# Hermite and poly-Bernoulli mixed-type polynomials 

## Dae San Kim¹ and Taekyun Kim²*

"Correspondence: tkkim@kw.ac.kr
${ }^{2}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea Full list of author information is available at the end of the article


#### Abstract

In this paper, we consider Hermite and poly-Bernoulli mixed-type polynomials and investigate the properties of those polynomials which are derived from umbral calculus. Finally, we give various identities associated with Stirling numbers, Bernoulli and Frobenius-Euler polynomials of higher order.


## 1 Introduction

For $r \in \mathbb{Z}_{\geq 0}$, as is well known, the Bernoulli polynomials of order $r$ are defined by the generating function to be

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\mathbb{B}_{n}^{(r)}(x)}{n!} t^{n}=\left(\frac{t}{e^{t}-1}\right)^{r} e^{x t} \quad(\text { see }[1-16]) \tag{1.1}
\end{equation*}
$$

For $k \in \mathbb{Z}$, the polylogarithm is defined by

$$
\begin{equation*}
\mathrm{Li}_{k}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{k}} \tag{1.2}
\end{equation*}
$$

Note that $\mathrm{Li}_{1}(x)=-\log (1-x)$.
The poly-Bernoulli polynomials are defined by the generating function to be

$$
\begin{equation*}
\frac{\mathrm{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(k)}(x) \frac{t^{n}}{n!} \quad(\text { see }[5,8]) \tag{1.3}
\end{equation*}
$$

When $x=0, B_{n}^{(k)}=B_{n}^{(k)}(0)$ are called the poly-Bernoulli numbers (of index $k$ ).
For $v(\neq 0) \in \mathbb{R}$, the Hermite polynomials of order $v$ are given by the generating function to be

$$
\begin{equation*}
e^{-\frac{v t^{2}}{2}} e^{x t}=\sum_{n=0}^{\infty} H_{n}^{(\nu)}(x) \frac{t^{n}}{n!} \quad(\text { see }[6,12,13]) . \tag{1.4}
\end{equation*}
$$

When $x=0, H_{n}^{(\nu)}=H_{n}^{(\nu)}(0)$ are called the Hermite numbers of order $v$.

In this paper, we consider the Hermite and poly-Bernoulli mixed-type polynomials $H B_{n}^{(\nu, k)}(x)$ which are defined by the generating function to be

$$
\begin{equation*}
e^{-\frac{v t^{2}}{2}} \frac{\mathrm{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{x t}=\sum_{n=0}^{\infty} H B_{n}^{(v, k)}(x) \frac{t^{n}}{n!}, \tag{1.5}
\end{equation*}
$$

where $k \in \mathbb{Z}$ and $v(\neq 0) \in \mathbb{R}$.
When $x=0, H B_{n}^{(\nu, k)}=H B_{n}^{(v, k)}(0)$ are called the Hermite and poly-Bernoulli mixed-type numbers.
Let $\mathcal{F}$ be the set of all formal power series in the variable $t$ over $\mathbb{C}$ as follows:

$$
\begin{equation*}
\mathcal{F}=\left\{\left.f(t)=\sum_{k=0}^{\infty} a_{k} \frac{t^{k}}{k!} \right\rvert\, a_{k} \in \mathbb{C}\right\} . \tag{1.6}
\end{equation*}
$$

Let $\mathbb{P}=\mathbb{C}[x]$ and $\mathbb{P}^{*}$ denote the vector space of all linear functionals on $\mathbb{P}$.
$\langle L \mid p(x)\rangle$ denotes the action of the linear functional $L$ on the polynomial $p(x)$, and we recall that the vector space operations on $\mathbb{P}^{*}$ are defined by $\langle L+M \mid p(x)\rangle=\langle L \mid p(x)\rangle+\langle M \mid p(x)\rangle$, $\langle c L \mid p(x)\rangle=c\langle L \mid p(x)\rangle$, where $c$ is a complex constant in $\mathbb{C}$. For $f(t) \in \mathcal{F}$, let us define the linear functional on $\mathbb{P}$ by setting

$$
\begin{equation*}
\left\langle f(t) \mid x^{n}\right\rangle=a_{n} \quad(n \geq 0) . \tag{1.7}
\end{equation*}
$$

Then, by (1.6) and (1.7), we get

$$
\begin{equation*}
\left\langle t^{k} \mid x^{n}\right\rangle=n!\delta_{n, k} \quad(n, k \geq 0) \tag{1.8}
\end{equation*}
$$

where $\delta_{n, k}$ is the Kronecker symbol.
For $f_{L}(t)=\sum_{k=0}^{\infty} \frac{\left\langle L \mid x^{k}\right\rangle}{k!} t^{k}$, we have $\left\langle f_{L}(t) \mid x^{n}\right\rangle=\left\langle L \mid x^{n}\right\rangle$. That is, $L=f_{L}(t)$. The map $L \mapsto f_{L}(t)$ is a vector space isomorphism from $\mathbb{P}^{*}$ onto $\mathcal{F}$. Henceforth, $\mathcal{F}$ denotes both the algebra of formal power series in $t$ and the vector space of all linear functionals on $\mathbb{P}$, and so an element $f(t)$ of $\mathcal{F}$ will be thought of as both a formal power series and a linear functional. We call $\mathcal{F}$ the umbral algebra and the umbral calculus is the study of umbral algebra. The order $O(f)$ of the power series $f(t) \neq 0$ is the smallest integer for which $a_{k}$ does not vanish. If $O(f)=0$, then $f(t)$ is called an invertible series. If $O(f)=1$, then $f(t)$ is called a delta series. For $f(t), g(t) \in \mathcal{F}$, we have

$$
\begin{equation*}
\langle f(t) g(t) \mid p(x)\rangle=\langle f(t) \mid g(t) p(x)\rangle=\langle g(t) \mid f(t) p(x)\rangle . \tag{1.9}
\end{equation*}
$$

