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1 Introduction
The classical Bernoulli polynomials B, (x) and Euler polynomials E,(x) are usually defined
by means of the following generating functions

et & "
7 1" ZBn(x); (|t| < 27'[) (1.1)
n=0 :
and
2e & ¢
= ZEn(x); (It < 7). 1.2)
n=0 :

In particular, the rational numbers B, = B,(0) and integers E, = 2"E,(1/2) are called the
classical Bernoulli numbers and Euler numbers, respectively. These polynomials and num-
bers play important roles in various branches of mathematics including number theory,
combinatorics, special functions and analysis, and there exist numerous interesting prop-
erties for them, see, for example, [1-3].

In 2007, Agoh and Dilcher [4] made use of some connections between the classical
Bernoulli numbers and the Stirling numbers of the second kind to establish a quadratic re-
currence formula on the classical Bernoulli numbers, which was generalized to the classi-
cal Bernoulli polynomials by He and Zhang [5]. More recently, He and Wang [6] extended
the Agoh and Dilcher’s quadratic recurrence formula on the classical Bernoulli numbers
to the Apostol-Bernoulli and Apostol-Euler polynomials. As further applications, they de-
rived some corresponding results related to some formulae of products of the classical
Bernoulli and Euler polynomials and numbers stated in Nielsen’s book [1].
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We begin by recalling now the Apostol-Bernoulli polynomials B (x; 1) and Apostol-
Euler polynomials Sﬁ,“)(x;)h) of (real or complex) higher order «, which were introduced

by Luo and Srivastava [7, 8]

t o oo () tn
= (a3 A)— LY.
<)\et—1> € —X(;Bn (x’}\)n! (|t+10gk|<2n,1 .—1) (1.3)
n=
and
2 o . oo () t”
= O (x5 \)— 1.
(Aef+1) e —2025” (x,)»)n! (1t +1logh| < ;1% :=1). (1.4)
P

Especially, the case & =1 in (1.3) and (1.4) is called the Apostol-Bernoulli polynomials
B, (x; A) and Apostol-Euler polynomials &,(x; 1), respectively. Moreover, we call 3,(A) =
B,,(0; 1) the Apostol-Bernoulli numbers and &, (1) = 2"&,(1/2; 1) the Apostol-Euler num-
bers. It is worth of mentioning that the Apostol-Bernoulli polynomials were introduced by
Apostol [9] (see also Srivastava [10] for a systematic study) in order to evaluate the value
of the Hurwitz-Lerch zeta function. For more results on these polynomials and numbers,
one is referred to [11-16].

In this paper, we only consider the Apostol-Bernoulli polynomials B, (x; A) and Apostol-
Euler polynomials &, (x; ). By applying the generating function methods and some combi-
natorial techniques, developed in [6, 17], we establish some new recurrence formulae for
the Apostol-Bernoulli and Apostol-Euler polynomials, by virtue of which, some known

results including the ones presented in [6], are obtained as special cases.

2 Recurrence formulae for Apostol-Bernoulli polynomials

In what follows, we shall always denote by §; ; the Kronecker symbol given by 8,5 =0 or 1,
according to A #1 or A =1, and we also denote by B,(x; 1) = B,;;1(x; A)/(n + 1) for any non-
negative integer 7. We first state the following.

Theorem 2.1 Let k, m, n be any non-negative integers. Then

k i n
Z (;) Z (7) ﬂi+j(x; M)lgk+m+n—i—j(y§k/¢¢)
j=0 i=0

= Z <r:l) (D)™ Bi (x; X)ﬂkwu’(x + Y3 ML) + B (1) Bran(® + 3 10)
i=0

_ 81,Aﬂk+m+n+l(x +y;)»li) _ Sl,uﬂk+m+n+l(y;)"ﬂ)

m+1 k+n+1
81, (-1)"m!(k + n)! 1
-— e+ ) 2.1
k+m+n+1)! P n* A 2.1)

