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Abstract
This paper concerns the oscillation of solutions to the second-order dynamic
equation

(r(t)x�(t))� + p(t)x�(t) + q(t)f (xσ (t)) = 0,

on a time scale T which is unbounded above. No sign conditions are imposed on r(t),
p(t), and q(t). The function f ∈ C(R,R) is assumed to satisfy xf (x) > 0 and f ′(x) > 0 for
x �= 0. In addition, there is no need to assume certain restrictive conditions and also
the both cases

∫ ∞

t0

�t

r(t)
=∞ and

∫ ∞

t0

�t

r(t)
<∞

are considered. Our results will improve and extend results in (Baoguo et al. in Can.
Math. Bull. 54:580-592, 2011; Bohner et al. in J. Math. Anal. Appl. 301:491-507, 2005;
Hassan et al. in Comput. Math. Anal. 59:550-558, 2010; Hassan et al. in J. Differ. Equ.
Appl. 17:505-523, 2011) and many known results on nonlinear oscillation. These
results have significant importance to the study of oscillation criteria on discrete time
scales such as T = Z, T = hZ, h > 0, or T = {t : t = qk , k ∈N0,q > 1} and the space of
harmonic numbers T = Hn. Some examples illustrating the importance of our results
are also included.
MSC: 34K11; 39A10; 39A99
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1 Introduction
The theory of time scales, which has recently received a lot of attention, was introduced
by Stefan Hilger in his PhD dissertation written under the direction of Bernd Aulbach
(see []). Since then a rapidly expanding body of literature has sought to unify, extend,
and generalize ideas from discrete calculus, quantum calculus, and continuous calculus to
arbitrary time scale calculus. Recall that a time scale T is a nonempty closed subset of the
reals, and the cases when this time scale is the reals or the integers represent the classical
theories of differential and of difference equations. Not only does the new theory of the
so-called ‘dynamic equations’ unify the theories of differential equations and difference
equations, but it also extends these classical cases to cases ‘in between’, e.g., to the so-
called q-difference equations when T = qN , and can be applied to different types of time
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scales like T = hZ, T = N

, and the space of harmonic numbers T = {Hn}. In this work,

knowledge and understanding of time scales and time scale notation is assumed. For an
excellent introduction to the calculus on time scales, see Bohner and Peterson [, ]. We
recall the following concepts related to the notion of time scales. A time scale T is an
arbitrary nonempty closed subset of the real numbers R. For t ∈ T, we define the forward
and backward jump operators σ : T → T and ρ : T→ T by

σ (t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t},

where inf∅ := supT and sup∅ = infT, where ∅ denotes the empty set. A point t ∈ T, t >
infT, is said to be left-dense if ρ(t) = t, right-dense if t < supT and σ (t) = t, left-scattered
if ρ(t) < t, and right-scattered if σ (t) > t. A function g : T → R is said to be right-dense
continuous (rd-continuous) provided g is continuous at right-dense points and at left-
dense points in T, left-hand limits exist and are finite. The set of all such rd-continuous
functions is denoted by Crd(T).
We are concerned with the oscillatory behavior of the following second-order dynamic

equation

(
r(t)x�(t)

)� + p(t)x�(t) + q(t)f
(
xσ (t)

)
= , (.)

on a time scale Twhich is unbounded above, where r, p, and q are real-valued, right-dense
continuous functions on T. The function f ∈ C(R,R) is assumed to satisfy xf (x) >  and
f ′(x) >  for x �= .
By a solution of (.), we mean a nontrivial real-valued function x ∈ C

rd[Tx,∞), Tx ≥ t
which has the property that rx� ∈ C

rd[Tx,∞) and satisfies equation (.) on [Tx,∞), where
Crd is the space of rd-continuous functions. The solutions vanishing in some neighbor-
hood of infinity will be excluded from our consideration. A solution x of (.) is said to be
oscillatory if it is neither eventually positive nor eventually negative. Otherwise it is said
to be nonoscillatory. There has been a great deal of research into obtaining criteria for
oscillation of all solutions of dynamic equations on time scales. It is usually assumed that
r, p, q are nonnegative functions. We refer the reader to the papers [–, –] and the
references cited therein. On the other hand, very little is known about equations when no
explicit sign assumptions are made with respect to the coefficient functions p, q, and r. In
the papers [–], it is shown that one may relate oscillation and boundedness of solu-
tions of the nonlinear equation (.) to a related linear equation, which, in the case r = 
and p = , reduces to

x��(t) + λq(t)xσ (t) = ,

where λ > , for which many oscillation criteria are known. However, it was assumed that
the nonlinearity has the property

f ′(x)≥ f (x)
x

, for x �= .