Let $f(t) \in \mathcal{F}$ and $p(x) \in \mathbb{P}$. Then we have

$$
\begin{equation*}
f(t)=\sum_{k=0}^{\infty} \frac{\left\langle f(t) \mid x^{k}\right\rangle}{k!} t^{k}, \quad p(x)=\sum_{k=0}^{\infty} \frac{\left\langle t^{k} \mid p(x)\right\rangle}{k!} x^{k} \quad(\text { see }[8,9,11,13,14]) . \tag{1.10}
\end{equation*}
$$

By (1.10), we get

$$
\begin{equation*}
p^{(k)}(0)=\left\langle t^{k} \mid p(x)\right\rangle=\left\langle 1 \mid p^{(k)}(x)\right\rangle, \tag{1.11}
\end{equation*}
$$

where $p^{(k)}(0)=\left.\frac{d^{k} p(x)}{d x^{k}}\right|_{x=0}$.

From (1.11), we have

$$
\begin{equation*}
t^{k} p(x)=p^{(k)}(x)=\frac{d^{k} p(x)}{d x^{k}} \quad(\text { see }[8,9,13]) \tag{1.12}
\end{equation*}
$$

By (1.12), we easily get

$$
\begin{equation*}
e^{y t} p(x)=p(x+y), \quad\left\langle e^{y t} \mid p(x)\right\rangle=p(y) . \tag{1.13}
\end{equation*}
$$

For $O(f(t))=1, O(g(t))=0$, there exists a unique sequence $s_{n}(x)$ of polynomials such that $\left\langle g(t) f(t)^{k} \mid x^{n}\right\rangle=n!\delta_{n, k}(n, k \geq 0)$.
The sequence $s_{n}(x)$ is called the Sheffer sequence for $(g(t), f(t))$ which is denoted by $s_{n}(x) \sim(g(t), f(t))$.
Let $p(x) \in \mathbb{P}, f(t) \in \mathcal{F}$. Then we see that

$$
\begin{equation*}
\langle f(t) \mid x p(x)\rangle=\left\langle\partial_{t} f(t) \mid p(x)\right\rangle=\left\langle\left.\frac{d f(t)}{d t} \right\rvert\, p(x)\right\rangle . \tag{1.14}
\end{equation*}
$$

For $s_{n}(x) \sim(g(t), f(t))$, we have the following equations:

$$
\begin{equation*}
h(t)=\sum_{k=0}^{\infty} \frac{\left\langle h(t) \mid s_{k}(x)\right\rangle}{k!} g(t) f(t)^{k}, \quad p(x)=\sum_{k=0}^{\infty} \frac{\left\langle g(t) f(t)^{k} \mid p(x)\right\rangle}{k!} s_{k}(x), \tag{1.15}
\end{equation*}
$$

where $h(t) \in \mathcal{F}, p(x) \in \mathbb{P}$,

$$
\begin{equation*}
\frac{1}{g(\bar{f}(t))} e^{\bar{y}(t)}=\sum_{n=0}^{\infty} s_{n}(y) \frac{t^{n}}{n!}, \tag{1.16}
\end{equation*}
$$

where $\bar{f}(t)$ is the compositional inverse for $f(t)$ with $f(\bar{f}(t))=t$,

$$
\begin{align*}
& s_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} s_{k}(y) p_{n-k}(x), \quad \text { where } p_{n}(x)=g(t) s_{n}(x),  \tag{1.17}\\
& f(t) s_{n}(x)=n s_{n-1}(x), \quad s_{n+1}(x)=\left(x-\frac{g^{\prime}(t)}{g(t)}\right) \frac{1}{f^{\prime}(t)} s_{n}(x), \tag{1.18}
\end{align*}
$$

and the conjugate representation is given by

$$
\begin{equation*}
\left.s_{n}(x)=\sum_{j=0}^{n} \frac{1}{j!}\left\langle g(\bar{f}(t))^{-1} \bar{f}(t)^{j}\right| x^{n} \right\rvert\, x^{j} . \tag{1.19}
\end{equation*}
$$

For $s_{n}(x) \sim(g(t), f(t)), r_{n}(x) \sim(h(t), l(t))$, we have

$$
\begin{equation*}
s_{n}(x)=\sum_{m=0}^{n} C_{n, m} r_{m}(x), \tag{1.20}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n, m}=\frac{1}{m!}\left\langle\left.\frac{h(\bar{f}(t))}{g(\bar{f}(t))} l(\bar{f}(t))^{m} \right\rvert\, x^{n}\right\rangle \quad(\text { see }[8,9,13]) \tag{1.21}
\end{equation*}
$$

In this paper, we consider Hermite and poly-Bernoulli mixed-type polynomials and investigate the properties of those polynomials which are derived from umbral calculus. Finally, we give various identities associated with Bernoulli and Frobenius-Euler polynomials of higher order.

