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Abstract
In this paper, we consider Hermite and poly-Bernoulli mixed-type polynomials and
investigate the properties of those polynomials which are derived from umbral
calculus. Finally, we give various identities associated with Stirling numbers, Bernoulli
and Frobenius-Euler polynomials of higher order.

1 Introduction
For r ∈ Z≥, as is well known, the Bernoulli polynomials of order r are defined by the
generating function to be

∞∑
n=

B
(r)
n (x)
n!

tn =
(

t
et – 

)r

ext (see [–]). (.)

For k ∈ Z, the polylogarithm is defined by

Lik(x) =
∞∑
n=

xn

nk
. (.)

Note that Li(x) = – log( – x).
The poly-Bernoulli polynomials are defined by the generating function to be

Lik( – e–t)
 – e–t

ext =
∞∑
n=

B(k)
n (x)

tn

n!
(see [, ]). (.)

When x = , B(k)
n = B(k)

n () are called the poly-Bernoulli numbers (of index k).
For ν (�= ) ∈R, the Hermite polynomials of order ν are given by the generating function

to be

e–
νt
 ext =

∞∑
n=

H (ν)
n (x)

tn

n!
(see [, , ]). (.)

When x = , H (ν)
n =H (ν)

n () are called the Hermite numbers of order ν .
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In this paper, we consider the Hermite and poly-Bernoulli mixed-type polynomials
HB(ν,k)

n (x) which are defined by the generating function to be

e–
νt

Lik( – e–t)
 – e–t

ext =
∞∑
n=

HB(ν,k)
n (x)

tn

n!
, (.)

where k ∈ Z and ν (�= ) ∈R.
When x = , HB(ν,k)

n = HB(ν,k)
n () are called the Hermite and poly-Bernoulli mixed-type

numbers.
Let F be the set of all formal power series in the variable t over C as follows:

F =

{
f (t) =

∞∑
k=

ak
tk

k!

∣∣∣ak ∈C

}
. (.)

Let P =C[x] and P
∗ denote the vector space of all linear functionals on P.

〈L|p(x)〉 denotes the action of the linear functional L on the polynomial p(x), and we re-
call that the vector space operations onP∗ are defined by 〈L+M|p(x)〉 = 〈L|p(x)〉+〈M|p(x)〉,
〈cL|p(x)〉 = c〈L|p(x)〉, where c is a complex constant inC. For f (t) ∈F , let us define the lin-
ear functional on P by setting

〈
f (t)|xn〉 = an (n≥ ). (.)

Then, by (.) and (.), we get

〈
tk|xn〉 = n!δn,k (n,k ≥ ), (.)

where δn,k is the Kronecker symbol.
For fL(t) =

∑∞
k=

〈L|xk 〉
k! tk , we have 〈fL(t)|xn〉 = 〈L|xn〉. That is, L = fL(t). The map L 	→ fL(t)

is a vector space isomorphism from P
∗ onto F . Henceforth, F denotes both the algebra

of formal power series in t and the vector space of all linear functionals on P, and so an
element f (t) of F will be thought of as both a formal power series and a linear functional.
We call F the umbral algebra and the umbral calculus is the study of umbral algebra. The
orderO(f ) of the power series f (t) �=  is the smallest integer for which ak does not vanish.
If O(f ) = , then f (t) is called an invertible series. If O(f ) = , then f (t) is called a delta
series. For f (t), g(t) ∈ F , we have

〈
f (t)g(t)|p(x)〉 = 〈

f (t)|g(t)p(x)〉 = 〈
g(t)|f (t)p(x)〉. (.)

Let f (t) ∈ F and p(x) ∈ P. Then we have

f (t) =
∞∑
k=

〈f (t)|xk〉
k!

tk , p(x) =
∞∑
k=

〈tk|p(x)〉
k!

xk (see [, , , , ]). (.)