Bohner, Erbe, and Peterson [] studied the second-order nonlinear dynamic equation

x��(t) + p(t)x�σ (t) + q(t)f
(
xσ (t)

)
= , (.)
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where p is a positively regressive function and q satisfies condition (A), that is,

lim inf
t→∞

∫ t

T
q(s)�s≥  and �≡ 

for all large T and

∫ ∞

t

�t
r(t)

=
∫ ∞

t
q(t)�t = ∞,

where q(t) := q(t)ep(t, t) and r(t) := ep(t, t). Oscillation criterion for equation (.) is
shown in [] when f ′ satisfied condition (B), if for each k >  there existsm >  such that
f ′(x) ≥ m provided x ≥ k. We say T satisfies condition (C) if there is an M >  such that
χ (t) ≤ Mμ(t), t ∈ T, where χ is the characteristic function of the set T̂ = {t ∈ T : μ(t) > }.
We note that if T satisfies condition (C), then the subset Ť of T defined by

Ť = {t ∈ T : t >  is right-scattered or left-scattered}

is necessarily countable and T̂ ⊂ Ť. Then we can rewrite Ť by

Ť = {ti ∈ T :  < t < t < · · · < tn < · · · },

and so

T = Ť∪
[⋃
n∈A

(tn–, tn)
]
,

where A is the set of all integers for which the real open interval (tn–, tn) is contained in T.
To be precise, we have

A :=
{
n ∈N : (tn–, tn) ⊂ T

}
.

Baoguo, Erbe, and Peterson established in [] some oscillation criteria of Kiguradze-type
in particular, for the second-order superlinear dynamic equation

x��(t) + q(t)f
(
xσ (t)

)
= ,

where T satisfies condition (C) and f (x) satisfies the superlinearity condition

 <
∫ ∞

ε

dx
f (x)

,
∫ –ε

–∞
dx
f (x)

< ∞, for all ε > . (.)

Hassan, Erbe, and Peterson [] improved these results and generalized these to the super-
linear dynamic equation (.), where the coefficient functions r, p, q are allowed to change
sign for large t, and T satisfies condition (C). Also, Hassan, Erbe, and Peterson [] ap-
plied these results to the sublinear dynamic equation (.), where the functions r, p, q are
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also allowed to change sign for large t, and T satisfies condition (C), and f (x) satisfies the
sublinearity condition

 <
∫ ε



dx
f (x)

;
∫ 

–ε

dx
f (x)

< ∞, for all ε > . (.)

A number of sufficient conditions for oscillation were obtained in [, ] for the case
when

∫ ∞

t

�t
r(t)

= ∞,

and in [, ] for the case when

∫ ∞

t

�t
φ(t)r(t)

= ∞,

where φ is a rd-continuous function. Therefore, it will be of great interest to establish
oscillation criteria for (.) for both of the cases

∫ ∞

t

�t
φ(t)r(t)

= ∞ (.)

and
∫ ∞

t

�t
φ(t)r(t)

< ∞, (.)

where the function φ will be defined in the next section. We will still assume that the
functions r(t), p(t), and q(t) change sign for arbitrarily large values of t, and conditions
(A), (B), and (C) are not needed. Hence, our results will improve and extend results in
[–] and many known results on nonlinear oscillation. In addition, linear, sublinear,
and superlinear results will be presented.
These results have significant importance to the study of oscillation criteria on discrete

time scales such as T = Z, T = hZ, h > , or T = {t : t = qk ,k ∈ N,q > } and the space of
harmonic numbers T =Hn. In particular, we give examples where the coefficient function
r changes sign for large t as well as p and q and without conditions (.) and (.).

