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Abstract
Park (J. Math. Phys. 47:103512, 2006) proved the Hyers-Ulam stability of
homomorphisms in C*-ternary algebras and of derivations on C*-ternary algebras for
the following generalized Cauchy-Jensen additive mapping:

2f
(∑p

j=1 xj
2

+
d∑
j=1

yj

)
=

p∑
j=1

f (xj) + 2
d∑
j=1

f (yj).

In this paper, we improve and generalize some results concerning this functional
equation via the fixed-point method.
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1 Introduction and preliminaries
The stability problem of functional equations originated from a question of Ulam [] con-
cerning the stability of group homomorphisms. Hyers [] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Let X and Y be Banach spaces. Hyers’
theorem was generalized by Aoki [] for additive mappings and by Rassias [] for linear
mappings by considering an unbounded Cauchy difference.

Theorem . (Th.M. Rassias) Let f : E → E′ be a mapping from a normed vector space E
into a Banach space E′ subject to the inequality

∥∥f (x + y) – f (x) – f (y)
∥∥ ≤ ε

(‖x‖p + ‖y‖p) (.)

for all x, y ∈ E, where ε and p are constants with ε >  and p < . Then the limit

L(x) = lim
n→∞

f (nx)
n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥∥f (x) – L(x)
∥∥ ≤ ε

 – p
‖x‖p (.)
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for all x ∈ E. If p <  then inequality (.) holds for x, y �=  and (.) for x �= . Also, if for
each x ∈ E the mapping f (tx) is continuous in t ∈ R, then L is linear.

Rassias [] during the th International Symposium on Functional Equations asked
the question whether such a theorem can also be proved for p≥ . Gajda [] following the
same approach as in Rassias [], gave an affirmative solution to this question for p > . It
was shown by Gajda [], as well as by Rassias and Šemrl [] that one cannot prove a Ras-
sias’ type theoremwhen p = . The counterexamples of Gajda [], as well as of Rassias and
Šemrl [] have stimulated several mathematicians to invent new definitions of approxi-
mately additive or approximately linear mappings, cf. Găvruta [], Jung [], who among
others studied the Hyers-Ulam stability of functional equations. The inequality (.) that
was introduced for the first time by Rassias [] provided a lot of influence in the devel-
opment of a generalization of the Hyers-Ulam stability concept (cf. the books of Czerwik
[], Hyers, Isac, and Rassias []).
Following the terminology of [], a nonempty setGwith a ternary operation [·, ·, ·] :G×

G×G →G is called a ternary groupoid and is denoted by (G, [·, ·, ·]). The ternary groupoid
(G, [·, ·, ·]) is called commutative if [x,x,x] = [xσ (),xσ (),xσ ()] for all x,x,x ∈ G and all
permutations σ of {, , }.
If a binary operation ◦ is defined on G such that [x, y, z] = (x ◦ y) ◦ z for all x, y, z ∈ G,

then we say that [·, ·, ·] is derived from ◦. We say that (G, [·, ·, ·]) is a ternary semigroup if
the operation [·, ·, ·] is associative, i.e., if [[x, y, z],u, v] = [x, [y, z,u], v] = [x, y, [z,u, v]] holds
for all x, y, z,u, v ∈G (see []).
A C*-ternary algebra is a complex Banach space A, equipped with a ternary product

(x, y, z) �→ [x, y, z] ofA intoA, which areC-linear in the outer variables, conjugateC-linear
in the middle variable, and associative in the sense that [x, y, [z,w, v]] = [x, [w, z, y], v] =
[[x, y, z],w, v], and satisfies ‖[x, y, z]‖ ≤ ‖x‖·‖y‖·‖z‖ and ‖[x,x,x]‖ = ‖x‖ (see [, ]). Ev-
ery left HilbertC*-module is aC*-ternary algebra via the ternary product [x, y, z] := 〈x, y〉z.
If a C*-ternary algebra (A, [·, ·, ·]) has an identity, i.e., an element e ∈ A such that x =

