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Abstract
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1 Introduction
We consider the real three-dimensional differential autonomous systems which take

the form

ẋ = Ax + f(x) (1)

where x Î ℝ3, A Î ℝ3×3, f(x) Î C2 with f(0) = 0, Df(0) = 0, then the origin is an

equilibrium. The systems (1) usually involve many important nonlinear dynamical

models such as Lotka-Volterra system [1,2] and Lorenz system [3,4].

As far as Hopf bifurcation of the origin of systems (1) is concerned, the Jacobian

matrix A at the origin should have a pair of purely imaginary eigenvalues and a nega-

tive one. In general, one can apply firstly the center manifold theorem to reduce the

system (1) to a two-dimensional system [5], then compute Liapunov constants or the

bifurcation formulae based on Liapunov functions-Poincaré theory [6,7]. However, this

traditionary way has quite complicated course of determining coefficients of the two-

dimensional reduced equations, and for bifurcation formulae or Liapunov coefficient

[6,8], usually, only the first value is obtained, thus just one single limit cycle in the vici-

nity of the origin can be found.

Recently, the authors Wang et al. [9] introduced an algorithm of computing the singu-

lar point quantities on center manifold, which misses the above tedious course.

In contrast to the usual ones, this algorithm is more convenient to investigate the multi-

ple Hopf bifurcation at equilibrium of a three-dimensional system. However, it is possi-

bly difficult to be approbated. For this reason, this paper will give the explicit relation

between the singular point quantities and Liapunov constants of the origin of system (1).
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And more we hope that the results presented here will stimulate the analysis of topologi-

cal structure and dynamical behavior for a higher-dimensional system.

This paper is organized as follows. In Section 2, we give some preliminaries about

Liapunov constants, the focal values and singular point quantities on center manifold

for a three-dimensional system (1). In Section 3, the relation between the singular

point quantities and Liapunov constants is investigated, and their algebraic equivalence

is proved rigorously. In Section 4, the singular point quantities of the Lü system as an

example are computed, then the existence of four limit cycles for this system is judged.

2 The related definitions
2.1 Liapunov constants on center manifold

We give firstly the definition of Liapunov constants for a three-dimensional system.

Considering the Jacobian matrix A at the origin of system (1) has a pair of purely ima-

ginary eigenvalues and a negative one, then the system (1) can be put in the following

form:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1 = �1x1 + �2x2 +
∞∑
k=2

Xk(x1, x2, x3),

ẋ2 = �x1 − �1x2 +
∞∑
k=2

Yk(x1, x2, x3),

ẋ3 = −dx3 +
∞∑
k=2

Uk(x1, x2, x3)

(2)

Where ẋi =
dxi
dτ
(i = 1, 2, 3), and d, l, l1, �2 ∈ R(d > 0, �21 + ��2 < 0), and Xk, Yk, Uk

are homogeneous polynomials in x1, x2, x3 of degree k.

According to the center manifold theorem [5], the three-dimensional system (2) has

an approximation to the center manifold taking the form

u = u(x1, x2) = u2(x1, x2) + h.o.t. (3)

where u2 is a quadratic homogeneous polynomial in x1 and x2, and h.o.t. denotes the

terms with orders greater than or equal to 3. Substituting u = u(x1, x2) into the equa-

tions of system (2), we can obtain a generic two-dimensional differential system with

center-focus type linear part as follows
⎧⎪⎪⎨
⎪⎪⎩
ẋ1 = �1x1 + �2x2 +

∞∑
k=2

X̃k(x1, x2),

ẋ2 = �x1 − �1x2 +
∞∑
k=2

Ỹk(x1, x2)
(4)

where X̃k, Ỹk are homogeneous polynomials in x1, x2 of degree k, and their coeffi-

cients are polynomial functions of coefficients of the system (2). System (4) is often

called the reduction system of (2). Correspondingly, one can take a generic Liapunov

function

H(x1, x2) = κ(�x21 − 2�1x1x2 − �2x
2
2) +

∞∑
k=3

Hk(x1, x2) (5)

where � can be an arbitrary non-zero real number, Hk is a homogeneous polynomial

in x1, x2 of degree k and the coefficients of H should satisfy
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dH
dτ

∣∣∣
(4)

= V2�
2 + V4�

3 + · · · + V2m�m+1 + · · · (6)

where �(x1, x2) = (x21 + x22) or x
2
1 or x

2
2 or (x1 + x2)

2 or other suitable forms [7,10,11].