2 Main results
Before stating our main results, we begin with the following lemma (Second Mean Value
Theorem) which will play an important role in the proof of our main results.

Lemma . ([, Theorem .]) Let h be a bounded function that is integrable on [a,b]T.
Let mH and MH be the infimum and supremum of the function H(t) :=

∫ t
a h(s)�s on [a,b]T

respectively. Suppose that g is a nonnegative and nonincreasing function on [a,b]T. Then
there is some number 	 with mH ≤ 	 ≤ MH such that

∫ b

a
h(t)g(t)�t = g(a)	.

Our first result is stated in terms of an auxiliary function φ = φ(t).

http://www.advancesindifferenceequations.com/content/2012/1/171
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Theorem . Assume that f satisfies (.). If there exists a C
rd function φ such that

φ(t)r(t) > , P(t) ≥ , P�(t)≤ , for t ∈ [t,∞)T, (.)

where P(t) := φ�(t)r(t) – φσ (t)p(t) and

∫ ∞

t

�t
φ(t)r(t)

=
∫ ∞

t
φσ (t)q(t)�t = ∞, (.)

then every solution of equation (.) is oscillatory.

Proof Assume (.) has a nonoscillatory solution x on [t,∞)T. Then, without loss of gen-
erality, there is a solution x of (.) and a T ∈ [t,∞)T such that x(t) >  on [T ,∞)T. Define

w(t) :=
φ(t)r(t)x�(t)

f (x(t))
.

Then from the product and quotient rules and the Pötzsche chain rule [, Theorem .],
we get

w�(t) =
[

φ(t)
f (x(t))

]σ (
r(t)x�(t)

)� +
[

φ(t)
f (x(t))

]�

r(t)x�(t)

=
[

φ(t)
f (x(t))

]σ (
r(t)x�(t)

)�

+
[

φ�(t)
f (xσ (t))

–
φ(t)

∫ 
 f

′(xh(t))dhx�(t)
f (x(t))f (xσ (t))

]
r(t)x�(t),

where xh(t) := ( – h)x(t) + hxσ (t) >  for  ≤ h ≤ , t ∈ [T ,∞)T. Therefore, from (.), we
have

w�(t) = –φσ (t)q(t) +
P(t)x�(t)
f (xσ (t))

–
φ(t)r(t)

∫ 
 f

′(xh(t))dh (x�(t))

f (x(t))f (xσ (t))
. (.)

Since vf (v) > , f ′(v) > , for all v �=  and φ(t)r(t) > , for all t ≥ T , we get

w�(t) ≤ –φσ (t)q(t) +
P(t)x�(t)
f (xσ (t))

, for t ∈ [T ,∞)T.

Integrating the above inequality from T to t (≥ T ), we obtain

w(t) ≤ w(T) –
∫ t

T
φσ (s)q(s)�s +

∫ t

T

P(s)x�(s)
f (xσ (s))

�s. (.)

We claim that
∫ t
T

P(s)x�(s)
f (xσ (s)) �s is bounded above for all t ≥ T . Since P(t) ≥  and P�(t) ≤ ,

we have from Lemma . that for each t ∈ [T ,∞)T,

∫ t

T

P(s)x�(s)
f (xσ (s))

�s = P(T)	(t), (.)
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where m ≤ 	(t) ≤ M, and where m and M denote the infimum and supremum, respec-
tively, of the function

∫ s
T

x�(τ )
f (xσ (τ ))�τ for s ∈ [T , t)T. Define

F
(
x(s)

)
:=

∫ x(s)

x(T)

dτ

f (τ )
,

and so

(
F
(
x(s)

))� =
∫ 


F ′(xh(s))dhx�(s) =

∫ 




f (xh(s))

dhx�(s). (.)