[x, e, e] = [e, e,x] for all x ∈ A, then it is routine to verify thatA, endowedwith x◦y := [x, e, y]
and x* := [e,x, e], is a unital C*-algebra. Conversely, if (A,◦) is a unital C*-algebra, then
[x, y, z] := x ◦ y* ◦ z makes A into a C*-ternary algebra.
A C-linear mapping H : A→ B is called a C*-ternary algebra homomorphism if

H
(
[x, y, z]

)
=

[
H(x),H(y),H(z)

]
for all x, y, z ∈ A. If, in addition, the mapping H is bijective, then the mapping H : A → B
is called a C*-ternary algebra isomorphism. A C-linear mapping δ : A → A is called a C*-
ternary derivation if

δ
(
[x, y, z]

)
=

[
δ(x), y, z

]
+

[
x, δ(y), z

]
+

[
x, y, δ(z)

]
for all x, y, z ∈ A (see [, ]).
There are some applications, although still hypothetical, in the fractional quantum Hall

effect, the nonstandard statistics, supersymmetric theory, and Yang-Baxter equation (cf.
[–]).
Throughout this paper, assume that p, d are nonnegative integers with p + d ≥ , and

that A and B are C*-ternary algebras.

http://www.advancesindifferenceequations.com/content/2012/1/137


Kenari et al. Advances in Difference Equations 2012, 2012:137 Page 3 of 13
http://www.advancesindifferenceequations.com/content/2012/1/137

The aim of the present paper is to establish the stability problem of homomorphisms
and derivations in C*-ternary algebras by using the fixed-point method.
Let E be a set. A function d : E × E → [, ] is called a generalized metric on E if d

satisfies
(i) d(x, y) =  if and only if x = y;
(ii) d(x, y) = d(y,x) for all x, y ∈ E;
(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E.

Theorem . Let (E,d) be a complete generalized metric space and let J : E → E be a
strictly contractive mapping with constant L < . Then for each given element x ∈ E, either

d
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a nonnegative integer n such that
() d(Jnx, Jn+x) < ∞ for all n≥ n;
() the sequence Jnx converges to a fixed point y∗ of J ;
() y∗ is the unique fixed point of J in the set Y = y ∈ E : d(Jn , y) < ∞;
() d(y, y∗) ≤ 

–Ld(y, Jy) for all y ∈ Y .

2 Stability of homomorphisms in C*-ternary algebras
Throughout this section, assume that A is a unital C*-ternary algebra with norm ‖ · ‖ and
unit e, and that B is a unital C*-ternary algebra with norm ‖ · ‖ and unit e′.
The stability of homomorphisms inC*-ternary algebras has been investigated in [] via

direct method. In this note, we improve some results in [] via the fixed-point method.
For a given mapping f : A→ B, we define

Cμf (x, . . . ,xp, y, . . . , yd) := f

(∑p
j= μxj


+
d∑
j=

μyj

)
–

p∑
j=

μf (xj) – 
d∑
j=

μf (yj)

for all μ ∈ T
 := {λ ∈C : |λ| = } and all x, . . . ,xp, y, . . . , yd ∈ A.

One can easily show that a mapping f : A→ B satisfies

Cμf (x, . . . ,xp, y, . . . , yd) = 

for all μ ∈ T and all x, . . . ,xp, y, . . . , yd ∈ A if and only if

f (μx + λy) = μf (x) + λf (y)

for all μ,λ ∈ T
 and all x, y ∈ A.

We will use the following lemma in this paper.

Lemma . ([]) Let f : A → B be an additive mapping such that f (μx) = μf (x) for all
x ∈ A and all μ ∈ T

. Then the mapping f is C-linear.

Lemma . Let {xn}n, {yn}n and {zn}n be convergent sequences in A. Then the sequence
{[xn, yn, zn]} is convergent in A.
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Proof Let x, y, z ∈ A such that

lim
n→∞xn = x, lim

n→∞ vn = y, lim
n→∞ zn = z.

Since

[xn, yn, zn] – [x, y, z] = [xn – x, yn – y, zn, z] + [xn, yn, z]

+ [x, yn – y, zn] + [xn, y, zn – z]

for all n, we get

∥∥[xn, yn, zn] – [x, y, z]
∥∥ = ‖xn – x‖‖yn – y‖‖zn – z‖ + ‖xn – x‖‖yn‖‖z‖

+ ‖x‖‖yn – y‖‖zn‖ + ‖xn‖‖y‖‖zn – z‖

for all n. So

lim
n→∞[xn, yn, zn] = [x, y, z].

