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Abstract

The purpose of this research is to modify the variational inclusion problems and prove
a strong convergence theorem for finding a common element of the set of fixed
points of a k-strictly pseudononspreading mapping and the set of solutions of a finite
family of variational inclusion problems and the set of solutions of a finite family of
equilibrium problems in Hilbert space. By using our main result, we prove a strong
convergence theorem involving a k-quasi-strictly pseudo-contractive mapping in
Hilbert space. We give a numerical example to support some of our results.
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1 Introduction

Throughout this article, let H be a real Hilbert space with inner product (-, -) and norm || - ||.
Let C be a nonempty closed convex subset of H. Let S : C — C be a nonlinear mapping.
A point u € C is called a fixed point of S if Su = u. The set of fixed points of S is denoted
by Fix(S) := {u € C: Su = u}. A mapping S is called nonexpansive if

|Su—-Sv|| <|lu-v|, VYuveC.

In 2008, Kohsaka and Takahashi [1] introduced the nonspreading mapping in Hilbert

space H as follows:

2||Su - Sv|* < |Su—v|]* + lu-Sv|>, Vu,veC. (11)
It is shown in [2] that (1.1) is equivalent to

|Su—Sv|® < |lu—-v|?+2(u—-Su,v-Sv), VYu,veC. 1.2)

The mapping S : C — C is called a «-strictly pseudononspreading mapping if there exists
k € [0,1) such that

IS —Sv||*> < lu-v|? +KH(1—8)u— (I—S)V”2 +2{u—Su,v-8Sv), VYu,veC.
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This mapping was introduced by Osilike and Isiogugu [3] in 2011. Clearly every non-

spreading mapping is a « -strictly pseudononspreading mapping.

Remark 1.1 Let C be a nonempty closed convex subset of H. Then a mappingS: C — C
is a k-strictly pseudononspreading if and only if

1-«
2

(= S)u— U= Sy||* < (- S)u— (I = Syv,u = v) + (I = S)u, (I - S)v),
forallu,veC.

Proof Let u,v € C and S be a «-strictly pseudononspreading mapping, then there exists
k € [0,1) such that

ISu—-Svi> < lu-v|*+ KH I-Su-U- S)v”2 +2{u — Su,v - Sv). (1.3)
Since

||(I— S)u - (I—S)VH2 = |Su—-Sv||? -2(Su-Sv,u—v) + |lu-v|% (1.4)
then we have

1Su—Sv))? = (I - S)u— (U = Sy|* +2(Su~Sv,u—v) - lu—v|. (15)
From (1.3) and (1.5), we have

||(I—S)u— (I—S)V”2 +2(Su—-Sv,u—v) — |lu—-v|?

<llu-v|? +K||(I—S)u— (I—S)v”2 +2(u—Su,v-Sv).
It follows that

(1—/<)||(1—$)u—(I—S)v”2 <20u-v||? -2(Su—-Sv,u—v) +2(u - Su,v-Sv)

= 2((I—S)u— (I—S)V,u—v>+2(u—Su,v—Sv).

Then

1—
2

E U= S)u— U= SW|” < (U - S)u— U - Sy, u—v) +((I - S)u, (I - S)v).

On the other hand, let u,v € C and

1-«
2

||(I—S)Lt—(1—$)v||2 §<(I—S)M—(I—S)v,u—v>+ (u—Su,v-8v)

=llu—v|> = (Su-Sv,u—-v)+ (u-Su,v-Sv.
Then

A=) = S)u— (I -S| < 2llu—vI> - 2(Su—Sv,u—v) + 2(u— Su,v - Sv).
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It follows that

2Su—-Su,u-v) <2llu-v|*-Q —K)||(I—S)u— (I—S)VH2
+2(u—Su,v-Sv). (1.6)

From (1.4), we have
2Su—Sv,u—v) = |Su—Sv|* + lu—v|* = | (I - S)u— (I - S)v|”. (1.7)
From (1.6) and (1.7), we have

1Su - SvI? + llu—vI? - | - S)u - (I - S)v|)?

<2u-v|>-1-«) ” I-Su-U- S)v”2 +2{u - Su,v - Sv).
Then
1Su = SvI> < lu = vl + | (I = Sy — (I = S)v||* + 2((I = S)u, (I - S)v). O
Example 1.2 Let S: [1,00) — [1,00) be defined by
Su=siny, Yuell, o).
Then § is a k-strictly pseudononspreading mapping where « € [0,1).

Example 1.3 Let S: [0,00) — [0,00) be defined by

4u?
T 5+ 4y’

Su YueC.

Then Sisa %—strictly pseudononspreading mapping.

The mapping A : C — H is called a-inverse strongly monotone if there exists a positive

real number « such that
(Au - Av,u —v) > a||Au — Av|?,

forall u,v e C.
Let B: H — H be a mapping and M : H — 2/ be a multi-valued mapping. The varia-
tional inclusion problem is to find x € H such that

0 € Bx + Mx, (1.8)

where 0 is a zero vector in H. The set of the solution of (1.8) is denoted by VI(H, B, M).
It is well known that the variational inclusion problems are widely studied in mathemat-
ical programming, complementarity problems, variational inequalities, optimal control,
mathematical economics, and game theory, etc. Many authors have increasingly investi-
gated such a problem (1.8); see for instance [4—7] and references therein.
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Let M : H — 2 be a multi-valued maximal monotone mapping, then the single-valued
mapping Jar,, : H — H defined by

Jup @) = ([ +AM)Hx), VxeH,

is called the resolvent operator associated with M, where A is any positive number and I is
an identity mapping; see [7].

Let W : C x C — R be a bifunction. The equilibrium problem for W is to determine its
equilibrium point. The set of solution of equilibrium problem is denoted by

EP(V) ={ueC:V¥(sv)>0,YveC}. (1.9)

Finding a solution of an equilibrium problem can be applied to many problems in physics,
optimization, and economics. Many researchers have proposed some methods to solve
the equilibrium problem; see, for example, [8, 9] and the references therein.