By (.), we get

p(k)() =
〈
tk|p(x)〉 = 〈

|p(k)(x)〉, (.)

where p(k)() = dkp(x)
dxk |x=.
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From (.), we have

tkp(x) = p(k)(x) =
dkp(x)
dxk

(see [, , ]). (.)

By (.), we easily get

eytp(x) = p(x + y),
〈
eyt|p(x)〉 = p(y). (.)

ForO(f (t)) = ,O(g(t)) = , there exists a unique sequence sn(x) of polynomials such that
〈g(t)f (t)k|xn〉 = n!δn,k (n,k ≥ ).
The sequence sn(x) is called the Sheffer sequence for (g(t), f (t)) which is denoted by

sn(x)∼ (g(t), f (t)).
Let p(x) ∈ P, f (t) ∈F . Then we see that

〈
f (t)|xp(x)〉 = 〈

∂t f (t)|p(x)
〉
=

〈
df (t)
dt

∣∣∣p(x)〉. (.)

For sn(x)∼ (g(t), f (t)), we have the following equations:

h(t) =
∞∑
k=

〈h(t)|sk(x)〉
k!

g(t)f (t)k , p(x) =
∞∑
k=

〈g(t)f (t)k|p(x)〉
k!

sk(x), (.)

where h(t) ∈F , p(x) ∈ P,


g(f̄ (t))

eyf̄ (t) =
∞∑
n=

sn(y)
tn

n!
, (.)

where f̄ (t) is the compositional inverse for f (t) with f (f̄ (t)) = t,

sn(x + y) =
n∑

k=

(
n
k

)
sk(y)pn–k(x), where pn(x) = g(t)sn(x), (.)

f (t)sn(x) = nsn–(x), sn+(x) =
(
x –

g ′(t)
g(t)

)


f ′(t)
sn(x), (.)

and the conjugate representation is given by

sn(x) =
n∑
j=


j!
〈
g
(
f̄ (t)

)– f̄ (t)j|xn〉xj. (.)

For sn(x)∼ (g(t), f (t)), rn(x)∼ (h(t), l(t)), we have

sn(x) =
n∑

m=

Cn,mrm(x), (.)

where

Cn,m =

m!

〈
h(f̄ (t))
g(f̄ (t))

l
(
f̄ (t)

)m∣∣∣xn〉 (see [, , ]). (.)
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In this paper, we consider Hermite and poly-Bernoulli mixed-type polynomials and in-
vestigate the properties of those polynomials which are derived from umbral calculus.
Finally, we give various identities associated with Bernoulli and Frobenius-Euler polyno-
mials of higher order.

2 Hermite and poly-Bernoulli mixed-type polynomials
From (.) and (.), we note that

HB(ν,k)
n (x)∼

(
e

νt


 – e–t

Lik( – e–t)
, t

)
, (.)

and, by (.), (.) and (.), we get

B(k)
n (x) ∼

(
 – e–t

Lik( – e–t)
, t

)
, (.)

H (ν)
n (x)∼ (

e
νt
 , t

)
, where n≥ . (.)

From (.), (.), (.) and (.), we have

tB(k)
n (x) = nB(k)

n–(x), tH (ν)
n (x) = nH (ν)

n–(x), tHB(ν,k)
n (x) = nHB(ν,k)

n– (x). (.)

By (.), (.) and (.), we get

HB(ν,k)
n (x) = e–

νt

Lik( – e–t)
 – e–t

xn = e–
νt
 B(k)

n (x)

=
[ n ]∑
m=


m!

(
–

ν



)m

(n)mB(k)
n–m(x)

=
[ n ]∑
m=

(
n
m

)
(m)!
m!

(
–

ν



)m

B(k)
n–m(x). (.)

Therefore, by (.), we obtain the following proposition.

Proposition  For n ≥ , we have

HB(ν,k)
n (x) =

[ n ]∑
m=

(
n
m

)
(m)!
m!

(
–

ν



)m

B(k)
n–m(x).