For a fixed point s ∈ [T ,∞)T, we have

xh(s) = ( – h)x(s) + hxσ (s)

⎧⎨
⎩

≥ xσ (s), if x�(s) ≤ ,

≤ xσ (s), if x�(s) ≥ ,

and so

x�(s)
f (xh(s))

≥
⎧⎨
⎩

x�(s)
f (xσ (s)) , if x�(s)≤ ,
x�(s)
f (xσ (s)) , if x�(s)≥ .

Then

x�(s)
f (xh(s))

≥ x�(s)
f (xσ (s))

, for s ∈ [T ,∞)T.

And so, from (.), we have

(
F
(
x(s)

))� ≥ x�(s)
f (xσ (s))

, for s ∈ [T ,∞)T.

Also,

F
(
x(s)

)
=

∫ x(s)

x(T)

dτ

f (τ )
<

⎧⎨
⎩
, if x(s)≤ x(T),∫ ∞
x(T)

dτ
f (τ ) , if x(s) > x(T).

Then, from (.), we get

F
(
x(s)

)
=

∫ x(s)

x(T)

dτ

f (τ )
≤ L, for s ∈ [T ,∞)T.

Hence, it follows that

∫ t

T

x�(s)
f (xσ (s))

�s≤ F
(
x(t)

)
– F

(
x(T)

) ≤ L,

and from (.), for all t ∈ [T ,∞)T, we have

∫ t

T

P(s)x�(s)
f (xσ (s))

�s = P(T)	(t) ≤ P(T)L. (.)

http://www.advancesindifferenceequations.com/content/2012/1/171
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From (.) and (.), we get for t ∈ [T ,∞)T,

w�(t) ≤ w�(T) + P(T)L –
∫ t

T
φσ (s)q(s)�s.

In view of condition (.), it follows from the last inequality that there exists a sufficiently
large T ≥ T such that

x�(t) < , for t ∈ [T,∞)T.

Also, from (.), there exists T ≥ T such that

∫ t

T
φσ (s)q(s)�s≥ , for all t ≥ T. (.)

Indeed, (.) yields on integration

∫ t

T
φσ (s)

(
r(s)x�(s)

)�
�s +

∫ t

T
φσ (s)p(s)x�(s)�s

+
∫ t

T
φσ (s)q(s)f

(
xσ (s)

)
�s = . (.)

Now by the integration by parts, we have

∫ t

T
φσ (s)

(
r(s)x�(s)

)�
�s +

∫ t

T
φσ (s)p(s)x�(s)�s

= φ(t)r(t)x�(t) – φ(T)r(T)x�(T)

–
∫ t

T
φ�(s)r(s)x�(s)�s +

∫ t

T
φσ (s)p(s)x�(s)�s

= φ(t)r(t)x�(t) – φ(T)r(T)x�(T) –
∫ t

T
P(s)x�(s)�s

≥ φ(t)r(t)x�(t) – φ(T)r(T)x�(T), (.)

and by the integration by parts and the Pötzsche chain rule and then by (.), we get

∫ t

T
φσ (s)q(s)f

(
xσ (s)

)
�s = f

(
x(t)

)∫ t

T
φσ (τ )q(τ )�τ

–
∫ t

T

[∫ 


f ′(xh(s))dh

]
x�(s)

∫ s

T
φσ (τ )q(τ )�τ�s

≥ f
(
x(t)

)∫ t

T
φσ (s)q(s)�s≥ , for t ∈ [T,∞)T, (.)

since vf (v) >  and f ′(v) >  for all v �=  and x�(t) <  for t ≥ T. Using (.) and (.) in
(.), we get

φ(t)r(t)x�(t)≤ φ(T)r(T)x�(T),

http://www.advancesindifferenceequations.com/content/2012/1/171
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and so

x(t) – x(T) ≤ φ(T)r(T)x�(T)
∫ t

T

�s
φ(s)r(s)

.

Since φ(T)r(T)x�(T) < , we conclude from (.) that limt→∞ x(t) = –∞, which is a
contradiction. This completes the proof. �

In the case T = R, r(t) = , p(t) = , and f (x) = xα , α > , Theorem . is due to Kigu-
radze [].
If T = Z, r(t) = , p(t) = , q(t) ≥ , f (x) = xα , α > , and φ(t) = t – , then Theorem .

includes Theorem . in Hooker and Patula [, Theorem .] and Mingarelli [].
Suppose that there exists a C

rd function φ such that, for t ∈ [t,∞)T,

φ(t)r(t) > , φ�(t)r(t) = φσ (t)p(t). (.)