This completes the proof. �

Theorem. Let f : A→ B be amapping for which there exist functions ϕ : Ap+d → [,∞)
and ψ : A → [,∞) such that

lim
n→∞γ –nϕ

(
γ nx, . . . ,γ nxp,γ ny, . . . ,γ nyd

)
= ,

lim
n→∞γ –nψ

(
γ nx,γ ny,γ nz

)
= ,∥∥Cμf (x, . . . ,xp, y, . . . , yd)

∥∥ ≤ ϕ(x, . . . ,xp, y, . . . , yd), (.)∥∥f [x, y, z] – [
f (x), f (y), f (z)

]∥∥ ≤ ψ(x, y, z) (.)

for all μ ∈ T
 and all x, y, z,x, . . . ,xp, y, . . . , yd ∈ A, where γ = p+d

 . If there exists constant
L <  such that

ϕ(γ x, . . . ,γ x) ≤ γLϕ(x, . . . ,x)

for all x ∈ A, then there exists a unique C*-ternary algebras homomorphism H : A → B
satisfying

∥∥f (x) –H(x)
∥∥ ≤ 

( – L)γ
ϕ(x, . . . ,x) (.)

for all x ∈ A.

Proof Let us assume μ =  and x = · · · = xp = y = · · · = yd = x in (.). Then we get

∥∥f (γ x) – γ f (x)
∥∥ ≤ 


ϕ(x, . . . ,x) (.)
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for all x ∈ A. Let E := {g : A→ B}. We introduce a generalized metric on E as follows:

d(g,h) := inf
{
C ∈ [,∞] :

∥∥g(x) – h(x)
∥∥ ≤ Cϕ(x, . . . ,x) for all x ∈ A

}
.

It is easy to show that (E,d) is a generalized complete metric space.
Now, we consider the mapping 	 : E → E defined by

(	g)(x) =

γ
g(γ x), for all g ∈ E and x ∈ A.

Let g,h ∈ E and let C ∈ [,∞] be an arbitrary constant with d(g,h) ≤ C. From the defini-
tion of d, we have

∥∥g(x) – h(x)
∥∥ ≤ Cϕ(x, . . . ,x)

for all x ∈ A. By the assumption and the last inequality, we have

∥∥(	g)(x) – (	h)(x)
∥∥ =


γ

∥∥g(γ x) – h(γ x)
∥∥ ≤ C

γ
ϕ(γ x, . . . ,γ x) ≤ CLϕ(x, . . . ,x)

for all x ∈ A. So d(	g,	h) ≤ Ld(g,h) for any g,h ∈ E. It follows from (.) that d(	f , f ) ≤

γ . Therefore according to Theorem ., the sequence {	nf } converges to a fixed point H
of 	, i.e.,

H : A→ B, H(x) = lim
n→∞

(
	nf

)
(x) = lim

n→∞


γ n f
(
γ nx

)
(.)

and H(γ x) = γH(x) for all x ∈ A. Also H is the unique fixed point of 	 in the set E = {g ∈
E : d(f , g) < ∞} and

d(H , f ) ≤ 
 – L

d(	f , f ) ≤ 
( – L)γ

i.e., the inequality (.) holds true for all x ∈ A. It follows from the definition of H that

∥∥∥∥∥H
(∑p

j= μxj


+
d∑
j=

μyj

)
–

p∑
j=

μH(xj) – 
d∑
j=

μH(yj)