Definition 2.1. V2m in (6) is called the mth Liapunov constant of the origin for sys-

tem (2) or (4), m = 1, 2, ....

2.2 The focal values on center manifold

In this part, we give the definition of the focal values for a three-dimensional system.

One transformation matrix P can be found such that the coefficient matrix A of linear

part of system (2) becomes the matrix B as follows

P−1AP = P−1

⎛
⎝�1 �2 0

� −�1 0
0 0 −d

⎞
⎠P =

⎛
⎝0 −ω 0

ω 0 0
0 0 −d

⎞
⎠ � B (7)

where |P| ≠ 0 and ω = (−�21 − ��2)1/2 > 0. Thus by a nondegenerate transformation

(x1, x2, x3)’ = P (x, y, u)’, and after a time scaling: t = ωτ, the system (2) can be changed

into the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx
dt = −y +

∞∑
k+j+l=2

Akjlxkyjul = X(x, y, u),

dy
dt = x +

∞∑
k+j+l=2

Bkjlxkyjul = Y(x, y, u),

du
dt = −d0u +

∞∑
k+j+l=2

dkjlxkyjul = U(x, y, u)

(8)

where x, y, u, Akjl, Bkjl, dkjl Î ℝ (k, j, l Î N) and d0 = d/ω. Similarly, according to the cen-

ter manifold theorem, putting certain approximation with the same form as (3) into (8),

we get the following real planar polynomial differential system

⎧⎪⎪⎨
⎪⎪⎩

dx
dt = −y +

∞∑
k+j=2

Akjxkyj = X(x, y),

dy
dt = x +

∞∑
k+j=2

Bkjxkyj = Y(x, y)
(9)

where Akj, Bkj Î ℝ(k, j Î N) and all Akj, Bkj are polynomial functions of coefficients

of the system (8) or (2). System (9) is also called the equations on the center manifold

or reduction system of (8). It is well-known, the origin of system (9) is center-focus

type, and some significant work about it has been done in [12-14].

In order to define the focal values, we transform system (9) into the following form

under the polar coordinates: x = r cos θ, y = r sin θ,

dr
dt = r

∞∑
k=1

ϕk(θ)rk, dθ
dt = 1 +

∞∑
k=1

ψk(θ)rk (10)

where �k(θ) and ψk(θ), k = 1, 2, 3, ... are analytic. System (10) is again transformed

into

dr
dθ

= r
∞∑
k=0

Rk(θ)rk, (11)
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where the function on the right-hand side of Equation (11) is convergent in the

range θ Î [−4π, 4π], |r| < r0 (r0 is certain positive constant) and

Rk(θ + π) = (−1)kRk(θ), k = 0, 1, 2, . . . . (12)

For sufficiently small h, let

�(h) = r(2π , h) − h, r = r(θ , h) =
∞∑
m=1

vm(θ)hm (13)

be the Poincaré succession function and the solution of Equation (11) satisfying the

initial-value condition r|θ=0 = h. Moreover, for (13) we have

v1(θ) = 1, vm(0) = 0, m = 2, 3, . . . . (14)

Definition 2.2. For the succession function in (13), if v2(2π) = v3(2π) = · · · = v2k(2π)

= 0 and v2k+1(2π) ≠ 0, then the origin is called the fine focus or weak focus of order k,

and the quantity of v2k+1(2π) is called the kth focal value at the origin on center mani-

fold of system (8) or (2), k = 1, 2, ....