From (.), we can also derive

HB(ν,k)
n (x) =

Lik( – e–t)
 – e–t

e–
νt
 xn =

Lik( – e–t)
 – e–t

H (ν)
n (x) =

∞∑
m=

( – e–t)m

(m + )k
H (ν)

n (x)

=
n∑

m=


(m + )k

m∑
j=

(
m
j

)
(–)je–jtH (ν)

n (x)

=
n∑

m=


(m + )k

m∑
j=

(
m
j

)
(–)jH (ν)

n (x – j). (.)
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Therefore, by (.), we obtain the following theorem.

Theorem  For n ≥ , we have

HB(ν,k)
n (x) =

n∑
m=


(m + )k

m∑
j=

(
m
j

)
(–)jH (ν)

n (x – j).

By (.), we get

HB(ν,k)
n (x) = e–

νt
 B(k)

n (x) =
∞∑
l=


l!

(
–

ν



)l

tlB(k)
n (x)

=
[ n ]∑
l=


l!

(
–

ν



)l n∑
m=


(m + )k

m∑
j=

(–)j
(
m
j

)
tl(x – j)n

=
[ n ]∑
l=

n∑
j=

{ n∑
m=j

(
n
l

)
(l)!
l!

(
–

ν



)l (–)j
(m
j
)

(m + )k

}
(x – j)n–l. (.)

Therefore, by (.), we obtain the following theorem.

Theorem  For n ≥ , we have

HB(ν,k)
n (x) =

[ n ]∑
l=

n∑
j=

{ n∑
m=j

(
n
l

)
(l)!
l!

(
–

ν



)l (–)j
(m
j
)

(m + )k

}
(x – j)n–l.

By (.), we get

HB(ν,k)
n (x) =

n∑
m=

( – e–t)m

(m + )k
H (ν)

n (x)

=
n∑

m=


(m + )k

n–m∑
a=

m!
(a +m)!

(–)aS(a +m,m)(n)a+mH (ν)
n–a–m(x)

=
n∑

m=

n–m∑
a=

(–)n–a–mm!
(m + )k

(
n

n – a

)
S(n – a,m)H (ν)

a (x)

= (–)n
n∑

a=

{ n–a∑
m=

(–)m+am!
(m + )k

(
n
a

)
S(n – a,m)

}
H (ν)

a (x), (.)

where S(n,m) is the Stirling number of the second kind.
Therefore, by (.), we obtain the following theorem.

Theorem  For n ≥ , we have

HB(ν,k)
n (x) = (–)n

n∑
a=

{ n–a∑
m=

(–)a+mm!
(m + )k

(
n
a

)
S(n – a,m)

}
H(ν)

a (x).
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From (.) and (.), we have

HB(ν,k)
n (x) =

n∑
j=

(
n
j

)〈
e–

νt

Lik( – e–t)
 – e–t

∣∣∣xn–j〉xj

=
n∑
j=

(
n
j

)〈
e–

νt
 |B(k)

n–j(x)
〉
xj

=
n∑
j=

(
n
j

) [ n–j ]∑
l=

(– ν
 )

l

l!
(n – j)l

〈
|B(k)

n–j–l(x)
〉
xj

=
n∑
j=

(
n
j

) [ n–j ]∑
l=


l!

(
–

ν



)l

(n – j)lB(k)
n–j–lx

j

=
n∑
j=

{[ n–j ]∑
l=

(
n
j

)(
n – j
l

)
(l)!
l!

(
–

ν



)l

B(k)
n–j–l

}
xj. (.)

Therefore, by (.), we obtain the following theorem.

Theorem  For n ≥ , we have

HB(ν,k)
n (x) =

n∑
j=

{[ n–j ]∑
l=

(
n
j

)(
n – j
l

)
(l)!
l!

(
–

ν



)l

B(k)
n–j–l

}
xj.

Remark By (.) and (.), we easily get

HB(ν,k)
n (x + y) =

n∑
j=

(
n
j

)
HB(ν,k)

j (x)yn–j. (.)