∥∥∥∥∥
= lim

n→∞


γ n

∥∥∥∥∥f
(

γ n

∑p
j= μxj


+ γ n
d∑
j=

μyj

)
–

p∑
j=

μf
(
γ nxj

)
– 

d∑
j=

μf
(
γ nyj

)∥∥∥∥∥
≤ lim

n→∞γ –nϕ
(
γ nx, . . . ,γ nxp,γ ny, . . . ,γ nyd

)
= 

for all μ ∈ T and all x, . . . ,xp, y, . . . , yd ∈ A. Hence

H

(∑p
j= μxj


+
d∑
j=

μyj

)
=

p∑
j=

μH(xj) + 
d∑
j=

μH(yj)

for allμ ∈ T
 and all x, . . . ,xp, y, . . . , yd ∈ A. SoH(λx+μy) = λH(x)+μH(y) for all λ,μ ∈ T



and all x, y ∈ A.
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Therefore, by Lemma ., the mapping H : A → B is C-linear.
It follows from (.) and (.) that

∥∥H(
[x, y, z]

)
–

[
H(x),H(y),H(z)

]∥∥
= lim

n→∞


γ n

∥∥f ([γ nx,γ ny,γ nz
])
–

[
f
(
γ nx

)
, f

(
γ ny

)
, f

(
γ nz

)]∥∥
≤ lim

n→∞γ –nψ
(
γ nx,γ ny,γ nz

)
= 

for all x, y, z ∈ A. Thus

H
(
[x, y, z]

)
=

[
H(x),H(y),H(z)

]
for all x, y, z ∈ A. Therefore, the mapping H is a C*-ternary algebras homomorphism.
Now, let T : A → B be another C*-ternary algebras homomorphism satisfying (.).

Since d(f ,T) ≤ 
(–L)γ and T is C-linear, we get T ∈ E′ and (	T)(x) = 

γ
(Tγ x) = T(x) for

all x ∈ A, i.e., T is a fixed point of 	. Since H is the unique fixed point of 	 ∈ E′, we get
H = T . �

Theorem. Let f : A → B be amapping for which there exist functions ϕ : Ap+d → [,∞)
and ψ : A → [,∞) satisfying (.), (.),

lim
n→∞γ nϕ

(
x
γ n , . . . ,

xp
γ n ,

y
γ n , . . . ,

yd
γ n

)
= ,

lim
n→∞γ nψ

(
x
γ n ,

y
γ n ,

z
γ n

)
= ,

for all x, y, z,x, . . . ,xp, y, . . . , yd ∈ A, where γ = p+d
 . If there exists constant L <  such that

ϕ

(

γ
x, . . . ,


γ
x
)

≤ 
γ
Lϕ(x, . . . ,x)

for all x ∈ A, then there exists a unique C*-ternary algebras homomorphism H : A → B
satisfying

∥∥f (x) –H(x)
∥∥ ≤ 

( – L)γ
ϕ(x, . . . ,x)

for all x ∈ A.

Proof If we replace x in (.) by x
γ
, then we get

∥∥∥∥f (x) – γ f
(
x
γ

)∥∥∥∥ ≤ 

ϕ

(
x
γ
, . . . ,

x
γ

)
≤ L

γ
ϕ(x, . . . ,x) (.)

for all x ∈ A. Let E := {g : A→ A}. We introduce a generalized metric on E as follows:

d(g,h) := inf
{
C ∈ [,∞] :

∥∥g(x) – h(x)
∥∥ ≤ Cϕ(x, . . . ,x) for all x ∈ A

}
.

It is easy to show that (E,d) is a generalized complete metric space.

http://www.advancesindifferenceequations.com/content/2012/1/137


Kenari et al. Advances in Difference Equations 2012, 2012:137 Page 7 of 13
http://www.advancesindifferenceequations.com/content/2012/1/137

Now, we consider the mapping 	 : E → E defined by

(	g)(x) = γ g
(
x
γ

)
, for all g ∈ E and x ∈ A.