Then, in this case, we have P(t) ≡ , and so we do not need to assume the superlinearity
conditions (.), and so the result applies to linear, sublinear, and superlinear case.

Corollary . If there exists a C
rd function φ such that (.) and (.) hold, then every

solution of equation (.) is oscillatory.

If we do not assume superlinearity condition (.) and condition (.), then we can
conclude that all bounded solutions are oscillatory.

Corollary . If there exists a C
rd function φ such that (.) and (.) hold, then every

bounded solution of equation (.) is oscillatory.

In the following, we assume that there exists a C
rd function φ such that

∫ ∞

t

�t
φ(t)r(t)

< ∞, (.)

holds and establish some sufficient conditions for equation (.).

Theorem . Assume that f satisfies (.). If there exists a C
rd function φ such that (.)

and (.) hold and if

∫ ∞

t
φσ (t)q(t)�t = ∞, (.)

and

∫ ∞

t


φ(t)r(t)

[∫ t

t
φσ (s)q(s)�s

]
�t = ∞, (.)

then every solution of equation (.) is either oscillatory or tends to zero.

http://www.advancesindifferenceequations.com/content/2012/1/171
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Proof Assume (.) has a nonoscillatory solution x on [t,∞)T. Then, without loss of gen-
erality, there is a solution x of (.) and a T ∈ [t,∞)T such that x(t) >  on [T ,∞)T. As
in the proof of Theorem ., by using (.), we have that there exists a sufficiently large
T ≥ T such that

x�(t) < , for t ∈ [T,∞)T,

and so

w�(t) ≤ –φσ (t)q(t) +
P(t)x�(t)
f (xσ (t))

≤ –φσ (t)q(t),

which yields

∫ t

T
φσ (s)q(s)�s ≤ φ(T)

r(T)x�(T)
f (x(T))

– φ(t)
r(t)x�(t)
f (x(t))

≤ –φ(t)r(t)
x�(t)
f (x(t))

, for t ∈ [T,∞)T.

That is,


φ(t)r(t)

∫ t

T
φσ (s)q(s)�s≤ –

x�(t)
f (x(t))

,

so integration from T to t (t ≥ T) yields

∫ t

T


φ(s)r(s)

[∫ s

T
φσ (u)q(u)�u

]
�s ≤ –

∫ t

T

x�(s)
f (x(s))

�s. (.)

Define

F
(
x(t)

)
:=

∫ x(t)

x(T)

ds
f (s)

.

Then

(
F
(
x(t)

))� =
∫ 


F ′(xh(t))dhx�(t) =

∫ 




f (xh(t))

dhx�(t)

≤
∫ 




f (x(t))

dhx�(t) =
x�(t)
f (x(t))

. (.)

Since x�(t) < , we have limt→∞ x(t) = L ≥ . If we assume L > , then

–F
(
x(t)

)
=

∫ x(T)

x(t)

ds
f (s)

≤
∫ x(T)

L

ds
f (s)

<∞,

so
∫ t

T


φ(s)r(s)

[∫ s

T
φσ (u)q(u)�u

]
�s ≤ –

∫ t

T

(
F
(
x(s)

))�
�s = –F

(
x(t)

)
< ∞,

and let t → ∞ to get a contradiction to (.). This completes the proof. �

http://www.advancesindifferenceequations.com/content/2012/1/171
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Corollary . If there exists a C
rd function φ such that (.), (.), (.), and (.)

hold, then every solution of equation (.) is either oscillatory or tends to zero.

Corollary . If there exists a C
rd function φ such that (.), (.), (.), and (.) hold,

then every bounded solution of equation (.) is either oscillatory or tends to zero.

Next we present oscillation criteria for equation (.) where f satisfies sublinearity con-
dition (.).

