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Abstract

This paper is concerned about the dynamic behavior for the following high order
nonlinear difference equation xn = (xn-k + xn-m + xn-l)/(xn-kxn-m + xn-mxn-l +1) with the
initial data {x−l, x−l+1, . . . , x−1} ∈ Rl

+ and 1 ≤ k ≤ m ≤ l. The convergence of solution
to this equation is investigated by introducing a new sequence, which extends and
includes corresponding results obtained in the references (Li in J Math Anal Appl
312:103-111, 2005; Berenhaut et al. Appl. Math. Lett. 20:54-58, 2007; Papaschinopoulos
and Schinas J Math Anal Appl 294:614-620, 2004) to a large extent. In addition, some
propositions for generalized equations are reported.
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1 Introduction
Our aim in this paper is to study the dynamical behavior of the following equation

xn =
xn−k + xn−m + xn−l

xn−kxn−m + xn−mxn−l + 1
, n = 0, 1, 2, . . . (1:1)

where the initial data {x−l, x−l+1, . . . , x−1} ∈ Rl
+ and 1 ≤ k ≤ m ≤ l..

The study of properties of similar difference equations has been an area of intense

interest in recent years [1-3]. There have been a lot of work concerning the behavior

of the solution. In particular, Çinar [4] studied the properties of positive solution to

xn+1 =
xn−1

1 + xnxn−1
, n = 0, 1, . . . (1:2)

Yang et al. [5] investigated the qualitative behavior of the recursive sequence

xn+1 =
axn−1 + bxn−2

c + dxn−1xn−2
, n = 0, 1, . . . , (1:3)

Li et al. [6] studied the global asymptotic of the following nonlinear difference equa-

tion

xn+1 =
xn−1xn−2xn−3 + xn−1 + xn−2 + xn−3 + a
1 + xn−1xn−2 + xn−1xn−3 + xn−2xn−3 + a

, n = 0, 1, . . . , (1:4)

with a ≥ 0.

For more similar work, one can refer to [7-9] and references therein. Investigation of

the equation (1.1) is motivated by the above studies. However, due to the special non-

linear relation, the methods mentioned in the references [4,5,7] do not always work for

Shi et al. Advances in Difference Equations 2011, 2011:36
http://www.advancesindifferenceequations.com/content/2011/1/36

© 2011 Shi et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:shiqh03@163.com
mailto:shiqh03@163.com
http://creativecommons.org/licenses/by/2.0


the equation (1.1). In fact, equation (1.1) has lost the perfect symmetry. To this end,

we introduce a simple transformed sequence to construct a contraction to prove the

convergence of solutions, and apply this way solving a class of general equation.

The rest of this paper proceeds as follows. In Sect. 2, we introduce some definitions

and preliminary lemmas. Section 3 contains the main results and their proofs. In Sect.

4, we prove the stability for generalized rational difference equations and present our

conjectures for similar equations.

2 Preliminaries
In this section, we introduce some basic but important preliminary lemmas and nota-

tion. For any xi Î ℝ+, we define a new sequence as x∗
i = max{xi, 1/xi}. With the help of

the transformed sequence {x∗
i }, we can deduce the following conclusion.

Lemma 1. Suppose the function f is defined by

f (x, y, z) =
x + y + z
xy + yz + 1

, (2:1)

then f is decreasing in x and z if and only if y > 1 and increasing in x and z if and

only if y < 1. Similarly, f is decreasing in y if and only if x + z > 1, conversely, it is

increasing in y.

Proof. This conclusion follows directly from the fact

∂

∂x
f (x, y, z) =

1 − y2

(xy + yz + 1)2
, (2:2)

and

∂

∂y
f (x, y, z) =

1 − (x + z)2

(xy + yz + 1)2
. (2:3)

Since x and z is symmetrical, then the proposition is obvious. □
Moreover, we can also prove the following contraction lemma which is useful in

showing convergence of solutions in the transformed space mentioned in first para-

graph of this section.

Lemma 2. Suppose xn satisfying the equation (1.1), for any n ≥ l and

(xn−k, xn−m, xn−l) ∈ R3
+, we have

1 ≤ x∗
n ≤ x∗

n−m. (2:4)

Proof. Noticed that

xn−k + xn−m + xn−l − (1 + xn−kxn−m + xn−mxn−l) = −(xn−m − 1)(xn−k + xn−l − 1) (2:5)

and hence from (1.1), xn ≤ 1 whenever xn -m - 1 and xn-k + xn-l - 1 are of the same

signs, otherwise, xn ≥ 1. Let xn-k = u, xn-m = v, xn-l = w. The RHS of (2.4) is obvious.

