsdt

=
∫∫

R

∣∣Kλ

(√
s + t

)∣∣(∫∫
D

∣∣g(s + x, t + y)
∣∣p dxdy) 

p
dsdt

=
∫∫

R

∣∣Kλ

(√
s + t

)∣∣(∫ b+s

a+s

∫ d+t

c+t

∣∣g(u, v)∣∣p dudv) 
p
dsdt

≤
∫∫

R

∣∣Kλ

(√
s + t

)∣∣(∫ b

a

∫ d

c

∣∣f (u, v)∣∣p dudv) 
p
dsdt ≤M‖f ‖Lp(D).

Thus the proof is completed. �

4 Pointwise convergence
The following theorem gives a pointwise approximation of the integral operators type ()
to the function f at p-generalized Lebesgue point of f ∈ Lp(D) whenever D is an arbitrary
region in R

 that is bounded, closed, semi-closed or open.

Theorem . Suppose that, as a function of (s, t), �K (
√
(t – x) + (s – y);λ) ≥  on

〈x,b〉 × 〈y,d〉 and 〈a,x〉 × 〈c, y〉, �K (
√
(t – x) + (s – y);λ) ≤  on 〈x,b〉 × 〈c, y〉 and

〈a,x〉 × 〈y,d〉. If (x, y) is a p-generalized Lebesgue point of function f ∈ Lp(D), then

lim
(x,y,λ)→(x,y,λ)

Lλ(f ;x, y) = f (x, y)

on any set Z on which the function

∫ x+δ

x–δ

∫ y+δ

y–δ

Kλ

(√
(s – x) + (t – y)

)∣∣d[
(s – x)p(α+)(t – y)p(α+)

]∣∣,
where d[(x – s)p(α+)(y – t)p(α+)] is the Lebesgue-Stieltjes measure with respect to (x –
s)p(α+)(y – t)p(α+), is bounded as (x, y,λ) tends to (x, y,λ).

Proof Suppose that (x, y) ∈D, |x –x| < δ
 , for all δ > which satisfy x +δ < b and x –δ >

a, |y – y| < δ
 for all δ >  which satisfy y + δ < d and y – δ > c.

Since (x, y) ∈ D is a p-generalized Lebesgue point of function f ∈ Lp(D), for all given
ε > , there exists a δ >  such that for all h, k satisfying  < h,k ≤ δ, the inequalities

∫ x

x–δ

∫ y

y–δ

∣∣f (s, t) – f (x, y)
∣∣p dsdt < εp(hk)p(α+), ()

∫ x+δ

x

∫ y

y–δ

∣∣f (s, t) – f (x, y)
∣∣p dsdt < εp(hk)p(α+), ()

∫ x

x–δ

∫ y+δ

y

∣∣f (s, t) – f (x, y)
∣∣p dsdt < εp(hk)p(α+), ()

∫ x+δ

x

∫ y+δ

y

∣∣f (s, t) – f (x, y)
∣∣p dsdt < εp(hk)p(α+) ()

hold.
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Set Iλ(x, y) := |Lλ(f ;x, y) – f (x, y)|. According to condition (c) of class A, we shall write

Iλ(x, y) =
∣∣∣∣
∫∫

D
f (s, t)Hλ(s – x, t – y)dsdt – f (x, y)

∣∣∣∣
=

∣∣∣∣
∫∫

D
f (s, t)Kλ

(√
(s – x) + (t – y)

)
dsdt – f (x, y)

∣∣∣∣
≤

∫∫
R

∣∣g(s, t) – f (x, y)
∣∣Kλ

(√
(s – x) + (t – y)

)
dsdt

+
∣∣f (x, y)∣∣

∣∣∣∣
∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt – 

∣∣∣∣
=

∫∫
D

∣∣f (s, t) – f (x, y)
∣∣Kλ

(√
(s – x) + (t – y)

)
dsdt

+
∣∣f (x, y)∣∣

∣∣∣∣
∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt – 

∣∣∣∣
+

∫∫
R\D

∣∣g(s, t) – f (x, y)
∣∣Kλ

(√
(s – x) + (t – y)

)
dsdt

= I + II + III.

By conditions (e) and (d) of class A, III →  as λ → λ.
Using Hölder’s inequality for the term I we have the following:

I + II ≤
(∫ b

a

∫ d

c

∣∣f (s, t) – f (x, y)
∣∣p∣∣Kλ

(√
(s – x) + (t – y)

)∣∣dsdt) 
p

×
(∫ b

a

∫ d

c
Kλ

(√
(s – x) + (t – y)

)
dsdt

) 
q

+
∣∣f (x, y)∣∣

∣∣∣∣
∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt – 

∣∣∣∣.
Since whenever for m, n being positive numbers the inequality (m + n)p ≤ p(mp + np)
holds, by taking the pth power of both sides we have

(I + II)p ≤ p
(∫ b

a

∫ d

c

∣∣f (s, t) – f (x, y)
∣∣pKλ

(√
(s – x) + (t – y)

)
dsdt

)

×
(∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt

) P
q

+ p
∣∣f (x, y)∣∣p

∣∣∣∣
∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt – 

∣∣∣∣
p

= I∗ + II∗.