Remark 1. For the coefficients of the form solution in (13), we have the following

property [13,15]: for every positive integer m = 1, 2, ..., there exists expression of the

relation

v2m(2π) = 1
1+v1(π)

m−1∑
k=1

ξ
(k)
m v2k+1(2π) (15)

where every ξ
(k)
m is a polynomial of v1(π), v2(π), ..., v2m(π) and v1(2π), v2(2π), ..., v2m

(2π) with rational coefficients. Particularly, if for each 1 ≤ k ≤ m − 1, v2k+1(2π) = 0

holds, we can get v2(2π) = v4(2π) = ··· = v2m(2π) = 0.

2.3 The singular point quantities on center manifold

Here, we recall the definition of the singular point quantities on center manifold. By

means of transformation

z = x + yi, w = x − yi, u = u, T = it, i =
√−1, (16)

system (8) is also transformed into the following complex system
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dz
dT = z +

∞∑
k+j+l=2

akjlzkwjul = Z(z, w, u),

dw
dT = −w −

∞∑
k+j+l=2

bkjlwkzjul = −W(z, w, u),

du
dT = id0u +

∞∑
k+j+l=2

d̃kjlzkwjul = Ũ(z, w, u)

(17)

where z, w, T, akjl, bkjl, d̃kjl Î ℂ (k, j, l Î N), the systems (8) and (17) are called con-

comitant. If no confusion arises, d̃kjl, Ũ are still written as dkjl and U.

Lemma 2.1 (see [9]). For system (17), using the program of term by term calculations,

we can determine a formal power series:

F(z, w, u) = zw +
∞∑

α+β+γ=3
cαβγ zαwβuγ (18)
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such that

dF
dT

=
∂F
∂z

Z − ∂F
∂y

W +
∂F
∂u

U =
∞∑
m=1

μm(zw)m+1 (19)

where c110 = 1, c101 = c011 = c200 = c020 = 0, ckk0 = 0, k = 2, 3, .... And μm is called the

mth singular point quantity at the origin on center manifold of system (17) or (8) or (2).

Lemma 2.2 (see [9]). For the mth singular point quantity and the mth focal value at

the origin on center manifold of system (8), i.e. µm and v2m+1, m = 1, 2, ..., we have the

following relation:

v2m+1(2π) = iπμm + iπ
m−1∑
k=1

ξ
(k)
m μk (20)

where ξ
(k)
m (k = 1, 2, . . . ,m − 1) are polynomial functions of coefficients of system (17).

Usually it is called algebraic equivalence and written as v2m+1 ~ iπµm.

3 The conclusions and proofs
3.1 The equivalence for singular point quantities on center manifold

In this subsection, we give firstly the results about the equivalence. Then the key theo-

rem, i.e. the following Theorem 3.1 will be proved in next subsection.

Theorem 3.1. For the mth Liapunov constant of the origin for system (2) and the mth

focal value at the origin for system (8), i.e. V2m and v2m+1, for every positive integer m,

we have the following relation:

V2m = σmv2m+1(2π) +
m−1∑
k=1

ξ
(k)
m v2k+1(2π) (21)

where ξ
(k)
m (k = 1, 2, . . . ,m − 1) are polynomial functions of coefficients of system (8)

and

σm = 2κ�ω3(ν2 + υ2)

⎛
⎝

2π∫
0

[φ(θ)]m+1dθ

⎞
⎠

−1

, (22)

with

φ(θ) =

⎧⎪⎪⎨
⎪⎪⎩

x21θ , if� = x21
x22θ , if� = x22
x21θ + x22θ , if� = x21 + x22
(x1θ + x2θ )

2, if� = (x1 + x2)
2

(23)

where

x1θ = [(�1υ + ων) cos(θ) + (�1ν − ωυ) sin(θ)]/�, x2θ = υ cos(θ) + ν sin(θ) (24)

and ν, υ are the two constants given by the real transformation matrix P in (7) with

ν2 + υ2 ≠ 0. Then, we also call the relation algebraic equivalence and write as V2m ~

sm v2m+1(2π), m = 1, 2, ....

How to determine the above v, υ is shown in the next elementary lemma.