Next we prove the LHS part. Indeed we have eight cases to consider. when (1 - v)(u +

w - 1) ≥ 0, then

x∗
n = xn =

u + v + w
uv + vw + 1

.
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Case (1) (u ≤ 1, v ≤ 1, w ≥ 1, u + w ≥ 1). Here, by lemma 1, note that v* ≥ 1, we

have

x∗
n =

1
u∗ + 1

v∗ + w∗

1 + 1
u∗

1
v∗ + 1

v∗w∗ =
u∗ + v∗ + u∗v∗w∗

1 + u∗v∗ + u∗w∗ ≤ v∗. (2:6)

Case (2) (u ≥ 1, v ≤ 1, w ≤ 1, u + w ≥ 1). Here, since v* ≥ 1, w* ≥ 1, we have

x∗
n =

u∗ + 1
v∗ + 1

w∗

u∗ 1
v∗ + 1

v∗
1
w∗ + 1

=
w∗ + v∗ + u∗v∗w∗

1 + w∗u∗ + v∗w∗ ≤ v∗.

Case (3) (u ≥ 1, v ≤ 1, w ≥ 1, u + w ≥ 1). Similarly,

x∗
n =

u∗ + 1
v∗ + w∗

1 + u∗ 1
v∗ + 1

v∗w∗ =
u∗v∗ + 1 + v∗w∗

u∗ + v∗ + w∗ ≤ v∗.

Case (4) (u ≤ 1, v ≥ 1, w ≤ 1, u + w ≤ 1). Here,

x∗
n =

1
u∗ + v∗ + 1

w∗

1 + 1
u∗ v∗ + v∗ 1

w∗
=

u∗ + w∗ + u∗v∗w∗

u∗v∗ + u∗w∗ + v∗w∗ ≤ v∗. (2:7)

Oppositely, if (1 - v)(u + w - 1) ≤ 0, from the definition of x*, it is obvious that

x∗
n =

1
xn

=
uv + vw + 1
u + v + w

.

Case (5) (u ≤ 1, v ≤ 1, w ≤ 1, u + w ≤ 1). By definition of x∗
n, Lemma 1 and the fact

v* ≥ 1, we have

x∗
n =

1 + 1
u∗

1
v∗ + 1

v∗
1
w∗

1
u∗ + 1

v∗ + 1
w∗

=
u∗ + w∗ + u∗v∗w∗

v∗w∗ + u∗v∗ + u∗w∗ ≤ v∗. (2:8)

Case (6) (u ≥ 1, v ≥ 1, w ≤ 1, u + w ≥ 1). Here, we have

x∗
n =

1 + u∗v∗ + v∗ 1
w∗

u∗ + v∗ + 1
w∗

=
w∗ + v∗ + u∗v∗w∗

1 + w∗v∗ + u∗w∗ ≤ v∗. (2:9)
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Case (7) (u ≤ 1, v ≥ 1, w ≥ 1, u + w ≥ 1). Similarly, we have

x∗
n =

1 + 1
u∗ v∗ + v∗w∗

w∗ + v∗ + 1
u∗

=
u∗ + v∗ + u∗v∗w∗

1 + u∗v∗ + u∗w∗ ≤ v∗. (2:10)

Case (8) (u ≥ 1, v ≥ 1, w ≥ 1, u + w ≥ 1). By the same way, we have

x∗
n =

1 + u∗v∗ + v∗w∗

u∗ + v∗ + w∗ ≤ v∗. (2:11)

Inequalities (2.6)-(2.13) suggest our claim. □
Remark. In fact, by Lemma 1 and in view of u* ≥ 1 and w* ≥ 1, the result

x∗
n ≤ u∗, x∗

n ≤ w∗ can also be derived from the argument for front eight different cases.

Now let Xn = max
n−l≤i≤n−1

{x∗
i }for all n ≥ l. By Lemma 2, we can deduce the following

consequence.

Lemma 3. The sequence {Xi} is monotonically non-increasing in i which is much

greater than l.

Since Xi ≥ 1 for i ≥ l, Lemma 3 implies that as i tends to infinity, the sequence {Xi}

convergence to some limit, denote X, where X ≥ 1.

3 Convergence of solutions
In what follows, we state and prove our main result in the sequence space.

Theorem 1. Suppose the initial data of equation (1.1) (x−l, x−l+1, . . . , x−1) ∈ Rl
+. Then

the solution sequence {xi} converges to the unique positive equilibriumx̄ = 1.

Proof. Note that it suffices to show that the transformed sequence {x∗
i } converges to

1. By the definition of Xi, the values of Xi are taken on by entries in the sequence {x∗
i },

and as well, by Lemma 2, {x∗
i } ∈ [1,Xi] for i ≥ m. Suppose X > 1, then for any ε Î (0,

X), we can find an N such that {x∗
N} ∈ [X,X + ε], and for i ≥ N - l, {x∗

i } ∈ [1,X + ε].