Let us write

I∗ = p
(∫ b

a

∫ d

c

∣∣f (s, t) – f (x, y)
∣∣pKλ

(√
(s – x) + (t – y)

)
dsdt

)

×
(∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt

) p
q
.
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The second part of the integral I∗ tends to one as (x, y,λ) tends to (x, y,λ) by condi-
tion (c). Then we investigate the first part of the integral I∗, denoted by I,

I =
{∫∫

D\Bδ

+
∫∫

Bδ

}∣∣f (s, t) – f (x, y)
∣∣pKλ

(√
(s – x) + (t – y)

)
dsdt = I + I,

where Bδ := {(s, t) : (s – x) + (t – y) ≤ δ, (x, y) ∈D}.
For the integral I we have the following inequality:

I =
∫∫

D\Bδ

∣∣f (s, t) – f (x, y)
∣∣pKλ

(√
(s – x) + (t – y)

)
dsdt

≤
∫∫

D\Bδ

(∣∣f (s, t)∣∣ + ∣∣f (x, y)∣∣)pKλ

(√
(s – x) + (t – y)

)
dsdt

≤ p
∫∫

D\Bδ

(∣∣f (s, t)∣∣p + ∣∣f (x, y)∣∣p)Kλ

(√
(s – x) + (t – y)

)
dsdt

≤ p sup
ξ≤√

s+t
Kλ

(√
s + t

)(‖f ‖pLp(D) + ∣∣f (x, y)∣∣p|b – a||d – c|).
Since Kλ(

√
s + t) is decreasing on D\Bδ , the following relation holds:

I ≤ pKλ

(
(
√
 – )δ√


)(‖f ‖pLp(D) + ∣∣f (x, y)∣∣p|b – a||d – c|);
hence by condition (d) of class A, I →  whenever (x, y,λ)→ (x, y,λ).
Next we can show that the term I tends to zero as (x, y,λ)→ (x, y,λ) on Bδ :

I =
∫∫

Bδ

∣∣f (s, t) – f (x, y)
∣∣Kλ

(√
(s – x) + (t – y)

)
dsdt

≤
∫ x+δ

x–δ

∫ y+δ

y–δ

∣∣f (s, t) – f (x, y)
∣∣Kλ

(√
(s – x) + (t – y)

)
dsdt

≤
{∫ x

x–δ

∫ y

y–δ

+
∫ x+δ

x

∫ y

y–δ

}∣∣f (s, t) – f (x, y)
∣∣Kλ

(√
(s – x) + (t – y)

)
dsdt

+
{∫ x

x–δ

∫ y+δ

y
+

∫ x+δ

x

∫ y+δ

y

}∣∣f (s, t) – f (x, y)
∣∣Kλ

(√
(s – x) + (t – y)

)
dsdt

= I + I + I + I.

Since

I ≤ I + I + I + I

it is sufficient to show that the terms on the right hand side of the last inequality tends to
zero as (x, y,λ) → (x, y,λ) on Z.
Let us consider first the integral I.
From (), for every ε >  there exists a δ >  such that

∫ x

x–h

∫ y

y–k

∣∣f (s, t) – f (x, y)
∣∣p dsdt < εphp(α+)kp(α+)

for all  < h,k ≤ δ.
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Let us define a new function as

F(s, t) :=
∫ x

s

∫ y

t

∣∣f (u, v) – f (x, y)
∣∣p dudv.

Then for all s and t satisfying x – s ≤ δ and y – t ≤ δ we have

∣∣F(s, t)∣∣ ≤ εp(x – s)p(α+)(y – t)p(α+).

Hence we can evaluate the integral I.
From [] (see Theorem ., p.), we can write the following:

I =
∫ x

x–δ

∫ y

y–δ

∣∣f (s, t) – f (x, y)
∣∣Kλ

(√
(s – x) + (t – y)

)
dsdt

= (S)
∫ x

x–δ

∫ y

y–δ

Kλ

(√
(s – x) + (t – y)

)
dF(s, t),

where (S) denotes the Stieltjes integral.
Two-dimensional integration by parts (see Theorem ., p. in []) gives us

∫ x

x–δ

∫ y

y–δ

Kλ

(√
(s – x) + (t – y)

)
dF(s, t)

=
∫ x

x–δ

∫ y

y–δ

F(s, t)dKλ

(√
(s – x) + (t – y)

)

+
∫ x

x–δ

F(s, y – δ)dKλ

(√
(s – x) + (y – y – δ)

)

+
∫ y

y–δ

F(x – δ, t)dKλ

(√
(x – x – δ) + (t – y)

)
+ F(x – δ, y – δ)Kλ

(√
(x – x – δ) + (y – y – δ)

)
.