We note that

HB(ν,k)
n (x)∼

(
g(t) = e

νt


 – e–t

Lik( – e–t)
, f (t) = t

)
. (.)

From (.) and (.), we have

HB(ν,k)
n+ (x) =

(
x –

g ′(t)
g(t)

)
HB(ν,k)

n (x). (.)

Now, we observe that

g ′(t)
g(t)

=
(
log

(
g(t)

))′

=
(
log e

νt
 + log

(
 – e–t

)
– log

(
Lik

(
 – e–t

)))′

= νt +
e–t

 – e–t

(
 –

Lik–( – e–t)
Lik( – e–t)

)
. (.)
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By (.) and (.), we get

HB(ν,k)
n+ (x)

= xHB(ν,k)
n (x) –

g ′(t)
g(t)

HB(ν,k)
n (x)

= xHB(ν,k)
n (x) – νnHB(ν,k)

n– (x) – e–
νt


t
et – 

Lik( – e–t) – Lik–( – e–t)
t( – e–t)

xn. (.)

It is easy to show that

Lik( – e–t) – Lik–( – e–t)
 – e–t

=
∞∑
m=

(

mk –


mk–

)(
 – e–t

)m–

=
(


k

–


k–

)
t + · · · . (.)

Thus, by (.), we get

Lik( – e–t) – Lik–( – e–t)
t( – e–t)

xn =
Lik( – e–t) – Lik–( – e–t)

 – e–t
xn+

n + 
. (.)

From (.), we can derive

e–
νt


t
et – 

Lik( – e–t) – Lik–( – e–t)
t( – e–t)

xn

=


n + 

( ∞∑
l=

Bl

l!
tl
)(

HB(ν,k)
n+ (x) –HB(ν,k–)

n+ (x)
)

=


n + 

n+∑
l=

Bl

l!
tl
(
HB(ν,k)

n+ (x) –HB(ν,k–)
n+ (x)

)

=


n + 

n+∑
l=

(
n + 
l

)
Bl

(
HB(ν,k)

n+–l(x) –HB(ν,k–)
n+–l (x)

)
. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem  For n ≥ , we have

HB(ν,k)
n+ (x)

= xHB(ν,k)
n (x) – νnHB(ν,k)

n– (x)

–


n + 

n+∑
l=

(
n + 
l

)
Bl

{
HB(ν,k)

n+–l(x) –HB(ν,k–)
n+–l (x)

}
. (.)

Let us take t on the both sides of (.). Then we have

(n + )HB(ν,k)
n (x)

= (xt + )HB(ν,k)
n (x) – νn(n – )HB(ν,k)

n– (x)
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–


n + 

n+∑
l=

(
n + 
l

)
(n +  – l)Bl

{
HB(ν,k)

n–l (x) –HB(ν,k–)
n–l (x)

}

= nxHB(ν,k)
n– (x) +HB(ν,k)

n (x) – νn(n – )HB(ν,k)
n– (x)

–
n∑
l=

(
n
l

)
Bl

(
HB(ν,k)

n–l (x) –HB(ν,k–)
n–l (x)

)
, (.)

where n≥ .
Thus, by (.), we obtain the following theorem.

Theorem  For n ≥ , we have

n∑
l=

(
n
l

)
BlHB(ν,k–)

n–l (x)

= (n + )HB(ν,k)
n (x) – n

(
x +




)
HB(ν,k)

n– (x)

+ n(n – )
(

ν +



)
HB(ν,k)

n– (x)

+
n–∑
l=

(
n
l

)
Bn–lHB(ν,k)

l (x).