In 2008, Zhang et al. [7] introduced an iterative scheme for finding a common element
of the set of solutions of the variational inclusion problem with multi-valued maximal
monotone mapping and inverse strongly monotone mappings and the set of fixed points
of nonexpansive mappings in Hilbert space as follows:

Vi = s (Wy — MAW,,),

W1 = oW+ (1 —0,)Svy, V>0,

and they proved a strong convergence theorem of the sequence {w,,} under suitable con-
ditions of the parameters {«,,} and X.

In 2013, Kangtunyakarn [10] introduced an iterative algorithm for finding a common
element of the set of fixed points of a «-strictly pseudononspreading mapping and the set
of solutions of a finite family of variational inequality problems as follows:

Wyl = Ol + ﬂnPC(I . S))w,, + Y Sw,, VmeN,

and proved a strong convergence theorem of the sequence {w,} under suitable conditions
of the parameters {o,}, {8}, {v.}, and {¥,}.
Very recently, Suwannaut and Kangtunyakarn [11] have modified (1.9) as follows:

N N
EP(Zai%) = {u eC: (Za,«p,) (u,v) > 0,Vv € C}, (1.10)
i=1

i=1

where W; : C x C — R is for bifunctions and a; > 0 with Zf\il a;=1foreveryi=1,2,...,N.
Itis obvious that (1.10) reduces to (1.9),if ¥; = ¥, foralli = 1,2,..., N. They also introduced
an iterative method for finding a common element of the set of fixed points of an infinite
family of «;-strictly pseudo-contractive mappings and the set of solutions of a finite family
of an equilibrium problem and a variational inequalities problem as follows:

Zﬁ\il “ilyi(zm.y) + i(y_zmzn —wy) >0, Vy eC,
Wit = Bulauit + (1 — y)Suwy) + (1= B)Pc — py Zi\:ll biA)z,, VYn=>1.


http://www.fixedpointtheoryandapplications.com/content/2014/1/209

Khuangsatung and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:209 Page 5 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/209

Under some appropriate conditions, they proved a strong convergence theorem of the se-
quence {w,} converging to an element of a set ﬂf\il EP(¥;) N ﬂf\il VP(4;,C) N2, Fix(S))
where A, is a strongly positive linear bounded operator for every i=1,2,...,N.

Fori=1,2,...,N, let A; : H — H be a single-valued mapping and let M : H — 2! be
a multi-valued mapping. From the concept of (1.8), we introduce the problem of finding
u € H such that

N
0 e ZaiAiu + Mu, (1.11)
i=1

for all 4; € (0,1) with Zﬁl a; =1 and 0 is a zero vector. This problem is called the modified
variational inclusion. The set of solutions of (1.11) is denoted by VI(H, Zﬁl a;A;, M). If
A;=Aforalli=1,2,...,N, then (1.11) reduces to (1.8).

In this paper, motivated by the research described above, we prove fixed point theory
involving the modified variational inclusion and introduce iterative scheme for finding a
common element of the set of fixed points of a « -strictly pseudononspreading mapping
and the set of solutions of a finite family of variational inclusion problems and the set
of solutions of a finite family of equilibrium problem. By using the same method as our
main theorem, we prove a strong convergence theorem for finding a common element
of the set of fixed points of a k-quasi-strictly pseudo-contractive mapping and the set of
solutions of a finite family of variational inclusion problems and the set of solutions of a
finite family of equilibrium problem in Hilbert space. Applying such a problem, we have
a convergence theorem associated with a nonspreading mapping. In the last section, we
also give numerical examples to support some of our results.

2 Preliminaries

In this paper, we denote weak and strong convergence by the notations ‘=’ and ‘— re-
spectively. In a real Hilbert space H, recall that the (nearest point) projection P¢ from H
onto C assigns to each u € H the unique point Pcu € C satisfying the property

lle — Pcv|| = Igleig lu —vl.
For a proof of the main theorem, we will use the following lemmas.
Lemma2.1([12]) Givenu € H andv € C, then Pcu = v ifand only if we have the inequality
(u-v,v—2)>0, VzeC.
Lemma 2.2 ([13]) Let {p,} be a sequence of nonnegative real numbers satisfying
P <(l—-ay)p,+b, VYn=0,
where {a,} is a sequence in (0,1) and {b,} is a sequence such that

1) Xian =00,

(2) limsup,_, o, z—z <0orYy 22 byl <oo.

Then lim,_, o, p,, = 0.
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Lemma 2.3 Let H be a real Hilbert space. Then
e+ vI? <l + 2, +v),
forallu,ve H.

Lemma 2.4 ([14]) Let H be a Hilbert space. Then for all u,v € H and «; € [0,1] for i =
1,2,...,nsuch that oy + oq + - - - + ooy, = 1 the following equality holds:

n
2 2 2
llaowo +cywy + - - - + Wy || =E al|lwill” - E a;o|lw; — will”.

i=0 0<ij<n

For finding solutions of the equilibrium problem, assume a bifunction W : C x C — R
to satisfy the following conditions:

(A1) W(u,v)=0forallueC;

(A2) W is monotone, i.e., ¥(u,v) + V(v,u) <0 forall u,v e C;

(A3) for each u,v,z€ C,

lif{)l VY (tz + (1 -1y, v) < W(u,v);
t
(A4) foreach u € C, vi> W(u,v) is convex and lower semicontinuous.

Lemma 2.5 ([15]) Let C be a nonempty closed convex subset of H and let V be a bifunction
of C x C into R satisfying (A1)-(A4). Let r > 0 and u € H. Then there exists z € C such that

1
Y(z,v)+ -(v—-2z,z—u) >0, VveC.
r

Lemma 2.6 ([8]) Assume that W : C x C — R satisfies (A1)-(A4). For r > 0, define a map-
ping ©,: H — C as follows:

1
O,(u) = {ze C:V(z,v)+-(v—2z,z—u) >0,Vve C},
r

forall u € H. Then the following hold:
(i) ©, is single-valued,;
(i) ®, isfirmly nonexpansive, i.e., for any u,v € H,

18,) - ©,0)|* < (0,) - ©,1),u-v);

(iii) Fix(®,) = EP(¥);
(iv) EP(W) is closed and convex.