Let g,h ∈ E and let C ∈ [,∞] be an arbitrary constant with d(g,h) ≤ C. From the defini-
tion of d, we have

∥∥g(x) – h(x)
∥∥ ≤ Cϕ(x, . . . ,x)

for all x ∈ A. By the assumption and the last inequality, we have

∥∥(	g)(x) – (	h)(x)
∥∥ =

∥∥∥∥γ g
(
x
γ

)
– γ h

(
x
γ

)∥∥∥∥ ≤ γCϕ

(
x
γ
, . . . ,

x
γ

)
≤ CLϕ(x, . . . ,x)

for all x ∈ A, and so d(	g,	h) ≤ Ld(g,h) for any g,h ∈ E. It follows from (.) that
d(	f , f ) ≤ 

γ . Thus, according to Theorem ., the sequence {	nf } converges to a fixed
point H of 	, i.e.,

H : A→ B, H(x) = lim
n→∞

(
	nf

)
(x) = lim

n→∞γ nf
(

x
γ n

)

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem ., and we omit it. �

Corollary . ([]) Let r and θ be nonnegative real numbers such that r /∈ [, ], and let
f : A→ B be a mapping such that

∥∥Cμf (x, . . . ,xp, y, . . . , yd)
∥∥ ≤ θ

( p∑
j=

‖xj‖r +
d∑
j=

‖yj‖r
)

(.)

and

∥∥f ([x, y, z]) – [
f (x), f (y), f (z)

]∥∥ ≤ θ
(‖x‖r + ‖y‖r + ‖z‖r) (.)

for all μ ∈ T
 and all x, y, z,x, . . . ,xp, y, . . . , yd ∈ A. Then there exists a unique C*-ternary

algebra homomorphism H : A→ B such that

∥∥f (x) –H(x)
∥∥ ≤ r(p + d)θ

|(p + d)r – (p + d)r| ‖x‖
r (.)

for all x ∈ A.

Proof The proof follows from Theorems . and . by taking

ϕ(x, . . . ,xp, y, . . . , yd) := θ

( p∑
j=

‖xj‖r +
d∑
j=

‖yj‖r
)
,

ψ(x, y, z) := θ
(‖x‖r + ‖y‖r + ‖z‖r)

http://www.advancesindifferenceequations.com/content/2012/1/137


Kenari et al. Advances in Difference Equations 2012, 2012:137 Page 8 of 13
http://www.advancesindifferenceequations.com/content/2012/1/137

for all μ ∈ T
 and all x, y, z,x, . . . ,xp, y, . . . , yd ∈ A. Then we can choose L = –r(p+d)r–,

when  < r <  and L =  – –r(p + d)r–, when r >  and we get the desired results. �

3 Superstability of homomorphisms in C*-ternary algebras
Throughout this section, assume that A is a unital C*-ternary algebra with norm ‖ · ‖ and
unit e, and that B is a unital C*-ternary algebra with norm ‖ · ‖ and unit e′.
We investigate homomorphisms in C*-ternary algebras associated with the functional

equation Cμf (x, . . . ,xp, y, . . . , yd) = .

Theorem . ([]) Let r >  (resp., r < ) and θ be nonnegative real numbers, and let
f : A→ B be a bijective mapping satisfying (.) and

f
(
[x, y, z]

)
=

[
f (x), f (y), f (z)

]

for all x, y, z ∈ A. If limn→∞ (p+d)n
n f ( ne

(p+d)n ) = e′ (resp., limn→∞ n
(p+d)n f (

(p+d)n
n e) = e′), then

the mapping f : A→ B is a C*-ternary algebra isomorphism.

In the following theorems we have alternative results of Theorem ..

Theorem. Let r <  and θ be nonnegative real numbers, and let f : A → B be amapping
satisfying (.) and (.). If there exist a real number λ >  (resp.,  < λ < ) and an element
x ∈ A such that limn→∞ 

λn f (λ
nx) = e′ (resp., limn→∞ λnf ( x

λn ) = e′), then the mapping f :
A→ B is a C*-ternary algebra homomorphism.

Proof By using the proof of Corollary ., there exists a unique C*-ternary algebra homo-
morphism H : A→ B satisfying (.). It follows from (.) that

H(x) = lim
n→∞


λn f

(
λnx

)
,

(
H(x) = lim

n→∞λnf
(

x
λn

))

for all x ∈ A and all real numbers λ >  ( < λ < ). Therefore, by the assumption, we get
that H(x) = e′.
Let λ >  and limn→∞ 

λn f (λ
nx) = e′. It follows from (.) that

∥∥[
H(x),H(y),H(z)

]
–

[
H(x),H(y), f (z)