## 2 Hermite and poly-Bernoulli mixed-type polynomials

From (1.5) and (1.16), we note that

$$
\begin{equation*}
H B_{n}^{(\nu, k)}(x) \sim\left(e^{\frac{v t^{2}}{2}} \frac{1-e^{-t}}{\mathrm{Li}_{k}\left(1-e^{-t}\right)}, t\right) \tag{2.1}
\end{equation*}
$$

and, by (1.3), (1.4) and (1.16), we get

$$
\begin{align*}
& B_{n}^{(k)}(x) \sim\left(\frac{1-e^{-t}}{\operatorname{Li}_{k}\left(1-e^{-t}\right)}, t\right),  \tag{2.2}\\
& H_{n}^{(\nu)}(x) \sim\left(e^{\frac{\nu t^{2}}{2}}, t\right), \quad \text { where } n \geq 0 . \tag{2.3}
\end{align*}
$$

From (1.18), (2.1), (2.2) and (2.3), we have

$$
\begin{equation*}
t B_{n}^{(k)}(x)=n B_{n-1}^{(k)}(x), \quad t H_{n}^{(\nu)}(x)=n H_{n-1}^{(\nu)}(x), \quad t H B_{n}^{(\nu, k)}(x)=n H B_{n-1}^{(\nu, k)}(x) . \tag{2.4}
\end{equation*}
$$

By (1.5), (1.8) and (2.1), we get

$$
\begin{align*}
H B_{n}^{(v, k)}(x) & =e^{-\frac{v t^{2}}{2}} \frac{\mathrm{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} x^{n}=e^{-\frac{v t^{2}}{2}} B_{n}^{(k)}(x) \\
& =\sum_{m=0}^{\left[\frac{n}{2}\right]} \frac{1}{m!}\left(-\frac{v}{2}\right)^{m}(n)_{2 m} B_{n-2 m}^{(k)}(x) \\
& =\sum_{m=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 m} \frac{(2 m)!}{m!}\left(-\frac{v}{2}\right)^{m} B_{n-2 m}^{(k)}(x) . \tag{2.5}
\end{align*}
$$

Therefore, by (2.5), we obtain the following proposition.

Proposition 1 For $n \geq 0$, we have

$$
H B_{n}^{(v, k)}(x)=\sum_{m=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 m} \frac{(2 m)!}{m!}\left(-\frac{v}{2}\right)^{m} B_{n-2 m}^{(k)}(x)
$$

From (1.5), we can also derive

$$
\begin{align*}
H B_{n}^{(v, k)}(x) & =\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{-\frac{v t^{2}}{2}} x^{n}=\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} H_{n}^{(v)}(x)=\sum_{m=0}^{\infty} \frac{\left(1-e^{-t}\right)^{m}}{(m+1)^{k}} H_{n}^{(\nu)}(x) \\
& =\sum_{m=0}^{n} \frac{1}{(m+1)^{k}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} e^{-j t} H_{n}^{(\nu)}(x) \\
& =\sum_{m=0}^{n} \frac{1}{(m+1)^{k}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} H_{n}^{(\nu)}(x-j) . \tag{2.6}
\end{align*}
$$

Therefore, by (2.6), we obtain the following theorem.

Theorem 2 For $n \geq 0$, we have

$$
H B_{n}^{(\nu, k)}(x)=\sum_{m=0}^{n} \frac{1}{(m+1)^{k}} \sum_{j=0}^{m}\binom{m}{j}(-1)^{j} H_{n}^{(\nu)}(x-j) .
$$

By (1.5), we get

$$
\begin{align*}
H B_{n}^{(v, k)}(x) & =e^{-\frac{v t^{2}}{2}} B_{n}^{(k)}(x)=\sum_{l=0}^{\infty} \frac{1}{l!}\left(-\frac{v}{2}\right)^{l} t^{2 l} B_{n}^{(k)}(x) \\
& =\sum_{l=0}^{\left[\frac{n}{2}\right]} \frac{1}{l!}\left(-\frac{v}{2}\right)^{l} \sum_{m=0}^{n} \frac{1}{(m+1)^{k}} \sum_{j=0}^{m}(-1)^{j}\binom{m}{j} t^{2 l}(x-j)^{n} \\
& =\sum_{l=0}^{\left[\frac{n}{2}\right]} \sum_{j=0}^{n}\left\{\sum_{m=j}^{n}\binom{n}{2 l} \frac{(2 l)!}{l!}\left(-\frac{v}{2}\right)^{l} \frac{(-1)^{j}\binom{m}{j}}{(m+1)^{k}}\right\}(x-j)^{n-2 l} . \tag{2.7}
\end{align*}
$$

Therefore, by (2.7), we obtain the following theorem.