Lemma 2.7 ([11]) Let C be a nonempty closed convex subset of a real Hilbert space H. For
i=12,...,N,let ¥;: C x C — R be bifunctions satisfying (A1)-(A4) with ﬂf\il EP(W¥;) # 0.
Then

N N
EP(Z a,«y,-) = ﬂEP(wi),
i=1 i=1

where a; € (0,1) foreveryi=1,2,...,N and Zf\il a; =1.
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Remark 2.8 ([11]) From Lemma 2.7,

N N
Fix(®,) = EP (Z ai\IJi) = ﬂ EP(W,),
i=1 i=1

where a; € (0,1), for eachi=1,2,...,N, and ZZI a;=1.

Lemma 2.9 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
Zf\il a;V; : C x C — R be bifunctions satisfying (Al)-(A4) where a; € (0,1), for each
i=12,...,N and Zﬁilai =1.ForeveryneN,let0<c<r, <dwithr, — rasn— oo.
Then ||©,,u—O,u|| - 0asn— oo forallue H.

Proof ForeveryneN,let0<c <r, <dwithr, — rasn— 0o, from which it follows that
0<c<r<d.Foreveryue H,by Lemma 2.6, we have

N
1

Zuﬂlﬁ(@,ﬂ, V+—(v-0,u0,u-—uy>0, YveC
n

i=1

and
ol 1
Za,*lﬁ(@,u, V+-(v-0,u,0,u-—u)>0, VveC.
r

i=1

In particular, we have

N
1
> @O, 1, 0,u) + —(O,u - O,,u,0,,u—u) >0 (2.1)
T
i=1
and
N 1
> a0, 0,,u) + =(O,u— O,u, 0,1 —u) > 0. (2.2)
r

i=1

Summing up (2.1) and (2.2) and using (A2), we have

1 1

—(©,,u—-0,u,0,u—-u)+ —(O,u—-0,u,0,u—u)>0.

r Ty
It follows that

Ou-u O,u—u
O,,u—0,u, - > 0.
Ty

This implies that

Ty
0< <®,u - 0,,u,0, u—u— —(O,u- u)>
r

= <®,u -0,,u,0,u—0,u+ <1 - r—")(@,u — u)>.
r
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It follows that

v,
H®M—®WM2§l—fH®m—®mMW®MHHWM-

Then we have
1
”®ru_®mu” = ;lr_rnlL;
where L = sup{||®,u| + ||«]||}. Since r,, — r as n — 00, we have
1©,,u—-0O,ull -0 asn— oo. O

Remark 2.10 Let S : H — H be a «-strictly pseudononspreading mapping with
Fix(S) # 0. Define T : H — H by Tu := ((1 — ) + AS)u, where A € (0,1 — «). Then the
following hold:

(i) Fix(S)=Fix(T) =Fix(I - A(I - 8));

(ii) for every u € H and v € Fix(S),

1T =il <l = vll.

Proof (i) It is easy to see that Fix(S) = Fix(T) = Fix(I — A({ - §)).
(ii) Next, we show that || Tu — v|| < ||u — v||. For every u € H and v € Fix(S), we have
1T —v|® = | (I =20 = ))u—v|
= @ =W =v)+ A Su-w)|*
= (=Ml =vI® + 2 Su—v[* = A1 = 1) | Su - ul®
< @=W)u—vl? + A(lu—vI? + || (T - S)u|?)
— A1 =2)||Su - ul?
= |l —v||* + k|| Sy — ul|* = A1 - A)|Su - u|)?
= Nu=vII> +A(A = (1= 1)) | Su — ul|®
< lu-v|*. O

Lemma 2.11 ([7]) u € H isa solution of variational inclusion (1.8) if and only if u = Ja (u—
ABu), VY1 >0, i.e.,

VI(H,B,M) = Fix(]M,,\(I - AB)), YA > 0.
Further, if A € (0,2a], then VI(H, B, M) is a closed convex subset in H.

Lemma 2.12 ([7]) The resolvent operator Ju1; associated with M is single-valued, nonex-
pansive for all ) > 0 and 1-inverse strongly monotone.

Lemma 2.13 Let H be a real Hilbert space and let M : H — 21 be a multi-valued maximal
monotone mapping. Foreveryi=1,2,...,N,let A; : H — H be o;-inverse strongly monotone
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mapping with n = min,1 5, N{o;} and ﬂﬁl VI(H,A;, M) #@. Then
N N
\%! (H, > a,»A,»,M) = VIH, A, M),
i=1 i=1

where Zf\il a;=1,and 0 <a; <1 foreveryi=1,2,...,N. Moreover, [, (I — A Zﬁl a;A) isa

nonexpansive mapping, for all 0 < A < 21).

Proof Clearly Y, VI(H,A;, M) € VI(H, YN, a;A;, M).
Let ug € VI(H, Y"¥, a;A;, M) and let u* € (Y, VI(H, A;, M). From Lemma 2.11, we have

N
uo € Fix (]M,A (1 > aiAi)>.
i=1

Since (Y, VI(H,A;, M) € VI(H, YN, a;A;, M), we have u* € VI(H, YN, a;A;, M). From

Lemma 2.11, we have

N
u* € Fix (]M,k (1 =3 aiAi>> .
i=1

From the nonexpansiveness of /5, we have

N N 2
”M* — Uy ”2 = ]M,A (1 —A ZdiAl) Lt* _]M,A <I - A ZaiAi) Ug
i=1 i=1
N N 2
< <1— A ZaiAl)u* — <[— A ZdiAl‘>l/l0
i=1 i=1
N N 2
= (u* - Mo) —-A (Z aiAl'u* - ZuiAiu())
i=1 i=1
N N
< ||u* — Uy H2 —2A Za,(u* —uy, Aiu* —Aiuo) + A2 Zai”Aiu* —Ajuy H2
i=1 i=1
2 al 2 ol 2
< ||u* ™ H —2A Zaiai ||Aiu* —A;ug || + A2 Zﬂi”AM* —A;ug ||
i=1 i=1
2 al 2 al 2
< ||u* ™ H -2\ Zai||Aiu* —Ajug “ + A2 Zai”Aiu* —Ajug H
i=1 i=1
2 al 2
= Hu* — Uy ” +A Z“i(}‘ - 2n)HAiu* —Ajug H . (2.3)

i=1

This implies that

N
A Z ﬂi(2)’) — )») ”Allzt* —Aiug “2 <0.
i=1
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Then
Au* =Auy, Vi=1,2,...,N. (2.4)