]∥∥
=

∥∥H[x, y, z] –
[
H(x),H(y), f (z)

]∥∥
= lim

n→∞


λn

∥∥f ([λnx,λny,λnz
])
–

[
f
(
λnx

)
, f

(
λny

)
, f

(
λnz

)]∥∥
≤ lim

n→∞
λrn

λn θ
(‖x‖r + ‖y‖r + ‖z‖r) = 

for all x ∈ A. So [H(x),H(y),H(z)] = [H(x),H(y), f (z)] for all x, y, z ∈ A. Letting x = y = x in
the last equality, we get f (z) = H(z) for all z ∈ A. Similarly, one can show that H(x) = f (x)
for all x ∈ A when  < λ <  and limn→∞ λnf ( x

λn ) = e′.
Similarly, one can show the theorem for the case λ > .
Therefore, the mapping f : A→ B is a C*-ternary algebra homomorphism. �
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Theorem. Let r >  and θ be nonnegative real numbers, and let f : A→ B be amapping
satisfying (.) and (.). If there exist a real number  < λ <  (resp., λ > ) and an element
x ∈ A such that limn→∞ 

λn f (λ
nx) = e′ (resp., limn→∞ λnf ( x

λn ) = e′), then the mapping f :
A→ B is a C*-ternary algebra homomorphism.

Proof The proof is similar to the proof of Theorem . and we omit it. �

4 Stability of derivations on C*-ternary algebras
Throughout this section, assume that A is a C*-ternary algebra with norm ‖ · ‖.
Park [] proved the Hyers-Ulam stability of derivations on C*-ternary algebras for the

functional equation Cμf (x, . . . ,xp, y, . . . , yd) = .
For a given mapping f : A → A, let

Df (x, y, z) = f
(
[x, y, z]

)
–

[
f (x), y, z

]
–

[
x, f (y), z

]
–

[
x, y, f (z)

]
for all x, y, z ∈ A.

Theorem . ([]) Let r and θ be nonnegative real numbers such that r /∈ [, ], and let
f : A→ A be a mapping satisfying (.) and

∥∥Df (x, y, z)
∥∥ ≤ θ

(‖x‖r + ‖y‖r + ‖z‖r)
for all x, y, z ∈ A. Then there exists a unique C*-ternary derivation δ : A→ A such that

∥∥f (x) – δ(x)
∥∥ ≤ r(p + d)

|(p + d)r – (p + d)r|θ‖x‖r

for all x ∈ A.

In the following theorem, we generalize and improve the result in Theorems ..

Theorem . Let ϕ : Ap+d → [,∞) and ψ : A → [,∞) be functions such that

lim
n→∞γ –nϕ

(
γ nx, . . . ,γ nxp,γ ny, . . . ,γ nyd

)
= , (.)

lim
n→∞γ –nψ

(
γ nx,γ ny,γ nz

)
= , lim

n→∞γ –nψ
(
γ nx,γ ny, z

)
=  (.)

for all x, y, z,x, . . . ,xp, y, . . . , yd ∈ A, where γ = p+d
 . Suppose that f : A → A is a mapping

satisfying

∥∥Cμf (x, . . . ,xp, y, . . . , yd)
∥∥ ≤ ϕ(x, . . . ,xp, y, . . . , yd), (.)∥∥Df (x, y, z)

∥∥
A ≤ ψ(x, y, z) (.)

for all μ ∈ T
 and all x, y, z,x, . . . ,xp, y, . . . , yd ∈ A. If there exists a constant L <  such that

ϕ(γ x, . . . ,γ x) ≤ γ ϕ(x, . . . ,x),

then the mapping f : A→ A is a C*-ternary derivation.

http://www.advancesindifferenceequations.com/content/2012/1/137
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Proof Let us assume μ =  and x = · · · = xp = y = · · · = yd = x in (.). Then we get

∥∥f (γ x) – γ f (x)
∥∥ ≤ 


ϕ(x, . . . ,x) (.)

for all x ∈ A. Let E := {g : A→ A}. We introduce a generalized metric on E as follows:

d(g,h) := inf
{
C ∈ [,∞] :

∥∥g(x) – h(x)
∥∥ ≤ Cϕ(x, . . . ,x) for all x ∈ A

}
.