Theorem 3 For $n \geq 0$, we have

$$
H B_{n}^{(v, k)}(x)=\sum_{l=0}^{\left[\frac{n}{2}\right]} \sum_{j=0}^{n}\left\{\sum_{m=j}^{n}\binom{n}{2 l} \frac{(2 l)!}{l!}\left(-\frac{v}{2}\right)^{l} \frac{(-1)^{j}\binom{m}{j}}{(m+1)^{k}}\right\}(x-j)^{n-2 l .} .
$$

By (2.6), we get

$$
\begin{align*}
H B_{n}^{(\nu, k)}(x) & =\sum_{m=0}^{n} \frac{\left(1-e^{-t}\right)^{m}}{(m+1)^{k}} H_{n}^{(\nu)}(x) \\
& =\sum_{m=0}^{n} \frac{1}{(m+1)^{k}} \sum_{a=0}^{n-m} \frac{m!}{(a+m)!}(-1)^{a} S_{2}(a+m, m)(n)_{a+m} H_{n-a-m}^{(\nu)}(x) \\
& =\sum_{m=0}^{n} \sum_{a=0}^{n-m} \frac{(-1)^{n-a-m} m!}{(m+1)^{k}}\binom{n}{n-a} S_{2}(n-a, m) H_{a}^{(\nu)}(x) \\
& =(-1)^{n} \sum_{a=0}^{n}\left\{\sum_{m=0}^{n-a} \frac{(-1)^{m+a} m!}{(m+1)^{k}}\binom{n}{a} S_{2}(n-a, m)\right\} H_{a}^{(\nu)}(x), \tag{2.8}
\end{align*}
$$

where $S_{2}(n, m)$ is the Stirling number of the second kind.
Therefore, by (2.8), we obtain the following theorem.

Theorem 4 For $n \geq 0$, we have

$$
H B_{n}^{(v, k)}(x)=(-1)^{n} \sum_{a=0}^{n}\left\{\sum_{m=0}^{n-a} \frac{(-1)^{a+m} m!}{(m+1)^{k}}\binom{n}{a} S_{2}(n-a, m)\right\} H_{a}^{(\nu)}(x) .
$$

From (1.19) and (2.1), we have

$$
\begin{align*}
H B_{n}^{(v, k)}(x) & \left.=\sum_{j=0}^{n}\binom{n}{j}\left\langle e^{-\frac{v t^{2}}{2}} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}\right| x^{n-j} \right\rvert\, x^{j} \\
& \left.=\sum_{j=0}^{n}\binom{n}{j}\left\langle e^{-\frac{v t^{2}}{2}}\right| B_{n-j}^{(k)}(x) \right\rvert\, x^{j} \\
& =\sum_{j=0}^{n}\binom{n}{j} \sum_{l=0}^{\left[\frac{n-j}{2}\right]} \frac{\left(-\frac{v}{2} l^{l}\right.}{l!}(n-j)_{2 l}\left(1 \mid B_{n-j-2 l}^{(k)}(x)\right) x^{j} \\
& =\sum_{j=0}^{n}\binom{n}{j} \sum_{l=0}^{\left[\frac{n-j}{2}\right]} \frac{1}{l!}\left(-\frac{v}{2}\right)^{l}(n-j)_{2 l} B_{n-j-2 l}^{(k)} x^{j} \\
& =\sum_{j=0}^{n}\left\{\begin{array}{l}
{\left[\frac{n-j}{2}\right]} \\
l=0
\end{array}\binom{n}{j}\binom{n-j}{2 l} \frac{(2 l)!}{l!}\left(-\frac{v}{2}\right)^{l} B_{n-j-2 l}^{(k)}\right\} x^{j} . \tag{2.9}
\end{align*}
$$

Therefore, by (2.9), we obtain the following theorem.

Theorem 5 For $n \geq 0$, we have

$$
H B_{n}^{(v, k)}(x)=\sum_{j=0}^{n}\left\{\sum_{l=0}^{\left[\frac{n-j}{2}\right]}\binom{n}{j}\binom{n-j}{2 l} \frac{(2 l)!}{l!}\left(-\frac{v}{2}\right)^{l} B_{n-j-2 l}^{(k)}\right\} x^{j}
$$

Remark By (1.17) and (2.1), we easily get

$$
\begin{equation*}
H B_{n}^{(v, k)}(x+y)=\sum_{j=0}^{n}\binom{n}{j} H B_{j}^{(v, k)}(x) y^{n-j} . \tag{2.10}
\end{equation*}
$$

We note that

$$
\begin{equation*}
H B_{n}^{(v, k)}(x) \sim\left(g(t)=e^{\frac{v t^{2}}{2}} \frac{1-e^{-t}}{\operatorname{Li}_{k}\left(1-e^{-t}\right)}, f(t)=t\right) \tag{2.11}
\end{equation*}
$$

From (1.18) and (2.11), we have

$$
\begin{equation*}
H B_{n+1}^{(v, k)}(x)=\left(x-\frac{g^{\prime}(t)}{g(t)}\right) H B_{n}^{(v, k)}(x) . \tag{2.12}
\end{equation*}
$$

Now, we observe that

$$
\begin{align*}
\frac{g^{\prime}(t)}{g(t)} & =(\log (g(t)))^{\prime} \\
& =\left(\log e^{\frac{v t^{2}}{2}}+\log \left(1-e^{-t}\right)-\log \left(\operatorname{Li}_{k}\left(1-e^{-t}\right)\right)\right)^{\prime} \\
& =v t+\frac{e^{-t}}{1-e^{-t}}\left(1-\frac{\operatorname{Li}_{k-1}\left(1-e^{-t}\right)}{\operatorname{Li}_{k}\left(1-e^{-t}\right)}\right) \tag{2.13}
\end{align*}
$$