Since ug € VI(H, Zf\il a;A;, M), we have
N
0 € Mug + ZaiAiuo. (2.5)
i=1
From u* € VI(H, ZZI a;A;, M), we have
N
0 e Mu* + ZaiAiu*. (2.6)
i=1

From (2.5) and (2.6), we have

N N
0e Mu() + ZdiAl‘l/lo - Mu* - ZdiAiM*. (27)
i=1 i=1

From (2.4) and (2.7), we have

0 € Muy — Mu*. (2.8)
Since u* € ﬂf\il VI(H, A;, M) and we have (2.4) and (2.8),

0 € Mug — Mu™ + Mu* + A;u™ = Mug + A;ug,

foralli=1,2,...,N. It implies that uy € (X, VI(H, A;, M).
Hence

N N
VI <H, Z aiAi,M> C ﬂ VI(H,A;, M).

i=1 i=1

Applying (2.3), we can conclude that Jy; (I — A Zf\il a;A;) is a nonexpansive mapping for
alli=1,2,...,N. g

3 Main result

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
M : H — 2" be a multi-valued maximal monotone mapping. For every i =1,2,...,N, let
V;: C x C— R be a bifunction satisfying (Al)-(A4) and A; : H — H be a;-inverse strongly

spreading mapping. Assume ® := Fix(S) N ﬂf\il EP(¥;) N ﬂf\il VI(H,A;, M) # 0. Let the se-
quences {w,} and {z,} be generated by wy, u € H and

Zﬁ\:[l “z“yi(zn:y) + i(y_zmzn -w,) >0, Vye(C,
Wiel = Qufd + BuWn + VuJmp (L = A Zf\il biA)w, (3.1)
+0u(I = puI = S)Wy, + 8,24, Yn =1,
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where {a,,}, {Bn} {vn}s (1n} {80} S (0,1) and A >0 withay, + B+ Vu + Ny + 8, =1, 0 < < 1,
and 0 < a;,b; <1, foreveryi=1,2,...,N, r, € [¢,d] C(0,1), 0 <p < By, Vi N, 80 < g <1,
pn € (0,1 =) for all n > 1. Suppose the following conditions hold:

(i) limyooaty, =0andy 7)oy =00,

(i) 3521 pn <00,

(i) 0 <A <2n, where n =min;_o. n{o;),

(iv) Zf\il a; = Zﬁl bi=1,

(V) 2oy et = el <00, 302 [Bust = Bul < 00, Y02, [Vnat = vl < 00,

2221 [ ns1 = Pl < 00, Z;; [84+1 — 84| < 00, ZZil |7y41 — Tu| < 00.

Then the sequences {w,} and {z,} converge strongly to w = Py L.

Proof The proof of Theorem 3.1 will be divided into five steps:
Step 1. We show that the sequence {w,,} is bounded.
Since Zfil a;V; satisfies (A1)-(A4), and
al 1
Y Vi@ y) + — (= znza—wa) 20, VyeC,
r

i=1 n

by Lemma 2.6 and Remark 2.8, we have z, = ®,,w, and Fix(®,,) = ﬂf\il EP(W;).
Let w € ®. From Lemma 2.11 and Lemma 2.13, we have

N
w :]M,A <1 —A ZblAl>w

i=1

From the nonexpansiveness of J;1; (I — A Zf\il b;A;), we have

N
]]\/[,)L (I—KZbiAi)Wn -

i=1

< [wa - ol. (32)

From Remark 2.10, we have

” (1_ pn(I_S))Wn _WHZ = || (1 - pn)wn + anWn _w”2

<|lw, - | (3.3)

From the definition of w,, (3.2), and (3.3), we have

Wi — ol =

N
Oyt + ,ann + Vn]M,A <I - ZblAl) Wy

i=1

+ (I = puI = S)) Wy + 8uzn — @

Saullpn =@l + Bullwn — @l + ¥a

N
T (1 -Ay biA,») Wy — @

i=1
+ 0| (I = puld = 8)) Wi — | + 8ullzn — @
<aullp-ol + 1= a,)lw, - o

< max{llp - o, [wi - o} =K.


http://www.fixedpointtheoryandapplications.com/content/2014/1/209

Khuangsatung and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:209 Page 12 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/209

By mathematical induction, we have ||w, —z|| < K, Vn € N. It implies that {w,,} is bounded
and so is {z,}.
By continuing in the same direction as in Step 1 of Theorem 3.1 in [10], we have

1+«
1Swy = ol < T llwy ~ . (34)

From (3.4), we can conclude that {Sw,} is bounded.
Step 2. Put G = ZZI b;A;and P = I - S. We will show that lim,,_, o, | W41 —W,| = 0. From
the definition of w,,, we have

IWis1 = wall = ||(X,,,/L + BuWn + YuJma L = AG)Wy, + 0yl = ppP)Wy
+8u2n — A1t = BruoiWn1 = Yut ([ = AG)wy

= N1l = PuaPYWp_1 = 8p12Zn1 ”

< lon — ol + Bullwn = wuall + 1By = Bu-alllWn-a ll
+ Vu[Jmad = AG)wy — Jypp (I = AG)wyy |
+ 1V = Vool [Jrnd = 2G)wyuy |
+ 0| = puP)Wyy = (I = pusPYWy | + |1 = 1t | (L= puct PYWia |
+8ullzn — Zn-all + 18, — SnalllZu-a
< lon =l el + Bullwn = wuall + 1Bn = Buallwn-all + Vullwn — wiya |l