It is easy to show that (E,d) is a generalized complete metric space.
Now, we consider the mapping 	 : E → E defined by

(	g)(x) =

γ
g(γ x), for all g ∈ E and x ∈ A.

Let g,h ∈ E and let C ∈ [,∞] be an arbitrary constant with d(g,h) ≤ C. From the defini-
tion of d, we have

∥∥g(x) – h(x)
∥∥ ≤ Cϕ(x, . . . ,x)

for all x ∈ A. By the assumption and the last inequality, we have

∥∥(	g)(x) – (	h)(x)
∥∥ =


γ

∥∥g(γ x) – h(γ x)
∥∥ ≤ C

γ
ϕ(γ x, . . . ,γ x) ≤ CLϕ(x, . . . ,x)

for all x ∈ A. Then d(	g,	h) ≤ Ld(g,h) for any g,h ∈ E. It follows from (.) that
d(	f , f ) ≤ 

γ . Thus according to Theorem ., the sequence {	nf } converges to a fixed
point δ of 	, i.e.,

δ : A→ A, δ(x) = lim
n→∞

(
	nf

)
(x) = lim

n→∞


γ n f
(
γ nx

)
(.)

and δ(γ x) = γ δ(x) for all x ∈ A. Also δ is the unique fixed point of 	 in the set E = {g ∈ E :
d(f , g) <∞} and

d(δ, f )≤ 
 – L

d(	f , f ) ≤ 
( – L)γ

i.e., the inequality (.) holds true for all x ∈ A. It follows from the definition of δ, (.),
(.), and (.) that

∥∥Cμδ(x, . . . ,xp, y, . . . , yd)
∥∥

= lim
n→∞


γ n

∥∥Cμf
(
γ nx, . . . ,γ nxp,γ ny, . . . ,γ nyd

)∥∥
≤ lim

n→∞


γ n ϕ
(
γ nx, . . . ,γ nxp,γ ny, . . . ,γ nyd

)
= 

for all μ ∈ T
 and all x, y, z,x, . . . ,xp, y, . . . , yd ∈ A. Hence,

δ

(∑p
j= μxj


+
d∑
j=

μyj

)
=

p∑
j=

μδ(xj) + 
d∑
j=

μδ(yj)

http://www.advancesindifferenceequations.com/content/2012/1/137
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for all μ ∈ T
 and all x, . . . ,xp, y, . . . , yd ∈ A. So δ(λx +μy) = λδ(x) +μδ(y) for all λ,μ ∈ T



and all x, y ∈ A.
Therefore, by Lemma . the mapping δ : A→ A is C-linear.
It follows from (.) and (.) that

∥∥Dδ(x, y, z)
∥∥ = lim

n→∞


γ n

∥∥Df
(
γ nx,γ ny,γ nz

)∥∥ ≤ lim
n→∞


γ n ψ

(
γ nx,γ ny,γ nz

)
= 

for all x, y, z ∈ A. Hence

δ
(
[x, y, z]

)
=

[
δ(x), y, z

]
+

[
x, δ(y), z

]
+

[
x, y, δ(z)

]
(.)

for all x, y, z ∈ A. So the mapping δ : A → A is a C*-ternary derivation.
It follows from (.) and (.)

∥∥δ[x, y, z] –
[
δ(x), y, z

]
–

[
x, δ(y), z

]
–

[
x, y, f (z)

]∥∥
= lim

n→∞


γ n

∥∥f [γ nx,γ ny, z
]
–

[
f
(
γ nx

)
,γ ny, z

]
–

[
γ nx, f

(
γ ny

)
, z

]
–

[
γ nx,γ ny, f (z)

]∥∥
≤ lim

n→∞


γ n ψ
(
γ nx,γ ny, z

)
= 

for all x, y, z ∈ A. Thus

δ[x, y, z] =
[
δ(x), y, z

]
+

[
x, δ(y), z

]
+

[
x, y, f (z)

]
(.)

for all x, y, z ∈ A. Hence, we get from (.) and (.) that

[
x, y, δ(z)