Lemma 3.2. The nondegenerate real transformation matrix in (7) possesses necessa-

rily the following generic form:
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P =

⎛
⎝

υ�1+νω
�

ν�1−υω
�

0
υ ν 0
0 0 ζ

⎞
⎠ (25)

where ς, ν, υ are three real numbers such that ς(υ2 + ν2) ≠ 0 holds.

Proof. Considering that the coefficient matrix A in (7) has a pair of purely imaginary

eigenvalues iω, −iω and one real eigenvalue −d, one can select freely their eigenvectors

respectively, for example

η1 =
(

�1 + iω
�

, 1, 0
)′
, η2 =

(
�1 − iω

�
, 1, 0

)′
, η3 = (0, 0, 1)′.

Thus, there must exist only a generic transformation matrix T1 = k1h1+k2h2+k3h3

with the following form

T1 =

⎛
⎝

k1(�1+iω)
�

k2(�1−iω)
�

0
k1 k2 0
0 0 k3

⎞
⎠

such that

T−1
1 AT1 =

⎛
⎝ iω 0 0

0 −iω 0
0 0 −d

⎞
⎠ � J (26)

where k1, k2 and k3 are three arbitrary non-zero constants.

Similarly, we obtain also that for the matrix B in (7), there must exist only a generic

transformation matrix T2 with the following form

T2 =

⎛
⎝ ij1 −ij2 0

j1 j2 0
0 0 j3

⎞
⎠

such that

T−1
2 BT2 =

⎛
⎝ iω 0 0

0 −iω 0
0 0 −d

⎞
⎠ = J (27)

where j1, j2 and j3 are also three arbitrary non-zero constants.

Then from (26) and (27), there must exist only a generic transformation matrix P as

follows

P = T1T
−1
2 =

⎛
⎜⎝

�1(K2−K1)i+(K2+K1)ω
2�

(K2+K1)�1−(K2−K1)ωi
2�

0
(K2−K1)i

2
K2+K1

2 0
0 0 ζ

⎞
⎟⎠ (28)

such that P−1 AP = B in (7) holds, and where K1 = k1/j1, K2 = k2/j2 and ς = k3/j3 are

also arbitrary non-zero numbers because of the property of k1, k2, k3, j1, j2 and j3.

Furthermore in order to guarantee that the transformation in (7) is real and nonde-

generate, form (28), there is no other choice, only we can let K1 and K2 conjugate, i.e.

K1 = ν + iυ,K2 = ν − iυ, ν,υ,∈ R,
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at the same time, ς, υ and ν are three real numbers such that |P| ≠ 0 holds, thus we

obtain the generic form of the transformation matrix P. □
Remark 2. From the expression sm, m = 1, 2, ... in (22), one should notice that once

the coefficient matrix A and transformation matrix P are given explicitly, then sm is

never an arbitrary and undefined value. In particular, when l = −l2 = ω, l1 = 0 in sys-

tem (2), i.e. A = B in (7), we can get the identity matrix E as the simplest transforma-

tion matrix P, namely ν = 1, υ = 0, if we choose

κ =
1
2

ω−4 and � = x21 + x22

in (6), then at this time every σm = 1
2π
.

Furthermore, from Lemma 2.2 and Theorem 3.1, we have

Theorem 3.3. For the mth Liapunov constant of the origin for system (2) and the mth

singular point quantity of the origin for system (8) or (17), i.e. V2m and µm, m = 1, 2, ...,

there exists the following relation:

V2m = iπσmμm + iπσm

m−1∑
k=1

ξ
(k)
m μk (29)

where sm has been given in (22) of Theorem 3.1 and ξ
(k)
m (k = 1, 2, . . . ,m − 1) are

polynomial functions of coefficients of system (17). Similarly we also call it algebraic

equivalence and write as V2m ~ i π smµm.
Remark 3. From (20) in Lemma 2.2 and (29) in Theorem 3.3, we get that:

V2 = σ 1v3(2π) = iπσ 1μ1 (30)

and if for all k = 1, 2, ..., m − 1, V2k = 0 or v2k+1 = 0 or µk = 0 holds, then we have

V2m = σmv2m+1 = iπσmμm, m = 2, 3, . . . . (31)

Thus the stability of the origin for the systems (1) or (2) can be figured out directly

by calculating the singular point quantities of the origin for system (17).