From (), we can write

I ≤ εp
∫ x

x–δ

∫ y

y–δ

(x – s)p(α+)(y – t)p(α+)
∣∣dKλ

(√
(s – x) + (t – y)

)∣∣
+ εpδp(α+)

∫ x

x–δ

(x – s)p(α+)
∣∣dsKλ

(√
(s – x) + (y – δ – y)

)∣∣
+ εpδp(α+)

∫ y

y–δ

(y – t)p(α+)
∣∣dtKλ

(√
(x – δ – x) + (t – y)

)∣∣
+ εpδp(α+)Kλ

(√
(x – δ – x) + (y – δ – y)

)
= i + i + i + i.

After applying integration by parts to i, i, and i we obtain the following result:

I ≤ εp
∫ x

x–δ

∫ y

y–δ

Kλ

(√
(s – x) + (t – y)

)
d(x – s)p(α+)(y – t)p(α+).
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For the integrals I, I, and I the proof is similar to the above one. Thus we obtain
the following inequalities:

I ≤ –εp
∫ x+δ

x

∫ y

y–δ

Kλ

(√
(s – x) + (t – y)

)
d
[
(x – s)p(α+)(y – t)p(α+)

]
,

I ≤ –εp
∫ x

x–δ

∫ y+δ

y
Kλ

(√
(s – x) + (t – y)

)
d
[
(s – x)p(α+)(y – t)p(α+)

]
,

I ≤ εp
∫ x+δ

x

∫ y+δ

y
Kλ

(√
(s – x) + (t – y)

)
d
[
(x – s)p(α+)(y – t)p(α+)

]
.

Collecting the estimates I, I, I, and I, we have the following inequality:

I ≤ I + I + I + I

= εp
∫ x+δ

x–δ

∫ y+δ

y–δ

Kλ

(√
(s – x) + (t – y)

)∣∣d[
(x – s)p(α+)(y – t)p(α+)

]∣∣.
Therefore, if the points (x, y,λ) ∈ Z are sufficiently close to (x, y,λ), we have

I ≤ εC,

where

C = sup

{∫ x+δ

x–δ

∫ y+δ

y–δ

Kλ

(√
(s – x) + (t – y)

)∣∣d[
(x – s)p(α+)(y – t)p(α+)

]∣∣ :
(x, y,λ) ∈ Z

}
.

Finally we consider the integral II∗. From condition (c), it is clear that

lim
(x,y,λ)→(x,y,λ)

II∗ = .

Thus, the proof is finished. �

Remark . For the case p = , the proof is quite similar to the proof in [].

The following theorem gives a pointwise approximation of the integral operators type
() to the function f at p-generalized Lebesgue point of f ∈ Lp(R) whenever D =R

.

Theorem . Suppose that the hypothesis of Theorem . is satisfied for D =R
. If (x, y)

is a p-generalized Lebesgue point of function f ∈ Lp(R) then

lim
(x,y,λ)→(x,y,λ)

Lλ(f ;x, y) = f (x, y).

Proof Using the same strategy as in Theorem . we obtain

∣∣Lλ(f ;x, y) – f (x, y)
∣∣p

≤ p
{

sup
δ≤√

s+t

∣∣Kλ

(√
t + s

)∣∣‖f ‖pLp(R)
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+
∣∣f (x, y)∣∣p

∫∫
δ≤√

s+t
Kλ

(√
s + t

)
dsdt

}

×
(∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt

) P
q

+ pεp
∫ x+δ

x–δ

∫ y+δ

y–δ

Kλ

(√
(s – x) + (t – y)

)∣∣d[
(x – s)p(α+)(y – t)p(α+)

]∣∣

×
(∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt

) P
q

+ p
∣∣f (x, y)∣∣p

∣∣∣∣
∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt – 

∣∣∣∣
p

.