Theorem . Assume that f satisfies (.). If there exists a C
rd function φ such that (.),

(.), (.), and (.), then every solution of equation (.) is oscillatory.

Proof Assume (.) has a nonoscillatory solution x on [t,∞)T. Then, without loss of gen-
erality, there is a solution x of (.) and a T ∈ [t,∞)T such that x(t) >  on [T ,∞)T. As
in the proof of Theorems . and ., we have that there exists a sufficiently large T ≥ T
such that

x�(t) < , for t ∈ [T,∞)T,

and, from (.) and (.), we get

∫ t

T


φ(s)r(s)

[∫ s

T
φσ (u)q(u)�u

]
�s ≤ –

∫ t

T

(
F
(
x(s)

))�
�s = –F

(
x(t)

)
.

Since x�(t) < , then limt→∞ x(t)≥  and so

–F
(
x(t)

)
=

∫ x(T)

x(t)

ds
f (s)

≤
∫ x(T)



ds
f (s)

(.)
< ∞.

Then

∫ t

T


φ(s)r(s)

[∫ s

T
φσ (u)q(u)�u

]
�s < ∞,

which is a contradiction to (.). This completes the proof. �

Theorem . Assume that f satisfies (.). If there exists a C
rd function φ such that (.),

(.), (.), and (.) hold, then every bounded solution of equation (.) is oscillatory.

The results are very general. With appropriate choices of φ(t), we can obtain several
sufficient conditions for the oscillation of equation (.).

3 Examples
In this section, we give two examples to illustrate our main results. We note that in the
first example, all of the coefficient functions r(t), p(t), q(t) change sign for arbitrarily large
values of t, and the function f may be linear, superlinear, or sublinear, since we do not
assume nonlinearity conditions (.) and (.).

http://www.advancesindifferenceequations.com/content/2012/1/171
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Example . Let t >  and T be a discrete time scale satisfying μ >  on T. Consider the
second-order nonlinear dynamic equation with damping

(
r(tn)x�(tn)

)� + p(tn)x�(tn) + q(tn)f
(
xσ (tn)

)
= , (.)

where f satisfies f ′(x) >  and xf (x) >  for x �= . Define, for tn ∈ T, n ∈ N,

φ(tn) := (–)ntβn , r(tn) :=
(–)n

tβn
, p(tn) :=

(–)n

tβn μ(tn)

(
 +

(
tn
tn+

)β)
,

and

q(tn) :=


tβn+

(


tntn+
–
(–)n

tβn

)
,

where βi ∈R, i = , ,  such that β – β ≤  and β ≤ . Therefore,

φ(tn)r(tn) = tβ–β
n > , φ�(tn)r(tn) = φσ (tn)p(tn),

so (.) is satisfied. Also,

∫ ∞

t

�tn
φ(tn)r(tn)

=
∫ ∞

t

�tn
tβ–β
n

= ∞,

and
∫ ∞

t
φσ (tn)q(tn)�tn =

∫ ∞

t

(

tβn

–
(–)n

tntn+

)
�tn = ∞,

by Example . in []. Then, by Theorem ., every solution of equation (.) is oscilla-
tory.

Example . Let T =N and consider the difference equation

�
(
r(n)�x(n)

)
+ p(n)�x(n) + q(n)f

(
x(n + )

)
= , n≥ n > , (.)

where f satisfies f ′(x) >  and xf (x) >  for x �=  and nonlinearity condition (.). Define

φ(n) := (n – )β , r(n) := nδ–β , p(n) := ,

and

q(n) :=
a

nα+γ
+
b(–)n

nγ
,

where α, δ ∈ [, ] and a,b,γ ,β ∈ R. It is easy to see that (.) and
∫ ∞
t

�t
φ(t)r(t) = ∞ hold.

Note that

∫ ∞

t
σβ(t)q(t)�t =

∞∑
k=n

(
a

kα+γ–β
+
b(–)k

kγ–β

)
.

http://www.advancesindifferenceequations.com/content/2012/1/171
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If β = γ , we get

∫ ∞

t
σβ(t)q(t)�t = ∞.

Then, by Theorem ., every solution of equation (.) is oscillatory.
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