Next we consider the eight possible cases again, and show that X = 1. From the defi-

nitions of x∗
i , Xi and X, the result follows.

Case (1) (u ≤ 1, v ≤ 1, w ≥ 1, u + w ≥ 1). Here, by lemma 1, we have

X ≤ x∗
n =

1
u∗ + 1

v∗ + w∗

1 + 1
u∗

1
v∗ + 1

v∗ w∗ ≤ 1 + 1
X+ε

+ X + ε

2 + 1
X+ε

. (3:1)

Hence

2X2 + 2Xε + X ≤ (1 + X + ε)(X + ε) + 1,

⇒ X2 ≤ 1 + ε + ε2.
(3:2)

Case (2) (u ≥ 1, v ≤ 1, w ≤ 1, u + w ≥ 1). The argument is identical to that in Case

(1).

Case (3) (u ≥ 1, v ≤ 1, w ≥ 1, u + w ≥ 1). Here,

X ≤ x∗
n =

u∗ + 1
v∗ + w∗

1 + u∗ 1
v∗ + 1

v∗w∗ ≤ 2(X + ε) + 1
X+ε

3
. (3:3)
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Therefore

3X2 + 3Xε ≤ 2(X + ε)2 + 1,

⇒ (X − ε

2
)2 ≤ 1 +

9
4

ε2,

⇒ X ≤
√
1 +

9
4

ε2 +
ε

2
.

(3:4)

Case (4) (u ≤ 1, v ≤ 1, w ≤ 1, u + v ≤ 1). Here,

X ≤ x∗
n =

1
u∗ + v∗ + 1

w∗

1 + 1
u∗ v∗ + v∗ 1

w∗
≤

2
X+ε

+ X + ε

3
. (3:5)

From this, we have

⇒ (X + ε)2 ≤ 1 +
9
16

ε2. (3:6)

Namely,

X ≤
√
1 +

9
16

ε2 − ε

4
. (3:7)

Case (5) (u ≤ 1, v ≤ 1, w ≤ 1, u + w ≤ 1). We have

X ≤ x∗
n =

1 + 1
u∗

1
v∗ + 1

v∗
1
w∗

1
u∗ + 1

v∗ + 1
w∗

≤ 1 + ( 1
X+ε

)
2
+ ( 1

X+ε
)
2

3
X+ε

(3:8)

which also implies

X ≤
√
1 +

9
16

ε2 − ε

4
. (3:9)

Case (6) (u ≥ 1, v ≥ 1, w ≤ 1, u + w ≥ 1). Here,

X ≤ x∗
n =

1 + u∗v∗ + v∗ 1
w∗

u∗ + v∗ + 1
w∗

≤ 1 + (X + ε)2 + (X + ε)
1 + 2(X + ε)

. (3:10)

We have

2X(X + ε) + X ≤ 1 + (X + ε)2 + (X + ε),

⇒ X2 ≤ 1 + ε + ε2
(3:11)
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Case (7) (u ≤ 1, v ≥ 1, w ≥ 1, u + w ≥ 1). Here, it follows

X ≤ x∗
n =

1 + 1
u∗ v∗ + v∗w∗

w∗ + v∗ + 1
u∗

. (3:12)

By the same argument with Case(6), we have

X2 ≤ 1 + ε + ε2. (3:13)

Case (8) (u ≥ 1, v ≥ 1, w ≥ 1, u + w ≥ 1). It here derives

X ≤ x∗
n =

1 + u∗v∗ + v∗w∗

u∗ + v∗ + w∗ ≤ 1 + 2(X + ε)2

3(X + ε)
. (3:14)

Hence

X ≤
√
1 +

9
4

ε2 +
ε

2
. (3:15)

Collecting all above inequalities which imply X = 1 since ε > 0 is arbitrary, we com-

plete the proof. □

4 Generalization
As mentioned above, the global asymptotic stability of positive solutions to the various

equation listed above suggests that the same potentially holds for similar rational equa-

tions. We can deduce the following natural generalization of (1.1) and (1.4).

Corollary. Let s Î N+ and Zs denote the set Zs = {1, 2,..., s}. Suppose that {xi} satis-

fies the form

xn =

s∑
i=1

xn−ki

s∑
i = 1

i �= j, j ∈ Zs

xn−ki xn−kj + 1
, n = 0, 1, . . .

(4:1)

with initial value x-k, x-k+1,..., x-1 Î ℝ+, here k = max
1≤i≤s

{ki}. Then the sequence {xi} con-

verges to the unique equilibrium 1.

Remark. If we consider the equation which is added a constant a onto numerator

and denominator of (4.1), the result is still viable. Indeed this corollary covers the

results in [6].