By (2.12) and (2.13), we get

$$
\begin{align*}
& H B_{n+1}^{(v, k)}(x) \\
& \quad=x H B_{n}^{(\nu, k)}(x)-\frac{g^{\prime}(t)}{g(t)} H B_{n}^{(\nu, k)}(x) \\
& \quad=x H B_{n}^{(\nu, k)}(x)-\nu n H B_{n-1}^{(\nu, k)}(x)-e^{-\frac{v t^{2}}{2}} \frac{t}{e^{t}-1} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)-\mathrm{Li}_{k-1}\left(1-e^{-t}\right)}{t\left(1-e^{-t}\right)} x^{n} . \tag{2.14}
\end{align*}
$$

It is easy to show that

$$
\begin{align*}
\frac{\mathrm{Li}_{k}\left(1-e^{-t}\right)-\mathrm{Li}_{k-1}\left(1-e^{-t}\right)}{1-e^{-t}} & =\sum_{m=2}^{\infty}\left(\frac{1}{m^{k}}-\frac{1}{m^{k-1}}\right)\left(1-e^{-t}\right)^{m-1} \\
& =\left(\frac{1}{2^{k}}-\frac{1}{2^{k-1}}\right) t+\cdots \tag{2.15}
\end{align*}
$$

Thus, by (2.15), we get

$$
\begin{equation*}
\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)-\operatorname{Li}_{k-1}\left(1-e^{-t}\right)}{t\left(1-e^{-t}\right)} x^{n}=\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)-\operatorname{Li}_{k-1}\left(1-e^{-t}\right)}{1-e^{-t}} \frac{x^{n+1}}{n+1} \tag{2.16}
\end{equation*}
$$

From (2.16), we can derive

$$
\begin{align*}
& e^{-\frac{v t^{2}}{2}} \frac{t}{e^{t}-1} \frac{\mathrm{Li}_{k}\left(1-e^{-t}\right)-\mathrm{Li}_{k-1}\left(1-e^{-t}\right)}{t\left(1-e^{-t}\right)} x^{n} \\
& \quad=\frac{1}{n+1}\left(\sum_{l=0}^{\infty} \frac{B_{l}}{l!} t^{l}\right)\left(H B_{n+1}^{(v, k)}(x)-H B_{n+1}^{(v, k-1)}(x)\right) \\
& \quad=\frac{1}{n+1} \sum_{l=0}^{n+1} \frac{B_{l}}{l!} t^{l}\left(H B_{n+1}^{(v, k)}(x)-H B_{n+1}^{(v, k-1)}(x)\right) \\
& \quad=\frac{1}{n+1} \sum_{l=0}^{n+1}\binom{n+1}{l} B_{l}\left(H B_{n+1-l}^{(v, k)}(x)-H B_{n+1-l}^{(v, k-1)}(x)\right) . \tag{2.17}
\end{align*}
$$

Therefore, by (2.14) and (2.17), we obtain the following theorem.

Theorem 6 For $n \geq 0$, we have

$$
\begin{align*}
& H B_{n+1}^{(v, k)}(x) \\
& \quad=x H B_{n}^{(v, k)}(x)-v n H B_{n-1}^{(v, k)}(x) \\
& \quad-\frac{1}{n+1} \sum_{l=0}^{n+1}\binom{n+1}{l} B_{l}\left\{H B_{n+1-l}^{(v, k)}(x)-H B_{n+1-l}^{(v, k-1)}(x)\right\} . \tag{2.18}
\end{align*}
$$

Let us take $t$ on the both sides of (2.18). Then we have

$$
\begin{aligned}
& (n+1) H B_{n}^{(v, k)}(x) \\
& \quad=(x t+1) H B_{n}^{(v, k)}(x)-v n(n-1) H B_{n-2}^{(v, k)}(x)
\end{aligned}
$$

$$
\begin{align*}
& -\frac{1}{n+1} \sum_{l=0}^{n+1}\binom{n+1}{l}(n+1-l) B_{l}\left\{H B_{n-l}^{(\nu, k)}(x)-H B_{n-l}^{(v, k-1)}(x)\right\} \\
= & n x H B_{n-1}^{(v, k)}(x)+H B_{n}^{(v, k)}(x)-\nu n(n-1) H B_{n-2}^{(\nu, k)}(x) \\
& -\sum_{l=0}^{n}\binom{n}{l} B_{l}\left(H B_{n-l}^{(v, k)}(x)-H B_{n-l}^{(v, k-1)}(x)\right), \tag{2.19}
\end{align*}
$$

where $n \geq 3$.
Thus, by (2.19), we obtain the following theorem.

Theorem 7 For $n \geq 3$, we have

$$
\begin{aligned}
\sum_{l=0}^{n} & \binom{n}{l} B_{l} H B_{n-l}^{(v, k-1)}(x) \\
= & (n+1) H B_{n}^{(v, k)}(x)-n\left(x+\frac{1}{2}\right) H B_{n-1}^{(v, k)}(x) \\
& +n(n-1)\left(v+\frac{1}{12}\right) H B_{n-2}^{(v, k)}(x) \\
& +\sum_{l=0}^{n-3}\binom{n}{l} B_{n-l} H B_{l}^{(v, k)}(x)
\end{aligned}
$$