3.2 Proof of theorem 3.1

Firstly, from Lemma 3.2 and the nondegenerate transformation: (x1, x2, x3)′ = P(x, y, u)′

in (7), we obtain

(x1, x2, x3) = ( υ�1+νω
�

x + ν�1−υω
�

y,υx + νy, ζu), (32)

and more under the polar coordinates x = r cos θ, y = r sin θ, we have

x1 = r
�
[(υ�1 + νω) cos(θ) + (ν�1 − υω) sin(θ)] = rx1θ ,

x2 = r[υ cos(θ) + ν sin(θ)] = rx2θ .
(33)

Substituting (32) into the Liapunov function (5), then we denote

H(x1, x2) = H[x, y] =
∞∑
k=2

Hk[x, y] (34)

where Hk[x, y] is a homogeneous polynomial in x, y of degree k and

H2[x, y] = − κ
�
(ν2 + υ2)(�21 + ��2)(x2 + y2) (35)
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with H2[1, 0] = κ
�
(ν2 + υ2)ω2. And more from the expressions (13) and (34), we have

H[x, y] = H[r(θ , h) cos(θ), r(θ , h) sin(θ)] =
∞∑
k=2

Hk[cos(θ), sin(θ)]rk(θ , h)

= Ĥ(θ , h).

(36)

Next, we investigate �Ĥ = Ĥ(2π , h) − Ĥ(0, h) based on the Equation 6.

On the one hand, from (14), we denote

Ĥ(2π , h) − Ĥ(0, h) =
∞∑
k=2

Hk[1, 0][rk(2π , h) − rk(0, h)]

=
∞∑
k=2

Hk[1, 0][rk(2π , h) − hk]

= �Ĥ1

(37)

where

rk(2π , h) − hk = (r(2π , h) − h)(rk−1(2π , h) + rk−2(2π , h)h + · · · + hk−1)

= (r(2π , h) − h)(khk−1 + o(hk−1)),
(38)

and from the expression (13), one can get

�Ĥ1 = (r(2π , h) − h)
∞∑
k=2

Hk[1, 0](khk−1 + o(hk−1))

= (r(2π , h) − h)
[
2
�
κ(ν2 + υ2)ω2h + o(h)

]

=
2
�
κ(ν2 + υ2)ω2

∞∑
m=2

vm(2π)hm+1(1 + o(1)).

(39)

On the other hand, we denote

Ĥ(2π , h) − Ĥ(0, h) =

2π∫
0

dĤ
dθ

dθ =

2π∫
0

dĤ
dτ

dτ
dθ
dθ = 1

ω

2π∫
0

dĤ
dτ

dt
dθ
dθ = �Ĥ2. (40)

From system (10) and the expression (13), we can get

dt
dθ

=
[
1 +

∞∑
k=2

rk−1ψk+1(θ)
]−1

= 1 + c1(θ)h + c2(θ)h2 + · · · = 1 + o(1) (41)

where ψk+1(θ), ck−1(θ) (k = 2, 3, ...) are analytic. At the same time, putting (33) in the

right side of (6), we have

dĤ
dτ

=
∞∑
m=1

V2m[φ
1
2 (θ)r(θ , h)]2m+2 =

∞∑
m=1

V2mh
2m+2[φ(θ)]m+1(1 + o(1)), (42)

thus

�Ĥ2 = 1
ω

∞∑
m=1

⎡
⎣V2mh

2m+2

⎛
⎝

2π∫
0

[φ(θ)]m+1dθ + o(1)

⎞
⎠

⎤
⎦ . (43)
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According to (39), (43) and applying (15) in Remark 1 and mathematical induction

to m, we complete the proof.