Proof Multiplying both sides of the identity

1 1 re 1 1 (2.2)
= + .
ret —1 e’ —1 ret—1 pe’—1) ruerv -1
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by e+ yields

Pl ey(u+v) e e(x+y)v

)\‘e(l—x)u

e(x+y)(u+v)

“Tapue -1 ret—1pe' -1

Since By(x; 1) =1 when A =1 and By(x; A) =

Bo(x; 1)

= 01,,, we get

m

17
(o5 A)—.
m!

e 51 P
. =2 _Bu

m=0

More generally, the Taylor theorem gives

ex(u+v) 81;A B i " et
A -1 u+v = u" \ re* —1

= Z Z IBM+}’I (x:

m=0 n=0

T et —1 hpert’ -1

(2.3)

0 when A #1 (see, e.g,, [7]), then by setting

(2.4)
51;)L V!
u ) n!
;. (2.5)

Hence, applying (2.4) and (2.5) to (2.3), we get

1)
<Z Bnlx; H/) ) (Z Z ﬁm+n(y ) Z{[, ‘;‘ ulil;)

m=0 n=0

(Zﬁmw)—m ‘Sl—“><;ﬂ(x+y, )—n+81V")
- u” Sy
A(Zﬁml x,,\)— —)
o0 o0 Vn 8’
X (%;ﬂmm(ﬁﬁ%kﬂ)—,; ﬁ) (26)

Obverse that

o0 o0 o0
,3m+n+l(x;)\) u™ v 1 v
= _——— + — sA)— 2.7
ZZ m+1 m! n! u;ﬁn(x )n! @7)

and

n—l

ZZ'B”‘*” % A P

m=0 n=0

ZZ Brns1 (5 1) ™ V"
n+1 m! n!

m=0 n=0

1 u”
;gﬁm(x;k)%' (2.8)
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It follows from (2.6)-(2.8) that

<Z Bulx; M)‘;_n') <Z Z Binin(y, )‘:u/)_ _>
n=0 :

m=0 n=0
(Z( 1)m,3m<x> > )(ZZﬂern(x‘*y;)hﬂ)_';)
m! m=0 n=0
— 5, ﬂm+n+ :)‘M)
£y B 1) + 33 ) — ePren10:21)
m=0 n=0 n+1
8 m+n 7)‘4 n
11 Bmens1 (X + 9, Apt) ——+M, (2.9)
m+1 m! n!
where M is denoted by
51, ad Mm 81,)» ad Vn 81_)&31y
M=7“20ﬂm(y;k)%+72(;ﬁn(x+y;u)z+7“
S u™ S V' 8101
(VA ) — — __'7’
%ﬂ (% u) p +V2ﬁn( B
A1 u™ iy Vi 81301
_ (1 —x0)— — == ” FAU)— — ————. 2.10
u+v r;ﬂ A-z )m! Zﬁ(x+y M) n' u(u+v) (2.10)

In view of (2.4), we have

Mo (O ) (€ b b
v o\ Ae¥ — ne’ —1 v uv

u

_ 51—,;/, e 81 )Lu. 81_,;1 _ 81,;1,81,)\;1
v \Aue* — u+v Me" 1 v v(u+v)

A eld=u G\ b e S ) 818
u+v \Aet— u u \Aue’ — e’ —1 v u(u +v)

b) el § e 81,1
T (x — o - —A> (2.11)
u+v\ re*-1 U se’ — 1 v

If applying u” = >}, (Z)(u +1)%(=v)"* to (2.4), in view of changing the order of the sum-
mation, we obtain

(A-x)u >
e Y B (M vt

k=0 n=k
00
k

Z Z ,Bn ln'x,)\) (k 1) (u +V)k+l(—1/)n_(k+l)

)
=0 n=k+1

£y Bul-x2) (—nv')n : (2.12)
n=0


http://www.advancesindifferenceequations.com/content/2013/1/247

Wang Advances in Difference Equations 2013, 2013:247
http://www.advancesindifferenceequations.com/content/2013/1/247