By (.) and (.), we get

HB(ν,k)
n (y)

=
〈
e–

νt

Lik( – e–t)
 – e–t

eyt
∣∣∣xn〉

=
〈
∂t

(
e–

νt

Lik( – e–t)
 – e–t

eyt
)∣∣∣xn–〉

=
〈(

∂te–
νt


)Lik( – e–t)
 – e–t

eyt
∣∣∣xn–〉

+
〈
e–

νt


(
∂t
Lik( – e–t)
 – e–t

)
eyt

∣∣∣xn–〉

+
〈
e–

νt

Lik( – e–t)
 – e–t

(
∂teyt

)∣∣∣xn–〉

= –ν(n – )
〈
e–

νt

Lik( – e–t)
 – e–t

eyt
∣∣∣xn–〉

+ y
〈
e–

νt

Lik( – e–t)
 – e–t

eyt
∣∣∣xn–〉

+
〈
e–

νt


(
∂t
Lik( – e–t)
 – e–t

)
eyt

∣∣∣xn–〉

= –ν(n – )HB(ν,k)
n– (y) + yHB(ν,k)

n– (y)

+
〈
e–

νt


(
∂t
Lik( – e–t)
 – e–t

)
eyt

∣∣∣xn–〉. (.)
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Now, we observe that

∂t

(
Lik( – e–t)
 – e–t

)
=
Lik–( – e–t) – Lik( – e–t)

( – e–t)
e–t . (.)

From (.), we have

〈
e–

νt


(
∂t
Lik( – e–t)
 – e–t

)
eyt

∣∣∣xn–〉

=
〈
e–

νt


(
Lik–( – e–t) – Lik( – e–t)

( – e–t)

)
e–teyt

∣∣∣∣ ntxn
〉

=

n

〈
e–

νt

Lik–( – e–t) – Lik( – e–t)

 – e–t
eyt

∣∣∣∣ t
et – 

xn
〉

=

n

〈
e–

νt

Lik–( – e–t) – Lik( – e–t)

 – e–t
eyt

∣∣∣Bn(x)
〉

=

n

n∑
l=

(
n
l

)
Bl

〈
e–

νt

Lik–( – e–t) – Lik( – e–t)

 – e–t
eyt

∣∣∣xn–l〉

=

n

n∑
l=

(
n
l

)
Bl

{
HB(ν,k–)

n–l (y) –HB(ν,k)
n–l (y)

}
, (.)

where Bn are the ordinary Bernoulli numbers which are defined by the generating function
to be

t
et – 

=
∞∑
n=

Bn

n!
tn.

Therefore, by (.) and (.), we obtain the following theorem.

Theorem  For n ≥ , we have

HB(ν,k)
n (x) = –ν(n – )HB(ν,k)

n– (x) + xHB(ν,k)
n– (x)

+

n

n∑
l=

(
n
l

)
Bl

(
HB(ν,k–)

n–l (x) –HB(ν,k)
n–l (x)

)
.

Now, we compute

〈
e–

νt
 Lik

(
 – e–t

)|xn+〉
in two different ways.
On the one hand,

〈
e–

νt
 Lik

(
 – e–t

)|xn+〉
=

〈
e–

νt

Lik( – e–t)
 – e–t

(
 – e–t

)∣∣∣xn+〉

=
〈
e–

νt

Lik( – e–t)
 – e–t

∣∣∣( – e–t
)
xn+

〉

http://www.advancesindifferenceequations.com/content/2013/1/343
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=
〈
e–

νt

Lik( – e–t)
 – e–t

∣∣∣xn+ – (x – )n+
〉

=
n∑

m=

(–)n–m
(
n + 
m

)〈
e–

νt

Lik( – e–t)
 – e–t

∣∣∣xm〉

=
n∑

m=

(–)n–m
(
n + 
m

)
HB(ν,k)

m . (.)

On the other hand,

〈
e–

νt
 Lik

(
 – e–t

)|xn+〉
=

〈
Lik

(
 – e–t

)|e– νt
 xn+

〉
=

〈∫ t



(
Lik

(
 – e–s

))′ ds
∣∣∣e– νt

 xn+
〉

=
〈∫ t


e–s

Lik–( – e–s)
 – e–s

ds
∣∣∣e– νt

 xn+
〉

=

〈 ∞∑
l=

( l∑
m=

(–)l–m
(
l
m

)
B(k–)
m

tl+

(l + )!