4 Singular point quantities for the Lü system
In this section, we investigate the singular point quantities of the equilibrium point of

the Lü system which bridges the gap between the Lorenz and Chen attractors [7], and

takes the following form⎧⎨
⎩
ẋ1 = a(x2 − x1)
ẋ2 = cx2 − x1x3
ẋ3 = x1x2 − bx3

(44)

where a >0, b >0, c >0. Obviously, system (44) has three equilibrium points: O(0, 0, 0),

O1(
√
bc,

√
bc, c) and O2(−

√
bc, −

√
bc, c). Because the Jacobian matrix at the origin O

has no purely imaginary eigenvalues, it is unnecessary to consider its singular point

quantities. And more the equations in (44) are invariant under the transformation:

(x1, x2, x3) �→ (−x1, −x2, x3), (45)

which means that system (44) is symmetrical. Therefore, we only need to consider

O1.

The Jacobian matrix of system (44) at O1 is

Ao =

⎛
⎝ −a a 0

−c c −√
bc√

bc
√
bc −b

⎞
⎠

with the characteristic equation: l3 + (a + b − c)l + abl + 2abc = 0. To guarantee

that Ao has a pair of purely imaginary eigenvalues ±iω(ω >0) and one negative real

eigenvalue l0, we let its characteristic equation take the form

(λ2 + ω2)(λ − λ0) = 0.

Thus we obtain the critical condition of Hopf bifurcation at O1: c = (a + b)/3, then

ω =
√
bc, λ0 = −2c (46)

namely b = ω2/a, c = (a2 + ω2)/(3a). By the translation: (x1, x2, x3) ® (x1 + ω, x2 +

ω, x3 + c), we make the equilibrium O1 become the origin and change system (44) into

ẋ = Ao

⎛
⎝x1 + ω

x2 + ω

x3 + c

⎞
⎠ +

⎛
⎝ 0

−(x1 + ω)(x3 + c)
(x1 + ω)(x2 + ω)

⎞
⎠ . (47)

Under the conditions (46), one can find a nondegenerate matrix

Po =

⎛
⎜⎝

√
3a(2a2−ω2)
d1

√
d0

3
√
3a2ω

d1
√
d0

−
√
3a2

2ω
√
d0

2a
√
3d0

d1
ω

√
3d0
d1

2ω2−a2

2ω
√
3d0

0 1 1

⎞
⎟⎠

such that

P−1
o AoPo =

⎛
⎝ 0 −ω 0

ω 0 0
0 0 −2d0

/
(3a)

⎞
⎠ (48)
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where d0 = a2 + ω2, d1 = 4a2+ ω2.

Then we can use the nondegenerate transformation x = Po y and the time re-scaling:

t ® t/ω to make the system (47) become the following form:

ẏ = 1
ω
[P−1

o ∗ diag(Poy + E)AoPoy]

= 1
ω
[P−1

o AoPoy + P−1
o ∗ diag(Poy)AoPoy]

(49)

where y = (y1, y2, y3), and E is the 3 × 3 identity matrix.

Now we put y1 = (z + w)/2, y2 = (z − w)i/2, y3 = u, t = −Ti in system (49) and obtain

the following same form as the complex system (17):
⎧⎨
⎩

dz
dT = z + a101uz + a011uw + a110zw + a200z2 + a020w2 + a002u2 = Z
dw
dT = −(w + b011uz + b101uw + b110zw + b020z2 + b200w2 + b002u2) = −W
du
dT = d001u + d101uz + d011uw + d110zw + d200z2 + d020w2 + d002u2 = U

(50)

where u Î ℝ, z, w, T Î ℂ, and

a200 = 3a(7a2+4ω2)
2d1d2

+ 9a4
2d1d2ω

i,

a020 = − 3a(16a6−93a2ω4+4ω6)
2d31d2

+ 3a2(32ω6−16a6−72a4ω2−105a2ω4)
2d31d2ω

i,

a002 = − 3a3(8a4+19a2ω2+20ω4)
8d0d1d2ω2 − a2(4a6−21a4ω2−36a2ω4+16ω6)

8d0d1d2ω3 i,

a101 = − d0a(5a2−4ω2)
d1d2ω2 + 3a2(5a2−4ω2)