+ 1V = Vutl|Jand = X @)Wt || + 100 = 0t || T = puaPYwya |
+ 1 (1Wn = W | + Pull PWyy = PWys || + 10w = Pt ||PWy-1 1)
+ 8ullzn = Zn- |l + 185 = 8t 12
< lotw = el el + Bul W = Wout | + 1B = BuctlIWnea | + Vil Wi — wus |
+1¥n = Va0 = AG)Worca || + 10 = | | (T = o1 PY W |
+ 1l Wi = Wt ll + 0| PWy = PWyt || + |0 = Pt || PWo |

+8ullzn = zZnall + 18n = SpalllZn-a . 3.5)
By continuing in the same direction as in Step 2 of Theorem 3.1 in [11], we have
20 = zn-1ll < IWn — Wyl + %Vn = Tnlllzn = wall. (3.6)
By substituting (3.6) into (3.5), we obtain

W1 = wall < lovy — apalllell + Bullwn = Wit ll + 1Bn = Bucalwna |l + Yallwy — wia |l
+1¥n = Vut | Il =A@ wir | + 100 = 1t | (I = ppaPYWr |
+ Ml Wy = Wit | + pullPwy — Pwya || + 100 = pua 1Py ||
+0ullzn = Zn-a |l + 180 — Spalllzna |l

< ey = anpalllill + Ballwn = watll + 1By = Bua Wt | + Vullwn — Wil
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+1¥n = Vut | I = 2@ Wyt | + 100 = 1t | T = ppa PYWs |

+ nn”Wn - Wn—l” + pn”PWn - PWn—l” + |pn - :On—1| ”Pwn—l”

+ 5n<||Wn =Wyl + %Vn = n-lllzn — Wn”) + 185 = Su-alllzn
< loty —apallll + @ = an)llwn = wuall + 1By = Bual W l
+ 1V = Vel I I = AG)Wyt | + 110 = 0na || (T = ppaPY Wi |
+ PullPWy = PWyi |l + | pn = pp-1| | PWy1 |

1
+ ;lrn = Tu-1lllzn = wall +18n = Su-1lllza-1|l- (3.7)
Applying Lemma 2.2, (3.7), and the conditions (i), (ii), (v), we have
lim ||wy1 —wyll = 0. (38)

SteP 3. We show that hmn—)oo ”Zn - Wn” = 11mn—>oo ”(1_ pnp)wn - Wn” = hmn—>oo ”]M,A(I_
AG)w, — wy|| = 0. By the definition of w,, (3.2), and (3.3), we have
Wi = C‘)”2 = Han//L + BuWn + YuJpp (I = AG)w,,
+ 0 = puPYWy, + 842, — a)||2
2
< aullie =@l + Bullwn = 01 + v [ I = 2G)w, - 0|
2
+ M ” (I~ puP)Wy — w” +3ullzn - a)”2 = Brbullwy _Zn”z
2
— BuVn | Jmnd = AG)wy, — wy |
= ayllp - ol + A= an) Wy — o> = Bubullwn — zal®
2
- :3717/71 ”]M,A (1 - )"G)Wn — Wy ||
< aullp = ol* + 1wy = @l* = Bl Wy — ul|>
2
= Bu¥n ”]M,A(I - AG)w, —wy, ” .
It implies that
II*

2 2 2
Brbullzn = waull” < aullpe — o™ + Wy = 0l|” = [[Wye1 — o]

= Bu¥alJsinl = 2G)wy = w, ||

< aullie = ol* + (1w = @l + W1 = @) W1 = will.
From the condition (i) and (3.8), we have
lim ||z, —w,| =0. (3.9)
n—00
By continuing in the same direction as (3.9), we have

lim | Jy,. (I = 2G)w,, — wy || = 0. (3.10)
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From the definition of w,, we have

Wil = Wy = Uil = Wy) + ¥y (]M,A(I - 2G)wy, — Wn)

+ M ((1 — PuP)Wy — Wn) +8u(2n — Wn).
From the condition (i), (3.8), (3.9), and (3.10), we have
lim || (I = puI = S)) Wy — wi | = 0. (3.11)
H—0Q

Step 4. We will show that limsup,,_, .. (it — w, w,, — ) <0, where w = Pg L.
To show this, choose a subsequence {w,, } of {w,} such that

limsup(u — 0, w, — w) = lim (1 — 0, w,, — ). (3.12)
n—00 k—o00

Without loss of generality, we can assume that w,, — & as k — oo. From (3.9), we obtain
Zpy, — & ask — oo.

First, we will show that & € ﬂf\il VI(H,A;, M). Assume that & ¢ ﬂf\il VI(H,A;, M). By
Lemmas 2.11 and 2.13, ﬂf\il VI(H,A;, M) = Fix(Jyr, (I — AG))). Then & # Jar, (I — LG)E,
where G = ZZI b;A;. By the nonexpansiveness of /1, ((/ — AG)), (3.10), and Opial’s con-
dition, we obtain

dim inf lw,, — 1| < lim inflw, — /s (- 2G)8]
= Jim inf(w, ~Jaus (U = 2G)w |

+ I (I = 2G))wy, = Jaip (I - 1G))E )

< lim inf|w,, —£&]|.
k— o0

This is a contradiction. Then we have

N
& e[\ VI(H, A, M). (3.13)
i=1

Next, we will show that & € Fix(S). Assume that £ ¢ Fix(S). From Remark 2.10(i), we get
Fix(8) = Fix(I - p, (I - S)). Then & # (I - p,, (I - 8))&. From the condition (ii), (3.11), and
Opial’s condition, we obtain

Jim inf [w,, — & < Tim inf|lw,, — (- py (T - ))&

= kllrgo inf(”Wnk - (I = pn (I = 8))W”k ”

(1= =) = (1= - ) )

= kli)n;o inf(” Wiy = (I = (I = S)) Wiy, ”

+ W =&l + o | T = S)w, — I - S)E]|)

= lim inf||w,, —&|.
lim inf [, — €]
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This is a contradiction. Then we have
£ € Fix(S). (3.14)