So from (2.4), (2.11), (2.12) and the symmetric distributions for the Apostol-Bernoulli poly-
nomials AB,(1 —x; 1) = (=1)"B,,(x; %), n >0 (see, e.g., [7]), we get

=5 kY Z Z kﬁn(:" " (k:l— 1) (Lt " V)kl/n_(k+1). (2.13)

k=0 n=k+1

Since (4 + v)* = an:() (V];) u”V*" for non-negative integer k, then the identity above can

be rewritten as

[o olNe o lNe o}

Bnlx; £ K\ o e
M==8,, > Y > (-1f ml </<+1)< )u yrml (2.14)

m=0 k=m n=k+1
It follows from (2.14) that

=_51AMZZ(1 )mnml

m=0 n=m+1

2 - Wl'}’l'ﬂm n l(x; l) u”v'
= =Sy Y (Al A (2.15)

1 1
= m+n+1) m!'n

Thus, combining (2.9) and (2.15), and then making k-times derivative with respect to v,
we get

j=0 n=0

m

= (Z( 1)ml3m <x: > ) < Zﬂkﬂfrun(x +y’)tﬂ)_‘ %)
m=0 m=0 n=0

» ) +m+n+ ,)\
+ZZ{ﬂm(y’)‘)ﬂk+n(x+y;'u)_ L Pr 10, Ap)

i(f)(Zﬁm,(x,m )(ioio Bty 00 n)
>

+n+1
m=0 n=0 k+n

_ 31,kﬂk+m+n+l(x +% )LH)
m+1

=S (1"

ml(k + 1) Brrmins1 (X %) } U v (2.16)

(k+m+n+1)! m! n!’

which together with the Cauchy product arises the desired result after comparing the co-
efficients of V" /m!n!. O

It follows that we show a special case of Theorem 2.1. We have the following formula of
products of the Apostol-Bernoulli polynomial due to He and Wang [17].

Corollary 2.2 Let m, n be any positive integers. Then

BB =Y () (5 ) B

n+1

" (n Bl )
+m§<i)8n_1(y—x,u)w

m!n! 1
+ (—1)””151,)% mlgmm <y —x; X) (2.17)
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Proof Setting k = 0 in Theorem 2.1, we get

i n+l1-i m+1+i

Xn: <I’l> Bn+l—i(x; M) Bm+1+i(y; )\,//L)

i=0

B XWI: m (_1)m—i Bm+1—i(x; %) Bius1+ilx +%; )‘M)
_i=0 i m+1—-i n+l+i

+ Bm+1 (y; )‘-) Bn+1(x +% I'L) 81,ABm+n+2(x + yr)\ﬂ)

m+1 n+1 m+1)(m+n+2)
: 81,u6m+n+2(y§kﬂ) _ 61,1;1_(‘1)”’7)’1!1’1! xl (2.18)
m+\D)m+n+2)  (men+2) 2\ )

Note that for any negative integers i, ,

1 n 1 n+1
. )= R (2.19)
n+1—-i\i n+1 i

It follows from (2.18) and (2.19) that

n+l

1 n+l Bisi(y; M)
_— B o) =22 227
n+1§( i > we1-i{ 1) m+1+i
1 & 1 , 1\ Bl +y; 4
o ()0 ) P
m+1 Py i A n+l+i
Bi1(y; ) B s 8 -1)"m!n! 1
+ +10/ ) 1(x+y ) _ 1,)»;4( )" m'n S P (2.20)
m+1 n+1 (m+n+2)! A
Thus, replacing x by y — x and y by «x in (2.20) gives the desired result. d

We now use Theorem 2.1 to give another new recurrence formula for the Apostol-

Bernoulli polynomials.

Theorem 2.3 Let k, m, n be any non-negative integers. Then forx +y +z =1,

k i ym M
(_l)k Z (;) ﬂmﬂ'(x; M),BkJrn—i(y; )\,U«) + ( ’i) Z <7:l) ,B;Hi(y; )‘-)ﬁkwn—i <Z$ i)
i=0 i=0

>

(-1)" A (n 1 1
+ D ; (l.)ﬂkﬂ‘(% m)ﬁmﬂq—i <x, —>

5 (=1 fp! 1
=191, u mﬂk+m+n+l X; X

s (~1)** ™ km!
+ —_—
b (k+m+1)!

