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Abstract
In this paper, we consider the poly-Bernoulli numbers and polynomials of the second
kind and presents new and explicit formulas for calculating the poly-Bernoulli
numbers of the second kind and the Stirling numbers of the second kind.
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1 Introduction
As is well known, the Bernoulli polynomials of the second kind are defined by the gener-
ating function to be

t
log( + t)

( + t)x =
∞∑
n=

bn(x)
tn

n!
(see [–]). ()

When x = , bn = bn() are called the Bernoulli numbers of the second kind. The first
few Bernoulli numbers bn of the second kind are b = , b = /, b = –/, b = /,
b = –/, b = /, . . . .
From (), we have

bn(x) =
n∑
l=

(
n
l

)
bl(x)n–l, ()

where (x)n = x(x–) · · · (x–n+) (n� ). The Stirling number of the second kind is defined
by

xn =
n∑
l=

S(n, l)(x)l (n� ). ()

The ordinary Bernoulli polynomials are given by

t
et – 

ext =
∞∑
n=

Bn(x)
tn

n!
(see [–]). ()

When x = , Bn = Bn() are called Bernoulli numbers.
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It is well known that the classical poly-logarithmic function Lik(x) is given by

Lik(x) =
∞∑
n=

xn

nk
(k ∈ Z) (see [–]). ()

For k = , Li(x) =
∑∞

n=
xn
n = – log( – x). The Stirling number of the first kind is defined

by

(x)n =
n∑
l=

S(n, l)xl (n≥ ) (see []). ()

In this paper, we consider the poly-Bernoulli numbers and polynomials of the second
kind and presents new and explicit formulas for calculating the poly-Bernoulli number
and polynomial and the Stirling number of the second kind.

2 Poly-Bernoulli numbers and polynomials of the second kind
For k ∈ Z, we consider the poly-Bernoulli polynomials b(k)n (x) of the second kind:

Lik( – e–t)
log( + t)

( + t)x =
∞∑
n=

b(k)n (x)
tn

n!
. ()

When x = , b(k)n = b(k)n () are called the poly-Bernoulli numbers of the second kind.
Indeed, for k = , we have

Lik( – e–t)
log( + t)

( + t)x =
t

log( + t)
( + t)x =

∞∑
n=

bn(x)
tn

n!
. ()

By () and (), we get

b()n (x) = bn(x) (n≥ ). ()

It is well known that

t( + t)x–

log( + t)
=

∞∑
n=

B(n)
n (x)

tn

n!
, ()

where B(α)
n (x) are the Bernoulli polynomials of order α which are given by the generating

function to be

(
t

et – 

)α

ext =
∞∑
n=

B(α)
n (x)

tn

n!
(see [–]).

By () and (), we get

bn(x) = B(n)
n (x + ) (n≥ ).
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Now, we observe that

Lik( – e–t)
log( + t)

( + t)x

=
∞∑
n=

b(k)n (x)
tn

n!

=


log( + t)

∫ t




ex – 

∫ t




ex – 

· · · 
ex – ︸ ︷︷ ︸

k– times

∫ t



x
ex – 

dx · · · dx( + t)x. ()

Thus, by (), we get

∞∑
n=

b()n (x)
tn

n!
=

( + t)x

log( + t)

∫ t



x
ex – 

dx

=
( + t)x

log( + t)

∞∑
l=

Bl

l!

∫ t


xl dx

=
(

t
log( + t)

)
( + t)x

∞∑
l=

Bl

(l + )
tl

l!

=
∞∑
n=

{ n∑
l=

(
n
l

)
Blbn–l(x)
l + 

}
tn

n!
. ()

Therefore, by (), we obtain the following theorem.

Theorem . For n ≥  we have

b()n (x) =
n∑
l=

(
n
l

)
Blbn–l(x)
l + 

.

From (), we have

∞∑
n=

b(k)n (x)
tn

n!
=
Lik( – e–t)
log( + t)

( + t)x

=
t

log( + t)
Lik( – e–t)

t
( + t)x. ()

We observe that


t
Lik

(
 – e–t

)
=

t

∞∑
n=


nk

(
 – e–t

)n

=

t

∞∑
n=

(–)n

nk
n!

∞∑
l=n

S(l,n)
(–t)l

l!

=

t

∞∑
l=

l∑
n=

(–)n+l

nk
n!S(l,n)

tl

l!

=
∞∑
l=

l+∑
n=

(–)n+l+

nk
n!
S(l + ,n)

l + 
tl

l!
. ()
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Thus, by () and (), we get

∞∑
n=

b(k)n (x)
tn

n!
=

( ∞∑
m=

bm(x)
tm

m!

){ ∞∑
l=

( l+∑
p=

(–)p+l+

pk
p!
S(l + ,p)

l + 

)
tl

l!

}

=
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n=

{ n∑
l=

(
n
l

)( l+∑
p=

(–)p+l+p!
pk

S(l + ,p)
l + 

)
bn–l(x)

}
tn

n!
. ()

Therefore, by (), we obtain the following theorem.

Theorem . For n ≥ , we have

b(k)n (x) =
n∑
l=

(
n
l

)( l+∑
p=

(–)p+l+

pk
p!
S(l + ,p)

l + 

)
bn–l(x).

By (), we get

∞∑
n=

(
b(k)n (x + ) – b(k)n (x)

) tn
n!

=
Lik( – e–t)
log( + t)

( + t)x+ –
Lik( – e–t)
log( + t)

( + t)x

=
tLik( – e–t)
log( + t)

( + t)x

=
(

t
log( + t)

( + t)x
)
Lik

(
 – e–t

)

=

( ∞∑
l=

bl(x)
l!

tl
){ ∞∑

p=

( p∑
m=

(–)m+pm!
mk S(p,m)

)}
tp

p!
()

=
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n=

( n∑
p=

p∑
m=

(–)m+p

mk m!S(p,m)
bn–p(x)n!
(n – p)!p!

)
tn

n!

=
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n=

{ n∑
p=

p∑
m=

(
n
p

)
(–)m+pm!

mk S(p,m)bn–p(x)

}
tn

n!
. ()

Therefore, by (), we obtain the following theorem.

Theorem . For n ≥ , we have

b(k)n (x + ) – b(k)n (x) =
n∑
p=

p∑
m=

(
n
p

)
(–)m+pm!

mk S(p,m)bn–p(x). ()

From (), we have

∞∑
n=

b(k)n (x + y)
tn

n!
=

(
Lik( – e–t)
log( + t)

)k

( + t)x+y

=
(
Lik( – e–t)
log( + t)

)k

( + t)x( + t)y

=
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l=

b(k)l (x)
tl

l!

)( ∞∑
m=

(y)m
tm

m!
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=
∞∑
n=

( n∑
l=

(y)lb(k)n–l(x)
n!

(n – l)!l!

)
tn

n!

=
∞∑
n=

( n∑
l=

(
n
l

)
b(k)n–l(x)(y)l

)
tn

n!
. ()

Therefore, by (), we obtain the following theorem.

Theorem . For n ≥ , we have

b(k)n (x + y) =
n∑
l=

(
n
l

)
b(k)n–l(x)(y)l.
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