Since 0 <c <r, <d, ¥Vn € N, then we have r,, — ras k — oo with0 <c<r <d. Ap-
plying Lemma 2.9, we have ”®’nk Wy, — O, wy, || — 0 as k — oo. Next, we will show that
e ﬂﬁl EP(W¥;). Assume that & ¢ ﬂﬁl EP(¥;). From Remark 2.8, we have & ¢ Fix(®,). By
Opial’s condition and (3.9), we have

lim inf |w,, —&| < lim inf|lw,, - ©,§]|
k—o0 k—o00
< lim inf([| Wy, — O, Wy |
+ ”@rnkwnk - ®rwnk” + ”@rwnk - ®r€”)
< lim inf|w,, —£&]|.
k— o0
This is a contradiction. Then we have

N
& e[ EP(W)). (3.15)
i=1

From (3.13), (3.14), and (3.15), we can conclude that & € .
Since wy,, — £ as k — oo and £ € ®. By (3.12) and Lemma 2.1, we have

limsup{u — o, w, — ) = lim (4 — 0, w;,, — )
n—00 k— o0

= (,LL - w:é - w)
<0. (3.16)
Step 5. Finally, we will show that lim,,_, oo W, = w, where @ = Py i. From the definition of
w,, we have
2
IWait = 0* = ettt + Buwi + VuJwia I = AG)Wy + 1l = puPYWy + 8,424 — 0 |
= HO[V,(/L - w) + ﬁn(wn - w) + Vn (]M,A(I - }‘G)Wn - w)
+ nn((]_ PuPYWy, — a)) +8n(zn — ) ”2
= (ﬁn”wn — o + ¥ ||]M,A(]_ rG)w, — (,()” +1n ” (I = puP)wy — C‘)H
+ 8ullzn — 0ll)” + 201t — 0, W1 — )
= (1 - an)”Wn - OO”2 + 2“}1(” — W, Wyy1 — a)>~
From the condition (i), (3.16), and Lemma 2.2, we can conclude that the sequence {w,}

converges strongly to w = P . By (3.9), we find that {z,} converges strongly to @ = Pg .
This completes the proof. O

As a direct proof of Theorem 3.1, we obtain the following results.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H and let
M : H — 2" be a multi-valued maximal monotone mapping. For every i =1,2,...,N, let
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V;: C x C — R be a bifunction satisfying (Al)-(A4) and let A : H — H be an a-inverse
strongly monotone mapping. Let S : H — H be a k -strictly pseudononspreading mapping.
Assume @ := Fix(S) N ﬂf\il EP(W;) N VI(H,A, M) # @. Let the sequences {w,} and {z,} be
generated by wi, u € H and

Zﬁlai\pi(zn’y)"’ i(y_zmzn_wﬁ >0, Vye(C,
Wyl = QL + ,ann + yn]M,A(I - )"A)Wn (317)
+0u(I = puI = S)Wy, + 8,24, V=1,

where {a,.}, {Bu}s {¥u} {0n}, {64} € (0,1) and . >0 with o, + B+ Yu+ N+ 8, =1, 0 < < 1,
and 0 < a; <1, forevery i =1,2,...,N, r, € [¢,d] C(0,1), 0 < p < By, Vs > 0n < g < 1,
Pn € (0,1 —«) for all n > 1. Suppose the following conditions hold:

(i) limy—ooay =0andy oo a, =00,

(i) D02, pn < 00,

(iii) 0 <A < 2«

(v) YN ai=1,

) Z:il |otye1 — @y| < 00, Z:il | Bi+1 — Bul < 00, Zzil [Vne1 — Vul < 00,

ZEO:I |pn+1 - pn| <00, ZEO:I |8n+1 _Bnl <00, Z:O:l |rr1+1 - rn| <0

Then the sequences {w,} and {z,} converge strongly to w = Py 1.

Proof Put A;=A foralli=1,2,...,N in Theorem 3.1. So, from Theorem 3.1, we obtain
the desired result. O

Corollary 3.3 Let C be a nonempty closed convex subset of a real Hilbert space H and
let M : H — 2" be a multi-valued maximal monotone mapping. Let W : C x C — R be a
bifunction satisfying (Al)-(A4). For every i=1,2,...,N, A; : H — H be a;-inverse strongly
monotone mapping with n = mini.1, n{o;}. Let S : H — H be a k-strictly pseudonon-
spreading mapping. Assume ® := Fix(S) NEP(F)N ﬂfil VI(H,A;, M) # 0. Let the sequences
{w,} and {z,} be generated by wy, u € H and

V(@) + (Y = ZnZa = Wa) 20, Vy€C,
Wyl = 0L + lgnwn + yn]M,A (1 - ZZI biAi)Wn (318)
+ 0yl = pul = S))Wy + Spzn, Yn =1,

where {a,,}, {Bn} {vn} (1n} {80} S (0,1) and A >0 withay, + B+ Vu + Ny + 8, =1, 0 < < 1,
and 0 < b; <1, forevery i =1,2,...,N, r, € [¢,d] C(0,1), 0 <p < By, Vs 0 < g < 1,
Pn € (0,1 - k) for all n > 1. Suppose the following conditions hold:

(i) limy ooty =0and Y o2) o, = 00,

(ii) Y1 on <00,

(i) 0 <A <2n, wheren =min;. o3, n{®},

(v) YN bi=1,

() Yol =l <00, D202 |Buer = Bul < 00, 3021 (Vo1 — Yl < 00,

Yot o1 = pul <00, 3 181 = 8l < 00, 302 [Pan = 7l < 00

Then the sequences {w,} and {z,} converge strongly to w = Py 1.

Proof Take W = W;,Vi=1,2,...,N. By Theorem 3.1, we obtain the desired conclusion. [J
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4 Applications

In this section, we utilize our main theorem to prove a strong convergence theorem
for finding a common element of the set of fixed points of a x-quasi-strictly pseudo-
contractive mapping and the set of solutions of a finite family of variational inclusion prob-
lems and the set of solutions of a finite family of equilibrium problem in Hilbert space. To

obtain this result, we recall some definitions, lemmas, and remarks as follows.