51)‘ (—1)”‘*”m'n'ﬂ 1 (2 21)
=" z— |t .
A (m+n+1)! kel A

,3k+m+n+1 (}’; A/,L)
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Proof We firstly prove that for any non-negative integers k, m, n,

Z <;:> ﬂk+[(x; /’L),Bmwl—i ()/; )NI’L)

i=0

k g ]
=3 () Bt s 0B

i=0

; io (’f ) (1 B + 3520 (x; %)

812 %ﬂkwmu(x +YAM) — 81y %ﬂk+m+n+loj L)

~ S %ﬂk%m( : %) (222)

We shall use induction on k. Clearly, (2.22) holds trivially when k = 0 in Theorem 2.1. Now
assume (2.22) for any smaller value of k. In light of (2.1), we have

n

Z <’:> Breri(x; ﬂ),Bern—i(y; At

i=0

k+m

= .m (- 1)k+m lﬁnﬂ(x'*'y)ﬂkwn i 1 + ,Bm(y }\)ﬂn+k(x+y’ W)
i—k A

i=0

k-1 n
k n sl (X + Y5 A
- ( ) Z < .),Bk+m+n—i—j(y;}‘ﬂ),3i+j(x; W) — Sy Pr 1x 35 his)
0 M/ GZg N

m+1

(2.23)

s ﬁk+m+n+l(y§)\lJ«) _ (—l)ml’l’l!(k + I’l)! . l
L k+}’l+1 1’Mt(k+m+}’l+1)! k+m+n+1 ’)\, .

Since (2.22) holds for any smaller value of k then

LN
<J' ) 2 (i )ﬂ”’ 5 1) Brermsn-ij (05 A1)
Jj=0 i=0
k+m . k ]
k+m o

i

(DB + 5 A4) B (x ) (- W( )( Hin ]>
i=0 /=0

()

~.

k-1
—bu, ﬁk+m+n+l(x +% }&M) Z

k+m+1 = (k‘;m)
ﬁk+m+n+1(y )»,U,) ( )
— 81,;1_ 7+ 1 Z( )] (n;iij)
(_1)k+m,3k+m+n+1(x; X A (k)
- 81,)4L

)
n+1 Z( 1)1 (k+m;:11+1 1) (2.24)
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Note that for non-negative integers i, k, m, n,

: (K (m+j of m
,ZO(_W(/‘)( )=er()

Xk: (l,() _ k+m+1

= (W’j*k) m+1

k . (,f) m!(n+k)(n+1)
j _m! !

;(_l)} (") T (k1)

by using induction on k. It follows from (2.25)-(2.27) that
A (KN (] o O ok
;Hy (1) (l) ey (i—k) -y (z)
= K\ (m+k—j m m
j AN 1)k
;Hy@( i )‘(i—k) - (z)
1 ki (I kim!

k+m+14= (" k) Tm+l (krmil)l

~.

~.

J=0 % j
1 kf: 1y 0 1 (—1)kkin!
n+1j=0 (”;ﬁl)_k+n+1 (k+n+1)
1= 1y (5) _Cme Rt D
n+1l = (m+”n*+’<1*1‘1) (k+m+n+1)! (m+n+1)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

Hence, applying the five identities (2.28)-(2.32) above to (2.24), and then combining (2.23),
gives (2.22). Thus, by setting x + ¥ + z =1 in (2.22), and using the symmetric distributions

of the Apostol-Bernoulli polynomials, we complete the proof of Theorem 2.3 by replacing

n by k, k by m and m by n.

O

We now give a special case of Theorem 2.3. We have the following quadratic recurrence

formula for the Apostol-Bernoulli polynomials, presented in [6].