By (1.5) and (1.8), we get

$$
\begin{align*}
& H B_{n}^{(v, k)}(y) \\
& =\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{\nu t} \right\rvert\, x^{n}\right\rangle \\
& =\left\langle\left.\partial_{t}\left(e^{-\frac{v t^{2}}{2}} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{\nu t}\right) \right\rvert\, x^{n-1}\right\rangle \\
& =\left\langle\left.\left(\partial_{t} e^{-\frac{v t^{2}}{2}}\right) \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{\nu t} \right\rvert\, x^{n-1}\right\rangle \\
& +\left\langle\left. e^{-\frac{v t^{2}}{2}}\left(\partial_{t} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}\right) e^{\nu t} \right\rvert\, x^{n-1}\right\rangle \\
& +\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\mathrm{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}\left(\partial_{t} e^{\nu t}\right) \right\rvert\, x^{n-1}\right\rangle \\
& =-\nu(n-1)\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{y t} \right\rvert\, x^{n-2}\right\rangle \\
& +y\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\mathrm{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{y t} \right\rvert\, x^{n-1}\right\rangle \\
& +\left\langle\left. e^{-\frac{v t^{2}}{2}}\left(\partial_{t} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}\right) e^{\nu t} \right\rvert\, x^{n-1}\right\rangle \\
& =-\nu(n-1) H B_{n-2}^{(v, k)}(y)+y H B_{n-1}^{(v, k)}(y) \\
& +\left\langle\left. e^{-\frac{v t^{2}}{2}}\left(\partial_{t} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}\right) e^{\nu t} \right\rvert\, x^{n-1}\right\rangle . \tag{2.20}
\end{align*}
$$

Now, we observe that

$$
\begin{equation*}
\partial_{t}\left(\frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}\right)=\frac{\operatorname{Li}_{k-1}\left(1-e^{-t}\right)-\operatorname{Li}_{k}\left(1-e^{-t}\right)}{\left(1-e^{-t}\right)^{2}} e^{-t} . \tag{2.21}
\end{equation*}
$$

From (2.21), we have

$$
\begin{align*}
& \left\langle\left. e^{-\frac{v t^{2}}{2}}\left(\partial_{t} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}\right) e^{y t} \right\rvert\, x^{n-1}\right\rangle \\
& \quad=\left\langle\left. e^{-\frac{v t^{2}}{2}}\left(\frac{\operatorname{Li}_{k-1}\left(1-e^{-t}\right)-\operatorname{Li}_{k}\left(1-e^{-t}\right)}{\left(1-e^{-t}\right)^{2}}\right) e^{-t} e^{y t} \right\rvert\, \frac{1}{n} t x^{n}\right\rangle \\
& \quad=\frac{1}{n}\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\operatorname{Li}_{k-1}\left(1-e^{-t}\right)-\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{y t} \right\rvert\, \frac{t}{e^{t}-1} x^{n}\right\rangle \\
& \quad=\frac{1}{n}\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\operatorname{Li}_{k-1}\left(1-e^{-t}\right)-\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{y t} \right\rvert\, B_{n}(x)\right\rangle \\
& \quad=\frac{1}{n} \sum_{l=0}^{n}\binom{n}{l} B_{l}\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\operatorname{Li}_{k-1}\left(1-e^{-t}\right)-\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} e^{y t} \right\rvert\, x^{n-l}\right\rangle \\
& \quad=\frac{1}{n} \sum_{l=0}^{n}\binom{n}{l} B_{l}\left\{H B_{n-l}^{(v, k-1)}(y)-H B_{n-l}^{(v, k)}(y)\right\}, \tag{2.22}
\end{align*}
$$

where $B_{n}$ are the ordinary Bernoulli numbers which are defined by the generating function to be

$$
\frac{t}{e^{t}-1}=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} t^{n}
$$

Therefore, by (2.20) and (2.22), we obtain the following theorem.

Theorem 8 For $n \geq 2$, we have

$$
\begin{aligned}
H B_{n}^{(v, k)}(x)= & -\nu(n-1) H B_{n-2}^{(v, k)}(x)+x H B_{n-1}^{(v, k)}(x) \\
& +\frac{1}{n} \sum_{l=0}^{n}\binom{n}{l} B_{l}\left(H B_{n-l}^{(v, k-1)}(x)-H B_{n-l}^{(v, k)}(x)\right) .
\end{aligned}
$$

Now, we compute

$$
\left\langle\left. e^{-\frac{v t^{2}}{2}} \operatorname{Li}_{k}\left(1-e^{-t}\right) \right\rvert\, x^{n+1}\right\rangle
$$