Moreover, consulting the results of article [6,7,10], by the similar way to Lemma 2,

we have the following generalization.

Theorem 2. Suppose f (xn−k1 , . . . , xn−kr ) ∈ C(Rr
+,R+), g(xn−m1 , . . . , xn−ms ) ∈ C(Rs

+,R+)

and h(xn−l1 , . . . , xn−lt) ∈ C(Rt
+,R+) satisfying [g(xn−m1 , . . . , xn−ms)]

∗ ≤ x∗
n−m1

. Then the

equation

xn+1 =
f + g + h
fg + gh + 1

, n = 0, 1, 2, . . . . (4:2)
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with the corresponding positive initial data has a unique positive equilibrium x̄ = 1,

and every solution of (4.2) converges to this point.

Proof. Let {xn}∞n=−p be a solution sequence of equation (4.2) with initial data x-p, x-p+1,

x0 Î ℝ+, where p = max{kr, ms, lt}. By the definition of x∗
n, From the equation (4.2), the

arguments in Lemma 2 and the hypothesis, it follows that for any n ≥ 0,

1 ≤ x∗
n+1 =

[
f + g + h
fg + gh + 1

]∗
≤ [g(xn−m1 , . . . , xn−ms)]

∗ ≤ x∗
n−m1

, (4:3)

from which we get that for any n ≥ 0 and 0 ≤ i ≤ m1, 1 ≤ x∗
i+(n+1)(m1+1)

≤ x∗
i+n(m1+1).

Hence the sequence {x∗
i+n(m1+1)

}∞n=0 with 0 ≤ i ≤ m1 is convergent. Denote the limit as

lim
n→∞ x∗

i+n(m1+1)
= Ai, then Ai ≥ 1. Write M = max{A0,A1, . . . ,Am1 } and Ai+n(m1+1) = Ai

for any integer n. Then there exists some 0 ≤ j ≤ m1 such that lim
n→∞ x∗

j+n(m1+1)
= M.

From (4.3), it suggests M = g(M,Aj−1−m2 , . . . ,Aj−1−ms ) = M.

Combining the facts 1 + ab ≥ a + b and ab+1+bc
a+b+c ≤ ab+1+bc+abc

a+b+c+ac , where a ≥ 1, b ≥ 1 and c

≥ 1, for the different situation in Theorem 1, we have

x∗
n+1 ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f ∗ + g∗ + f ∗g∗h∗

1 + f ∗g∗ + f ∗h∗ ≤ f ∗ + g∗ + f ∗g∗h∗

f ∗ + g∗ + f ∗h∗ , for Case (1, 2, 6, 7), (4.4)

f ∗g∗ + 1 + g∗h∗

f ∗ + g∗ + h∗ ≤ f ∗g∗ + 1 + g∗h∗ + f ∗g∗h∗

f ∗ + g∗ + h∗ + f ∗h∗ , for Case (3, 8), (4.5)

f ∗ + h∗ + f ∗g∗h∗

g∗h∗ + f ∗g∗ + f ∗h∗ ≤ f ∗ + h∗ + f ∗g∗h∗

f ∗ + h∗ + f ∗h∗ , for Case (4, 5). (4.6)

Therefore

1 ≤ M ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f ∗ +M + f ∗Mh∗

f ∗ +M + f ∗h∗ , for Case (1, 2, 6, 7), (4.7)

f ∗M + 1 +Mh∗ + f ∗Mh∗

f ∗ +M + h∗ + f ∗h∗ , for Case(3, 8), (4.8)

f ∗ + h∗ + f ∗Mh∗

f ∗ + h∗ + f ∗h∗ , for Case(4, 5), (4.9)

from which it follows M = 1. This implies Ai = 1 for 0 ≤ i ≤ m1 and lim
n→∞ x∗

n = 1.

Since 1/x∗
n ≤ xn ≤ x∗

n, we obtain lim
n→∞ xn = 1. □

Remark. The stability of solution to equation (4.2) is ever proposed to consider as a

conjecture by K.S.Berenhaut etc. in [7]. Indeed, Theorem 1 proved the conjecture

partially.

In addition, gathering lots of relevant work listed in reference, we put forward the

following conjecture.

Conjecture. Let s Î N+, Zs = {1, 2,..., s} and lij ≥ 0. Suppose that {xi} satisfies

xn =

∑s
j=1

∏
i∈Zs

x
lij
n−kij∑s−1

j=1
∏

i∈Zs
x
lij
n−kij

+ 1
, n = 0, 1, 2, . . . (4:10)

with x-k, x-k+1,..., x-1 Î ℝ+, k = max
i,j∈Zs

{ki,j}, then the sequence {xi}∞i=0 converges to the

unique equilibrium 1.
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