Corollary 2.4 Let k, m, n be any non-negative integers. Then

Z <;:> Bk+i (x; //«)Bm+n—i(y; )\'M)
i=0

k+m
i +m1-i (Y5 A
S5 () ) et B
pn i i—-1 k+m+1-i

+](+Zm(—l)m+i . m Kk m B (x+ 30 )Bk+m+1—i(x;%)
L i i—1) T

k'm!(n + 8(k, m)(k + m + 1))
(k+m+1)!

=81, Bicrmn(x + y; A1),

(2.33)
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where §(k,m) = =1 when k =m =0, §(k,m) =0 when k=0, m>1orm=0,k > 1, and
8(k,m) =1, otherwise.

Proof Since the Apostol-Bernoulli polynomials B,(x;A) satisfy the difference equation
8/0x(B,(x; 1)) = nB,_1(x; 1) for any positive integer 7 (see, e.g, [7]), so by substituting #
for k, k for m and m for n and making the derivative operation d/0x - 9/dy in both sides of
Theorem 2.3, and then using the symmetric distributions of the Apostol-Bernoulli poly-
nomials, the desired result follows immediately. O

Remark 2.5 In fact, we can also use Theorem 2.3 to obtain the above formula of products
of the Apostol-Bernoulli polynomials. For example, setting m = 0 and substituting y — x
for x, x for y, n for k and m for n in Theorem 2.3, with the help of the symmetric distribu-
tions of the Apostol-Bernoulli polynomials, Corollary 2.2 follows immediately. For some
applications of Corollaries 2.2 and 2.4, the interested readers may consult [6, 17, 18].

3 Recurrence formulae for mixed Apostol-Bernoulli and Apostol-Euler
polynomials

We next give a similar formula to Theorem 2.3, which is involving the mixed Apostol-

Bernoulli and Apostol-Euler polynomials. As in the proof of Theorem 2.3, we need the fol-

lowing formula concerning the mixed Apostol-Bernoulli and Apostol-Euler polynomials.

Theorem 3.1 Let k, m, n be any non-negative integers. Then
k n

K
Z <]<) Z (}:) gi+j(x; M)ﬁk+m+n—i—j(y; }‘-/'L)

j=0 i=0

= Z <77) (—l)m*lgm—i (x; X),Bszﬂ’(x +; Ap) — Egm (y; M) Ekin(x +; M)

i=0
(=1)"m!(k + n)! 1
— —— Etimn 5 — . 3.1

1’W(k+m+rz+1)! kel x}\ 3.1)

Proof Multiplying both sides of the identity

1 1 [ 2e! 1 1 52)
ret +1pe’ +1 \de+1  pe’ +1) apertv —1 :

by 26+ yields

26* ey(u+v) 2e(l—x)u e(x+y)(u+v) 1 2 2e(x+y)v
=X - = s 3.3
pe’ +1 Apertv —1 ret +1apet —1 2 xe*+1 e’ +1 (33)

which means
28* ey(u+v) 81 "
ne’ +1 <Aue’“" -1 u+ v)

2e(l—x)u( e(x+y)(u+v) 81)»#) 1 2% 2e(x+y)v

=A
re* +1

s 2 (1-x)u 265V
PN . (3.4)
u+v\ re*+1 pe*+1

Aue"*‘/—l_u+v 2re*+1 e +1
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In a similar consideration to (2.12), we have

(1-x)u
() B S

k=0 n=k
Y Z Z 5 (1 x’)\’) < )(u + V)k+l(_v)n—(/<+1)
k=0 n=k+1 kel
%) (_V)n
Y Zgn(l —x; . . (35)

So from the symmetric distributions for the Apostol-Euler polynomials A&,(1 — x;A) =
(-1)"Eu(x; 1), n > 0 (see, e.g, [7]), we get

31,)#4 2 2e(l—x)u 2e*
u+v\ re*+1 pue*+1

=81 Z Z (- 1)k+1 ;‘ ,\) ( n 1)(” 1 )y

k=0 n=k+1

o X ° " 8 (x, ) k m_ n—n—
=S ) D D (D <k+1)<m)” o

m=0 k=m n=k+1

= 61A/L Z Z ( 1)m+1

m=0 n=m+1

X X sl m!n!5m+n+l(x; %) u” V"
= 61’)‘”22(_1) - N T (3'6)