)∣∣∣∣H (ν)
n+(x)

〉

=
n∑
l=

l∑
m=

(–)l–m
(
l
m

)
B(k–)
m


(l + )!

〈
tl+|H (ν)

n+(x)
〉

=
n∑
l=

l∑
m=

(–)l–m
(
l
m

)(
n + 
l + 

)
B(k–)
m H (ν)

n–l. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem  For n ≥ , we have

n∑
m=

(–)n–m
(
n + 
m

)
HB(ν,k)

m

=
n∑

m=

n∑
l=m

(–)l–m
(
l
m

)(
n + 
l + 

)
B(k–)
m H (ν)

n–l.

Let us consider the following two Sheffer sequences:

HB(ν,k)
n (x)∼

(
e

νt


 – e–t

Lik( – e–t)
, t

)
(.)

and

B
(r)
n (x)∼

((
et – 
t

)r

, t
)

(r ∈ Z≥). (.)

Let us assume that

HB(ν,k)
n (x) =

n∑
m=

Cn,mB
(r)
m (x). (.)
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Then, by (.) and (.), we get

Cn,m =

m!

〈(
et – 
t

)r

tm
∣∣∣∣e– νt


Lik( – e–t)
 – e–t

xn
〉

=

m!

〈(
et – 
t

)r∣∣∣tmHB(ν,k)
n (x)

〉
=


m!

(n)m
〈(

et – 
t

)r∣∣∣HB(ν,k)
n–m(x)

〉

=
(
n
m

) ∞∑
l=

r!
(l + r)!

S(l + r, r)
〈
tl|HB(ν,k)

n–m(x)
〉

=
(
n
m

) n–m∑
l=

(n –m)l
r!

(l + r)!
S(l + r, r)HB(ν,k)

n–m–l

=
(
n
m

) n–m∑
l=

(n–m
l

)
(l+r

r
) S(l + r, r)HB(ν,k)

n–m–l. (.)

Therefore, by (.) and (.), we obtain the following theorem.

Theorem  For n, r ∈ Z≥, we have

HB(ν,k)
n (x) =

n∑
m=

{(
n
m

) n–m∑
l=

(n–m
l

)
(l+r

r
) S(l + r, r)HB(ν,k)

n–m–l

}
B
(r)
m (x).

For λ (�= ) ∈ C, r ∈ Z≥, the Frobenius-Euler polynomials of order r are defined by the
generating function to be

(
 – λ

et – λ

)r

ext =
∞∑
n=

H (r)
n (x|λ) t

n

n!
(see [, , , , ]). (.)

From (.) and (.), we note that

H(r)
n (x|λ)∼

((
et – λ

 – λ

)r

, t
)
. (.)

Let us assume that

HB(ν,k)
n (x) =

n∑
m=

Cn,mH (r)
m (x|λ). (.)

By (.), we get

Cn,m =

m!

〈(
et – λ

 – λ

)r

tm
∣∣∣∣e– νt


Lik( – e–t)
 – e–t

xn
〉

=
(n)m

m!( – λ)r

〈 r∑
l=

(
r
l

)
(–λ)r–lelt

∣∣∣∣HB(ν,k)
n–m(x)

〉

=
(
n
m

)


( – λ)r

r∑
l=

(
r
l

)
(–λ)r–l

〈
|eltHB(ν,k)

n–m(x)
〉

=
(n
m
)

( – λ)r

r∑
l=

(
r
l

)
(–λ)r–lHB(ν,k)

n–m(l). (.)
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Therefore, by (.) and (.), we obtain the following theorem.

Theorem  For n, r ∈ Z≥, we have

HB(ν,k)
n (x) =


( – λ)r

n∑
m=

(
n
m

){ r∑
l=

(
r
l

)
(–λ)r–lHB(ν,k)

n–m(l)

}
H (r)

m (x|λ).
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