in two different ways.
On the one hand,

$$
\begin{aligned}
& \left\langle\left. e^{-\frac{v t^{2}}{2}} \operatorname{Li}_{k}\left(1-e^{-t}\right) \right\rvert\, x^{n+1}\right\rangle \\
& \quad=\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}}\left(1-e^{-t}\right) \right\rvert\, x^{n+1}\right\rangle \\
& \quad=\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} \right\rvert\,\left(1-e^{-t}\right) x^{n+1}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& =\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\operatorname{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} \right\rvert\, x^{n+1}-(x-1)^{n+1}\right\rangle \\
& =\sum_{m=0}^{n}(-1)^{n-m}\binom{n+1}{m}\left\langle\left. e^{-\frac{v t^{2}}{2}} \frac{\mathrm{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} \right\rvert\, x^{m}\right\rangle \\
& =\sum_{m=0}^{n}(-1)^{n-m}\binom{n+1}{m} H B_{m}^{(v, k)} . \tag{2.23}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
&\left\langle\left. e^{-\frac{v t^{2}}{2}} \operatorname{Li}_{k}\left(1-e^{-t}\right) \right\rvert\, x^{n+1}\right\rangle \\
&=\left\langle\operatorname{Li}_{k}\left(1-e^{-t}\right) \left\lvert\, e^{-\frac{v t^{2}}{2}} x^{n+1}\right.\right\rangle \\
&=\left\langle\int_{0}^{t}\left(\operatorname{Li}_{k}\left(1-e^{-s}\right)\right)^{\prime} d s \left\lvert\, e^{-\frac{v t^{2}}{2}} x^{n+1}\right.\right\rangle \\
&=\left\langle\left.\int_{0}^{t} e^{-s} \frac{\mathrm{Li}_{k-1}\left(1-e^{-s}\right)}{1-e^{-s}} d s \right\rvert\, e^{-\frac{v t^{2}}{2}} x^{n+1}\right\rangle \\
&=\left\langle\left.\sum_{l=0}^{\infty}\left(\sum_{m=0}^{l}(-1)^{l-m}\binom{l}{m} B_{m}^{(k-1)} \frac{t^{l+1}}{(l+1)!}\right) \right\rvert\, H_{n+1}^{(v)}(x)\right\rangle \\
&=\sum_{l=0}^{n} \sum_{m=0}^{l}(-1)^{l-m}\binom{l}{m} B_{m}^{(k-1)} \frac{1}{(l+1)!}\left\langle t^{l+1} \mid H_{n+1}^{(v)}(x)\right\rangle \\
&=\sum_{l=0}^{n} \sum_{m=0}^{l}(-1)^{l-m}\binom{l}{m}\binom{n+1}{l+1} B_{m}^{(k-1)} H_{n-l}^{(v)} . \tag{2.24}
\end{align*}
$$

Therefore, by (2.23) and (2.24), we obtain the following theorem.
Theorem 9 For $n \geq 0$, we have

$$
\begin{aligned}
& \sum_{m=0}^{n}(-1)^{n-m}\binom{n+1}{m} H B_{m}^{(v, k)} \\
& \quad=\sum_{m=0}^{n} \sum_{l=m}^{n}(-1)^{l-m}\binom{l}{m}\binom{n+1}{l+1} B_{m}^{(k-1)} H_{n-l}^{(\nu)} .
\end{aligned}
$$

Let us consider the following two Sheffer sequences:

$$
\begin{equation*}
H B_{n}^{(v, k)}(x) \sim\left(e^{\frac{v t^{2}}{2}} \frac{1-e^{-t}}{\mathrm{Li}_{k}\left(1-e^{-t}\right)}, t\right) \tag{2.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{B}_{n}^{(r)}(x) \sim\left(\left(\frac{e^{t}-1}{t}\right)^{r}, t\right) \quad\left(r \in \mathbb{Z}_{\geq 0}\right) . \tag{2.26}
\end{equation*}
$$

Let us assume that

$$
\begin{equation*}
H B_{n}^{(v, k)}(x)=\sum_{m=0}^{n} C_{n, m} \mathbb{B}_{m}^{(r)}(x) \tag{2.27}
\end{equation*}
$$

Then, by (1.20) and (1.21), we get

$$
\begin{align*}
C_{n, m} & =\frac{1}{m!}\left\langle\left(\frac{e^{t}-1}{t}\right)^{r} t^{m} \left\lvert\, e^{-\frac{v t^{2}}{2}} \frac{\mathrm{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} x^{n}\right.\right\rangle \\
& =\frac{1}{m!}\left\langle\left.\left(\frac{e^{t}-1}{t}\right)^{r} \right\rvert\, t^{m} H B_{n}^{(v, k)}(x)\right\rangle=\frac{1}{m!}(n)_{m}\left\langle\left.\left(\frac{e^{t}-1}{t}\right)^{r} \right\rvert\, H B_{n-m}^{(v, k)}(x)\right\rangle \\
& =\binom{n}{m} \sum_{l=0}^{\infty} \frac{r!}{(l+r)!} S_{2}(l+r, r)\left\langle t^{l} \mid H B_{n-m}^{(v, k)}(x)\right\rangle \\
& =\binom{n}{m} \sum_{l=0}^{n-m}(n-m)_{l} \frac{r!}{(l+r)!} S_{2}(l+r, r) H B_{n-m-l}^{(v, k)} \\
& =\binom{n}{m} \sum_{l=0}^{n-m} \frac{\binom{n-m}{l}}{\binom{l+r}{r}} S_{2}(l+r, r) H B_{n-m-l}^{(v, k)} . \tag{2.28}
\end{align*}
$$

Therefore, by (2.27) and (2.28), we obtain the following theorem.