1 1 5!
fvr s m+n+1) m!n

& (x,A)

mvn—m—l

Applying (2.5) and (3.6) to (3.4), and then making k-times derivative with respect to v, we

obtain

k 0o o0 moon
Z <f> (Z gnﬂ(x, M)_> <Z Z m+n+k—}(y W) — u ! 1;1‘)
j=0 0 n=0

n=0

_ (Z(—D%( ) ) (Z > el s 32" ;—)

" m=0 n=0
1(& IV )
—_ 5 (; gm(y;)\)%) (; Eranlx +y,H);>
m. (k + n) 5k+m+n+l(x, k) um "
- B 3.7
LA %;( ) k+m+n+1)] m‘n! ( )

which together with the Cauchy product gives the desired result by comparing the coeffi-

cients of u"v"'/m'n!. O

It follows that we show a special of Theorem 3.1. We have the following formulae of

products of the Apostol-Euler polynomials due to He and Wang [17].
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Corollary 3.2 Let m, n be any non-negative integers. Then

&Amxwxwu>=2§j(7)vaw4&n(}—ml)gﬁkiﬂﬂﬂ
i=0

A n+1+i

- n B+ +i(x; A )
=23 ()i P
i=0

m+1+i
(-1)"m!n! 1
- 28—\ y—x— ). 3.8
lM(W1+n+1)! Y xx (38)

Proof Setting k = 0 in Theorem 3.1, we get

= n . Bm+1+i(y; )",U-)
S (7 )t P20

m+1+i
i=0

=> <’ln> (1) Epi (x; l) Buasilx +yi2) %gm(y;x)&q(x + Y 14)

- A n+l+i
i=0
(-1)"m!n! 1
=i Eman 5= ). 3.9
Y e+ 1)1 5 (39)
Thus, the desired result follows by replacing x by ¥ — x and y by x in (3.9). g

Now we apply Theorem 3.1 to give the following another recurrence formula for the

mixed Apostol-Bernoulli and Apostol-Euler polynomials.

Theorem 3.3 Let k, m, n be any non-negative integers. Then forx +y+z =1,

k

k 1) &
(_l)k Z <l>gm+t(xr M),Bkm—i()’; )\,u«) + ( 22 Z (l/:l) 5n+i(y; )")gk+m—i (Z; %)

i=0 i=0

(-1)" < (n 1 1
LS el

(=D)**" kin! 1
= Sy ———Eksmens s — ). 3.10
1'M(k+n+1)! k ! x}\ ( )

Proof We firstly prove that for any non-negative integers k, m, n,
"\ (n
Z < i>gk+i(x; M),Bern—i(y; At
i=0
1<k
= _E lzo: (l) (_l)k_lgnﬂ'(x +) M)gkwn—i(y; A)

+ Z (T) (_l)miiﬂnﬂ(x +y;)\ﬂ)gk+m—i (x; %)
i=0

(=1)"m!n! 1
— — & el B 3.11
Lip m+n+l) k+m+n+l | X Y ( )
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The proofis similar to that of (2.22), and, therefore, we leave out some of the more obvious
details. Clearly, the case k = 0 in (3.11) is complete. Next, consider the case k > 1 in (3.11).
Assume that (3.11) holds for all positive integers being less than k. In light of (3.1), we have

Z <;:> gk+i(x; /’L)ﬂmwz—i ()/; )\,/,L)
i=0

k+m

= Z (l mk>( 1)k+m l€k+m z(x: )/3}’1+l(x +; )"M)

i=0 N

1 (=1D)"m!(k + n)! 1
= =& A)Ekin 5 - T g Ck+mn+ i
28 03 2)Eken(x + 3310) = By (k+m+n+1)!gk s