By condition (e) of classA the second term of the expression tends to zero as λ tends to λ.
The remaining part of the proof is obvious by Theorem .. �

5 Rate of convergence
In this section, we give a theorem concerning the rate of pointwise convergence.

Theorem . Suppose that the hypotheses of Theorem . and Theorem . are satisfied.
Let

�(λ, δ,x, y) =
∫ x+δ

x–δ

∫ y+δ

y–δ

|x – s|p(α+)–|y – t|p(α+)–Kλ

(√
(s – x) + (t – y)

)
dsdt

for δ >  and the following assumptions are satisfied:
(i) �(λ, δ,x, y)→  as (x, y,λ)→ (x, y,λ) for some δ > .
(ii) For every ξ > 

Kλ(ξ ) = o
(
�(λ, δ,x, y)

)
as (x, y,λ) → (x, y,λ).

(iii) For every ξ > 

∫∫
ξ≤√

s+t
Kλ

(√
s + t

)
dsdt = o

(
�(λ, δ,x, y)

)

as (x, y,λ) → (x, y,λ).
Then at each p-generalized Lebesgue point of f ∈ Lp(R) we have as (x, y,λ)→ (x, y,λ)

∣∣Lλ(f ;x, y) – f (x, y)
∣∣ = o

(
�(λ, δ,x, y)


p
)
.

Proof In view of the equality of the Lebesgue-Stieltjes integrals we have

∫ x+δ

x–δ

∫ y+δ

y–δ

Kλ

(√
(s – x) + (t – y)

)
d
[
(x – s)p(α+)(y – t)p(α+)

]

= (pα + p)
∫ x+δ

x–δ

∫ y+δ

y–δ

(x – s)p(α+)–(y – t)p(α+)–Kλ

(√
(s – x) + (t – y)

)
dsdt.
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By Theorem . and Theorem . we can write, for δ > ,

∣∣Lλ(f ;x, y) – f (x, y)
∣∣p

≤ p
{

sup
δ≤√

s+t

∣∣Kλ

(√
t + s

)∣∣‖f ‖pLp(R)

+
∣∣f (x, y)∣∣p

∫∫
δ≤√

s+t
Kλ

(√
s + t

)
dsdt

}

×
(∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt

) P
q

+ pεp(pα + p)
∫ x+δ

x–δ

∫ y+δ

y–δ

|x – s|p(α+)–|y – t|p(α+)–

×Kλ

(√
(s – x) + (t – y)

)
dsdt

×
(∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt

) P
q

+ p
∣∣f (x, y)∣∣p

∣∣∣∣
∫∫

R
Kλ

(√
(s – x) + (t – y)

)
dsdt – 

∣∣∣∣
p

.

From (i)-(iii) and using class A conditions we have the desired result:

∣∣Lλ(f ;x, y) – f (x, y)
∣∣ = o

(
�(λ, δ,x, y)


p
)
. �

Example . Let � = (,∞), λ = , and

Hλ(s, t) =


πλ
e
–(s+t)

λ .

To verify that Kλ(
√
s + t) = 

πλ
e
–(

√
s+t)
λ satisfies the hypotheses of Theorem . and

Theorem., see []. SinceKλ(
√
s + t) tends to infinity as λ tends to zero at (s, t) = (, ),

condition (b) of class A is satisfied.
Let p = 

 , α = 
 , and (x, y) = (, ). Hence we obtain

�(λ, δ,x, y) =
∫ +δ

–δ

∫ +δ

–δ

|s||t| 
πλ

e
–((s–x)+(t–y))

λ dsdt

=

π

e
δ+y+x

λ

(

√

λ
(
e

δ
λ – e

δx
λ

)

+ e
δ+x
λ

√
πx

(
Erf

(
δ – x

√

λ

)
+ Erf

(
x


√

λ

)))

×
(

√

λ
(
e

δ
λ – e

δy
λ

)
+ e

δ+y
λ

√
πy

(
Erf

(
δ – y

√

λ

)
+ Erf

(
y


√

λ

)))
,

where

Erf (x) =
√
π

∫ x


e–t


dt.
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In order to find for which δ >  condition (i) in Theorem . is satisfied, let�(λ, δ,x, y) → 
as (x, y,λ)→ (, , ). Hence

lim
(x,y,λ)→(,,)

�(λ, δ,x, y) = 

if and only if δ = o(λ). Consequently the following equation holds:

�(λ, δ,x, y) =
∫ +δ

–δ

∫ +δ

–δ

|s||t| 
πλ

e
–((s–x)+(t–y))

λ dsdt

= 
∫
[,λ]×[,λ]

|s||t| 
πλ

e
–((s–x)+(t–y))

λ dsdt.

From the above equation we see that

�(λ, δ,x, y) =O(λ).

From [] it is clear that the conditions (ii) and (iii) in Theorem . are satisfied. Hence

∣∣Lλ(f ;x, y) – f (x, y)
∣∣ = o

(
�(λ, δ,x, y)



)
= o

(
λ



)
.
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