2d1d2ω
i,

a011 = − a(a2−2ω2)(8a6+30a4ω2+45a2ω4−4ω6)
2d0d21d2ω

2 + 3a2(a2−2ω2)(4a4+5a2ω2−8ω4)
2d0d21d2ω

i,

a110 = 18a3(2a2+5ω2)
d21d2

+ 3a2(8ω4−4a4−23a2ω2)
d21d2ω

i,

bkjl = ākjl(kjl = 200, 020, 002, 101, 011, 110),

d200 = − 6a(16a6−36a4ω2−21a2ω4+4ω6)
d31d2

+ 54a2ω(4a4−a2ω2−2ω4)
d31d2

i,

d020 = 6a(16a6−36a4ω2−21a2ω4+4ω6)
d31d2

+ 54a2ω(4a4−a2ω2−2ω4)
d31d2

i,

d002 = − 3a2(5a2−4ω2)
2d1d2ω

i,

d101 = − 3a(16a4−7a2ω2+4ω4)
d21d2

− 12a2(2a2−ω2)(a2−2ω2)
d21d2ω

i,

d011 = 3a(16a4−7a2ω2+4ω4)
d21d2

− 12a2(2a2−ω2)(a2−2ω2)
d21d2ω

i,

d110 = 36a2ω(a2−2ω2)
d21d2

i,

d001 = 2d1
3aω i

where d2 = a2 + 4ω2, and ākjl denotes the conjugate complex number of akjl.

According to Lemma 2.1, we obtain the recursive formulas cabg and µm in Appendix.

By applying the formulas in the Mathematica symbolic computation system, we figure

out easily the first twenty singular point quantities of the origin of system (50):

μ1 = −243ia5(2a2 − ω2)(a2 − 5ω2)ω/(d0d21d2d3),

μ2 = −891849714087780ia7(2a2 − ω2)ω21/(d30d
5
1d

3
2d

2
3d4),

μ3 = μ4 = · · · = μ20 = 0

(51)

where d3 = a4 + 11a2ω2 + ω4, d4 = 4a4 + 89a2ω2 + 4ω4, and in the above expression

of each µk, k = 2, 3, ..., we have already let µ1 = ··· = µk−1 = 0.
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From the remark 3 and the singular point quantities (51), if we let P−1
o AoPo in (48)

become A in (7), and considering the particular case in the Remark 2, then we have

Theorem 4.1. For the flow on center manifold of the system (44), the first two focal

values and Liapunov constants of the origin are as follow

(i) v3 = iπμ1, v5 = iπμ2 (52)

(ii) V2 =
1
2
iμ1, V4 =

1
2
iμ2 (53)

where the expression of v5 is obtained under the condition of v3 = 0, and V4 is

obtained under the condition of V2 = 0.

Remark 4. Considering Hopf bifurcation at the two symmetrical equilibria O1 and O2,

form the Theorem 4.1, we conclude that the Lü system (44) at least 4 small limit

cycles, which will be proved rigorously in a following paper.

Appendix

cαβγ = 1
β−α−γ d0

[d200(1 + γ )cα−2,β,γ+1 − b020(1 + β)cα−2,β+1,γ + d110(1 + γ )cα−1,β−1,γ+1−
(a200 + b110β − a200α − d101γ )cα−1,β,γ − b011(1 + β)cα−1,β+1,γ−1+

d020(γ + 1)cα,β−2,γ+1 + (b200 − b200β + a110α + d011γ )cα,β−1,γ − (d002 + b101β−
a101α − d002γ )cα,β,γ−1 − b002(1 + β)cα,β+1,γ−2 + a020(1 + α)cα+1,β−2,γ +

a011(1 + α)cα+1,β−1,γ−1 + a002(1 + α)cα+1,β,γ−2],

μm = d200cm−2,m,1 − b020(1 +m)cm−2,m+1,0 + d110cm−1,m−1,1 − (a200 − a200m + b110m)

cm−1,m,0 + d020cm,m−2,1 + (b200 + a110m − b200m)cm,m−1,0 + a020(1 +m)cm+1,m−2,0.
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