- Z( ) Z( ) l+}(x’ )ﬁk+m+n—i—j(y;)\/¢¢)- (312)

i=0

It follows from (3.11) and (3.12) that

Z <;:> gk+i(x; /’L),Bmﬂq—i ()/; )\,/,L)
i=0

k+m

= Z (l mk>( 1)k+m l€k+m z(x: )/3}’1+l(x +; )"M)

i=0 N

1 -1)"m!(k + n)! 1
- Egm (Y: )‘-)gkﬂq(x +% /'L) - SI,AMM&‘]{+WI+H+I <x; _>

(k+m+n+1)! A
kom 1\ & k+m-—
- Z( 1)k+m lﬂn‘i’l(‘x +yr)\ﬂ)gk+m 1<x, ) Z( 1)1< >< ; ]>
i=0 j=0

k+m

SRt rmtiatn 20 ;) ()

+ 51')\/,,

_1)k+m
( 1) (C/‘kwnJrnJrl(xr)L Z( 1)} (k+ () (3.13)

n+1 m+n+1—1)
n+l

Hence, applying (2.28), (2.29) and (2.32) to (3.13), we conclude the induction step. Thus,
by setting x + y + z = 1 in (3.11), and applying the symmetric distributions of Apostol-Euler
polynomials, we complete the proof of Theorem 3.3 by replacing n by k, k by m and m
by n. 0

We next give some special cases of Theorem 3.3. We have the following formula
products of the mixed Apostol-Bernoulli and Apostol-Euler polynomials due to He and

Wang [17].

Corollary 3.4 Let m be any non-negative integer. Then for positive integer n,
N (m ; 1
CACRLEACIDEE DY ( ; )(—1)ma‘:mi (y % X)Emil()/;)»l/«)
i=0

S (’f) By — 5 1) 210) (314)
i=0
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Proof Setting k = 0, and substituting 1 — y for y, y — x for z, A for © and ﬁ for A in Theo-
rem 3.3, by the symmetric distributions of the Apostol-Bernoulli and Apostol-Euler poly-
nomials, the desired result follows immediately. O

We next apply Theorem 3.3 to give the following quadratic recurrence formulae for the
mixed Apostol-Bernoulli and Apostol-Euler polynomials presented in [6].

Corollary 3.5 Let k, m, n be any non-negative integers. Then

Z <;:> gk+i(x; //L)Bm+n—i(y; )\ll«)
i=0

= Z <n:> (1) Byrai(® + 93 M) Eemi <x; %)

k+m

~ 3 20 () = E et s mingin i, (315)

i=0

Proof Substituting # for k, k for m and m for n and making the derivative operation 9/9y
in both sides of Theorem 3.3, and then using the difference equation and symmetric dis-
tributions of the Apostol-Bernoulli polynomials gives the desired result. d

Corollary 3.6 Let k, m, n be any non-negative integers. Then

Z <;:) Ervilxs M)5m+n—i(y; ALL)

i=0
k'm!

(k+m+1)

" m i Bicrm+ —i(x; l)
_ZZ(i)(_l) l€n+i(x+y5)\ﬂ)u
i=0

= 281,A ‘5k+m+n+1(x T )‘M)

k+m+1-i

k
k i Bk+m+1—i(y; )\,)
-2 D E i 4y ) 3.16
;@( Vil yi ) (3.16)
Proof Substituting p for A, ﬁ for u, x for y and y for z in Theorem 3.3, by applying the
symmetric distributions of the Apostol-Euler polynomials, the desired result follows im-
mediately. O

Remark 3.7 We also mention that Theorem 3.3 above can also be used to obtain the for-
mulae of products of the mixed Apostol-Bernoulli and Apostol-Euler polynomials. For ex-
ample, setting m = 0, and substituting y —x for x, x for y, n for k and m for n in Theorem 3.3,
with the help of the symmetric distributions of the Apostol-Bernoulli polynomials, Corol-
lary 3.2 follows immediately. For some corresponding applications of Corollaries 3.2, 3.4,
3.5 and 3.6, one is referred to [6, 17, 18].
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