]
=

[
x, y, f (z)

]
(.)

for all x, y, z ∈ A. Letting x = y = f (z) – δ(z) in (.), we get

∥∥f (z) – δ(z)
∥∥ =

∥∥[
f (z) – δ(z), f (z) – δ(z), f (z) – δ(z)

]∥∥ = 

for all z ∈ A. Hence, f (z) = δ(z) for all z ∈ A. So the mapping f : A → A is a C*-ternary
derivation, as desired. �

Corollary . Let r < , s <  and θ be nonnegative real numbers, and let f : A → A be a
mapping satisfying (.) and

∥∥Df (x, y, z)
∥∥
A ≤ θ

(‖x‖sA + ‖y‖sA + ‖z‖sA
)

for all x, y, z ∈ A. Then the mapping f : A→ A is a C*-ternary derivation.

Proof Defining

ϕ(x, . . . ,xp, y, . . . , yd) = θ

( p∑
j=

‖xj‖rA +
d∑
j=

‖yj‖rA
)

http://www.advancesindifferenceequations.com/content/2012/1/137
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and

ψ(x, y, z) = θ
(‖x‖sA + ‖y‖sA + ‖z‖sA

)
for all x, y, z,x, . . . ,xp, y, . . . , yd ∈ A, and applying Theorem ., we get the desired result.

�

Theorem . Let ϕ : Ap+d → [,∞) and ψ : A → [,∞) be functions such that

lim
n→∞γ nϕ

(
x
γ n , . . . ,

xp
γ n ,

y
γ n , . . . ,

yd
γ n

)
= ,

lim
n→∞γ nψ

(
x
γ n ,

y
γ n ,

z
γ n

)
= , lim

n→∞γ nψ

(
x
γ n ,

y
γ n , z

)
= 

for all x, y, z,x, . . . ,xp, y, . . . , yd ∈ A where γ = p+d
 . Suppose that f : A → A is a mapping

satisfying (.) and (.). If there exists a constant L <  such that

ϕ

(
x
γ
, . . . ,

x
γ

)
≤ L

γ
ϕ(x, . . . ,x),

then the mapping f : A→ A is a C*-ternary derivation.

Proof If we replace x in (.) by x
γ
, then we get

∥∥∥∥f (x) – γ f
(
x
γ

)∥∥∥∥
A

≤ 

ϕ

(
x
γ
, . . . ,

x
γ

)

for all x ∈ A. Let E := {g : A→ A}. We introduce a generalized metric on E as follows:

d(g,h) := inf
{
C ∈ [,∞] :

∥∥g(x) – h(x)
∥∥ ≤ Cϕ(x, . . . ,x) for all x ∈ A

}
It is easy to show that (E,d) is a generalized complete metric space.
Now, we consider the mapping 	 : E → E defined by

(	g)(x) = γ g
(
x
γ

)
, for all g ∈ E and x ∈ A.

Let g,h ∈ E and let C ∈ [,∞] be an arbitrary constant with d(g,h) ≤ C. From the defini-
tion of d, we have

∥∥g(x) – h(x)
∥∥ ≤ Cϕ(x, . . . ,x)

for all x ∈ A. By the assumption and last inequality, we have

∥∥(	g)(x) – (	h)(x)
∥∥ =

∥∥∥∥γ g
(
x
γ

)
– γ h

(
x
γ

)∥∥∥∥ ≤ γCϕ

(
x
γ
, . . . ,

x
γ

)
≤ CLϕ(x, . . . ,x)

for all x ∈ A. Then d(	g,	h) ≤ Ld(g,h) for any g,h ∈ E. It follows from (.) that
d(	f , f ) ≤ 

γ . Therefore according to Theorem ., the sequence {	nf } converges to a

http://www.advancesindifferenceequations.com/content/2012/1/137
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fixed point δ of 	, i.e.,

δ : A→ A, δ(x) = lim
n→∞

(
	nf

)
(x) = lim

n→∞γ nf
(

x
γ n

)

and δ(γ x) = γ δ(x) for all x ∈ A.
The rest of the proof is similar to the proof of Theorem ., and we omit it. �
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