Theorem 10 For $n, r \in \mathbb{Z}_{\geq 0}$, we have

$$
H B_{n}^{(\nu, k)}(x)=\sum_{m=0}^{n}\left\{\binom{n}{m} \sum_{l=0}^{n-m} \frac{\binom{n-m}{l}}{\binom{l+r}{r}} S_{2}(l+r, r) H B_{n-m-l}^{(v, k)}\right\} \mathbb{B}_{m}^{(r)}(x) .
$$

For $\lambda(\neq 1) \in \mathbb{C}, r \in \mathbb{Z}_{\geq 0}$, the Frobenius-Euler polynomials of order $r$ are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{1-\lambda}{e^{t}-\lambda}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} H_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} \quad(\text { see }[1,4,7,9,10]) \tag{2.29}
\end{equation*}
$$

From (1.16) and (2.29), we note that

$$
\begin{equation*}
H_{n}^{(r)}(x \mid \lambda) \sim\left(\left(\frac{e^{t}-\lambda}{1-\lambda}\right)^{r}, t\right) . \tag{2.30}
\end{equation*}
$$

Let us assume that

$$
\begin{equation*}
H B_{n}^{(\nu, k)}(x)=\sum_{m=0}^{n} C_{n, m} H_{m}^{(r)}(x \mid \lambda) . \tag{2.31}
\end{equation*}
$$

By (1.21), we get

$$
\begin{align*}
C_{n, m} & =\frac{1}{m!}\left\langle\left(\frac{e^{t}-\lambda}{1-\lambda}\right)^{r} t^{m} \left\lvert\, e^{-\frac{v t^{2}}{2}} \frac{\mathrm{Li}_{k}\left(1-e^{-t}\right)}{1-e^{-t}} x^{n}\right.\right\rangle \\
& =\frac{(n)_{m}}{m!(1-\lambda)^{r}}\left\langle\left.\sum_{l=0}^{r}\binom{r}{l}(-\lambda)^{r-l} e^{l t} \right\rvert\, H B_{n-m}^{(v, k)}(x)\right\rangle \\
& =\binom{n}{m} \frac{1}{(1-\lambda)^{r}} \sum_{l=0}^{r}\binom{r}{l}(-\lambda)^{r-l}\left\langle 1 \mid e^{l t} H B_{n-m}^{(v, k)}(x)\right\rangle \\
& =\frac{\binom{n}{m}}{(1-\lambda)^{r}} \sum_{l=0}^{r}\binom{r}{l}(-\lambda)^{r-l} H B_{n-m}^{(v, k)}(l) . \tag{2.32}
\end{align*}
$$

Therefore, by (2.31) and (2.32), we obtain the following theorem.

## Theorem 11 For $n, r \in \mathbb{Z}_{\geq 0}$, we have

$$
H B_{n}^{(\nu, k)}(x)=\frac{1}{(1-\lambda)^{r}} \sum_{m=0}^{n}\binom{n}{m}\left\{\sum_{l=0}^{r}\binom{r}{l}(-\lambda)^{r-l} H B_{n-m}^{(\nu, k)}(l)\right\} H_{m}^{(r)}(x \mid \lambda) .
$$

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

## Author details

${ }^{1}$ Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea. ${ }^{2}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea.

## Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MOE) (No. 2012R1A1A2003786).

Received: 23 September 2013 Accepted: 7 November 2013 Published: 27 Nov 2013

## References

1. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 22(3), 399-406 (2012)
2. Dere, R, Simsek, Y: Application of umbral algebra to some special polynomials. Adv. Stud. Contemp. Math. 22(3), 433-438 (2012)
3. Ding, D, Yang, J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Adv. Stud. Contemp Math. 20(1), 7-21 (2010)
4. Ozden, H, Cangul, IN, Simsek, Y: Remarks on $q$-Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. 18(1), 41-48 (2009)
5. Kaneko, M: Poly-Bernoulli numbers. J. Théor. Nr. Bordx. 9(1), 221-228 (1997)
6. Kim, DS, Kim, T, Dolgy, DV, Rim, SH: Some new identities of Bernoulli, Euler and Hermite polynomials arising from umbral calculus. Adv. Differ. Equ. 2013(2013), 73 (2013)
7. Kim, DS, Kim, T: Some identities of Frobenius-Euler polynomials arising from umbral calculus. Adv. Differ. Equ. 2012, 196 (2012)
8. Kim, DS, Kim, T, Lee, SH: A note on poly-Bernoulli polynomials arising from umbral calculus. Adv. Stud. Theor. Phys. 7(15), 731-744 (2013)
9. Kim, DS, Kim, T, Lee, SH: Poly-Cauchy numbers and polynomials with umbral calculus viewpoint. Int. J. Math. Anal. 7, 2235-2253 (2013)
10. Kim, DS, Kim, T, Lee, SH: Higher-order Cauchy of the first kind and poly-Cauchy of the first kind mixed type polynomials. Adv. Stud. Contemp. Math. 23, 543-554 (2013)
11. Kim, DS, Kim, T: Some identities of Bernoulli and Euler polynomials arising from umbral calculus. Adv. Stud. Contemp. Math. 23(1), 159-171 (2013)
12. Kurt, B, Simsek, Y: On Hermite based Genocchi polynomials. Adv. Stud. Contemp. Math. 23(1), 13-17 (2013)
13. Roman, S: The Umbral Calculus. Pure and Applied Mathematics, vol. 111. Academic Press, New York (1984). ISBN:0-12-594380-6
14. Roman, S, Rota, G-C: The umbral calculus. Adv. Math. 27(2), 95-188 (1978)
15. Rim, SH, Jeong, J: On the modified $q$-Euler numbers of higher order with weight. Adv. Stud. Contemp. Math. 22(1), 93-98 (2012)
16. Simsek, Y: Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions. Adv. Stud. Contemp. Math. 16(2), 251-278 (2008)
10.1186/1687-1847-2013-343

Cite this article as: Kim and Kim: Hermite and poly-Bernoulli mixed-type polynomials. Advances in Difference Equations 2013, 2013:343