Definition 4.1 Let C be a subset of a real Hilbert space H andlet S : C — C be a mapping.
Then S is said to be k -quasi-strictly pseudo-contractive if there exists a constant « € [0,1)
such that

|Su—pl> < |lu—-p||* +«llu—-Sull?>, Yue CandVp € Fix(S).
S is said to be quasi-nonexpansive if
|ISu—pl| <llu-pll, Yue CandVp e Fix(S).

The class of k -quasi-strictly pseudo-contractions includes the class of quasi-nonexpan-

sive mappings.

Remark 4.1 If S: C — C be a k-strictly pseudononspreading mapping with Fix(S) # 9,
then S is a k-quasi-strictly pseudo-contractive mapping.

Example 4.2 Let S:[0,1] — [0,1] be defined by

2u+1
Su-= ”; , forallue[0,1].

Then § is a k-strictly pseudononspreading mapping where « € [0,1). Since 1 € Fix(S), S
is also k -quasi-strictly pseudo-contractive mapping.

Next, we give the example to show that the converse of Remark 4.1 is not true.

Example 4.3 Let S:[-2,2] — [-2,2] be defined by

5
Su= —gu, Yu e [-2,2].

First, show that S is a k-quasi-strictly pseudo-contractive mapping for all u € [-2,2].
Observe that Fix(S) = {0}. Let u € [-2,2], we have

5 > 25
|Su—-SO0> = |-=u—-0| ==|ul?
3 9
and
1 1l 5 )
=0 + = (T = Su|” = |l + = |u+ Zu
4 4”73
18 |?
=ul?+=|-u
4|3
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64 (1
= ul® + —<—>|u|2
9 \4
25
) (_)|M|2‘
9

Then S is a %‘—quasi—strictly pseudo-contractive mapping. Next, we show that S is not a

%—strictly pseudononspreading mapping.
3
2

(-2

Choose =2 and v = _73, we have

“HE)-5

’102

2

2

=25,

2
=9,

5, |3 3
lu—v|"=|=+ =
2 2

1 3 -3
fe-9(3)-a-9(3)

1
=18

4
=16

and

u-9(3)r-o(3))

Then we have

{(3)- 3G

= 2(4)(~4) = -32.

1
|Su-Sv*> lu—-v|®+ Z|(1—S)u— (I—S)v|2 +2{u — Su,v - Sv).

By changing S from being a «-strictly pseudononspreading mapping with Fix(S) # @
into a k-quasi-strictly pseudo-contractive mapping, we obtain the same result as in Re-

mark 2.10.

Remark 4.4 Let S : H — H be a k-quasi-strictly pseudo-contractive mapping with
Fix(S) # 0. Define T : H — H by Tu := ((1 — ) + AS)u, where A € (0,1 — «). Then the

following hold:
(i) Fix(S) = Fix(T) = Fix(I - A(I - S));
(ii) for every u € H and v € Fix(S),

I Tu—vi < llu-vl.

In 2009, Kangtunyakarn and Suantai [16] introduced the S-mapping generated by &, S5,

...,Sy and oy, a9,...,ay as follows.

100

Page 18 of 27
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Definition 4.2 ([16]) Let C be a nonempty convex subset of a real Banach space. Let {S;},

be a finite family of (nonexpansive) mappmgs of C 1nt0 itself. For eachj=1,2,...,leta; =
(o/l,a2,a3) €1 x I xIwherel=[0,1]and o] + a2 + 0‘3 = 1. Define the mapping S: C — C
as follows:

UO = I;

Ll1 = Ol%SlL[() + Ol%UO + Olé],
U2 = Ol1282U1 + ()[%Ul + 0(%1,

L[g :Ol1383U2 +OI;}U2 +Ol§1,

Un1—051 SN1UN2+O{2 UN2+C\(3 I

S=U,=a)SyUyq +ay U,y +ay 1.
This mapping is called the S-mapping generated by &1, S,,..., Sy and ay, ay, ..., an.

Lemma 4.5 ([17]) Let C be a nonempty closed convex subset of a real Hilbert space H. Let
(S, be aﬁmtefamzly of nonspreading mappings ofC into ztself with ﬂl (Fix(S;) #9
and let o = (al,az,ag) elxIxlI where I= [0 1, o + 0/2 +ay =1, al,o/ € (0,1) for all
j=12,....N-1land ol €(0,1], & €[0,1), &, € (0,1) forall j = 1,2,...,N. Let S be the
S-mapping generated by 51, S,, ..., Sy and oy, a3, . .., an. Then Fix(S) = ﬂf\il Fix(S;) and S
is a quasi-nonexpansive mapping.

Remark 4.6 From Lemma 4.5 it still holds if C = H.

Theorem 4.7 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
M : H — 2" be a multi-valued maximal monotone mapping. For every i =1,2,...,N, let
V;: C x C— R be a bifunction satisfying (Al)-(A4) and A; : H — H be a;-inverse strongly
monotone mapping with n = min;_1o, n{a;}. Let S : H — H be a k-quasi-strictly pseudo-
contractive mapping. Assume ® := Fix(S) N ﬂﬁl EP(¥;) N ﬂﬁl VI(H,A;, M) # (. Let the
sequences {wy} and {z,} be generated by wy, u € H and

Zﬁlai\pi(zmy)"' %(y_zmzn_wrﬂ ZO, VJ/GC,
Wpil = O + ﬂnwn + yn]M,A (1 - Zf\il biAi)Wn (41)
+ 0, — oI = SDWy + 842, YH =1,

where {a,.}, {Bn} {Vn}s {1} {80} € (0,1), and X >0 with oy + By + Yy + N +8,=1,0<a <1
and 0 < a;,b; <1, foreveryi=1,2,...,N, r, € [¢,d] C(0,1),0<p < B, Vi My 80 < g < 1,
pn € (0,1 —«) for all n > 1. Suppose the following conditions hold:

(i) limyoo0ty =0and Y o2) o, = 00,

(i) 3551 pn <00,

(iv) Zi:l a; = Zi:l bi=1,

) Z:il lotye1 — @u| < 00, Zzil |Brs+1 — Bul < 00, Zf,ozl [Vne1 = Vul < 00,

Yo 1Pt = pal <00, D702 181 = 8,4l < 00, D202 [Pt = 7] < 00

Then the sequences {w,} and {z,} converge strongly to w = Py L.
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Proof Using Remark 4.4 and the same method of proof in Theorem 3.1, we have the de-
sired conclusion. O

Theorem 4.8 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
M : H — 2" be a multi-valued maximal monotone mapping. For every i =1,2,...,N, let
V; : C x C — R be a bifunction satisfying (Al)-(A4), and let A;: H — H be o;-inverse
be a finite family of nonspreading mappings with ¥V := ﬂfil Fix(S)) N ﬂf\il EP(¥;) N
NN, VI(H,A;, M) # 0. Let 6, = (), y,a}) € I x I x I, j =1,2,...,N, where I = [0,1],
o +dl+al =1, d,d €0,) forall j =1,2,...,N - 1, and o € (0,1], & € [0,1),
0/2' €(0,1) for all j = 1,2,...,N, and let S be the S-mapping generated by S, S,,...,Sn
and 6,,0,,...,0x. Let the sequences {w,} and {z,} be generated by wy, u € H and

Zﬁl ﬂiwi(zn’y) + i(y_zmzn —wy) =0, Vy eC,
Wpil = 0y L + ﬂnwn + )/n]M,A (1 —A Zf\il biAi)Wn (42)
+ul = pul = )Wy + 8uzn, V=1,

where {a,}, {Bn}, {(¥n} {0n}: {8, € (0,1) and . >0 with a, + B+ Yy + 1 + 6, =1,0<a <1
and 0 <a;,b; <1, foreveryi=12,....,N, r, € [¢,d] C(0,1),0<p < By, Vs s < q < 1,
pn € (0,1) for all n > 1. Suppose the following conditions hold:
(i) limy—ooay =0andy o) o, =00,

(i) Y2y pn < 00,

(ili) 0 <A <2n, where n = min;12,. n{®},

(iv) Zf\il a; = Zﬁl bi=1,

(V) 200 et = el <00, 302 [Bst = Bul < 00, Y02, [Vt = vl < 00,

Zzozl [ On+1 — Pl < 00, Zf,ozl [84+1 — 84| < 00, Z:il |7ys1 — 1| < 00.

Then the sequences {w,} and {z,} converge strongly to w = Py L.

Proof From Theorem 4.7 and Remark 4.6, we obtain the desired conclusion. g

5 Numerical results
The purpose of this section we give a numerical example to support our some result. The
following example is given for supporting Theorem 3.1.

Example 5.1 Let R be the set of real numbers. Foreveryi=1,2,...,N,let W;: Rx R — R,
A; :R — R be defined by

Wi(u,v) =i(v—u)Bu +v),

Aiu =
10

forall u,v € R and let S : R — R be defined by

=34 ify e [0,00),

Su=4°
u  ifue(-00,0).
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Foreveryi=1,2,...,N, suppose that Jy;; =1, A = N,a, = 3 N4N’b = N9N Let {w,}

and {z,} be generated by (3.1), where «,, = W' Bn = (;%nl), Yy = 2%3&“, Ny = 5(;23}41)’ 8, =
20n-1

320, Tn = 5n+6, and p, = 12 for every n € N. Then the sequences {w,} and {z,} converge
strongly to 0.

Solution. It is easy to see that S is a «-strictly pseudononspreading mapping. Since a; =
3 1

57t N we obtain
N N g 1
W)=Y (= + — iv- 3u).
;a (u,v) ;(41+N4N)l(v u)(v + 3u)

It is easy to check that W; satisfies all the conditions of Theorem 3.1 and EP(Z?L1 a;\V;) =
ﬂﬁl EP(¥;) = {0}. Then we have

N
Fix(8) N () EP(¥)) = {0}. (5.1)

i=1

Put S, = YN 1(& + <hx)i, then we have

N
1
0= aiVi(zn) + — (7 = 2wz = W)

i=1 n
=851y —2z.)(y +32,) + rl(y —2,) (20 — W)

& 0=8517,(y—zu)(y +324) + (v = 20) (20 — W)
= Slry,y2 + (2, + 21,812, — W)y + 2, Wy, — BrnSlzf, - zf,.
Let G(y) = S17,)? + (24 + 21,120 — W)Y + ZyWy — 37,5122 — 22. G(y) is a quadratic function
of y with coefficient a = Siry,, b = z,, + 2r, 812, — wy, and ¢ = z,w,, — BrnSlzfl - zfl. Determine
the discriminant A of G as follows:
A=b*—4ac

= (2y + 21,812, — wy,)* — 4(Slr,,)(z,,w,, —3r,812% - zi)

252 2

= z + 8r,,Slz +16r;, - 2z,w, — 8r,S1z,w,, + wfl

= (2, + 481702y — Wy)2.

We know that G(y) > 0, Yy € R. If it has at most one solution in R, then A <0, so we

obtain
Wh
Zy= ———, 52
"1+ 45,1, (5:2)
_ N /3 1 .
where S; = Zi:l(ﬁ + 3 )i
Since A;u = % and b; = % + ]ﬁ,

8 1 ]
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Table 1 The values of the sequences {z,,} and {w,} with initial values p =w; =5

n N=1 N=100
Z, Wp Zp Wn
1 2391304 5.000000 2.037037 5.000000
2 1480316 3.700791 1.211068 3.633203
3 0.982649 2667191 0.784335 2577101
4 0.667619 1.900147 0523043 1.810533
5

0459689 1.349410 0.354712 1.270096
50 0.004726 0.015803 0.003739 0.015422

96 0.002359 0.007951 0.001867 0.007854
97 0.002334 0.007866 0.001847 0.007687
98 0.002309 0.007783 0.001828 0.007606
99 0.002284 0.007702 0.001808 0.007526
100 0.002261 0.007622 0.001790 0.007448

From (5.1) and the definition of A;, we have

N N
Fix(8) N ()EP(W:) N[ VI(H, A;, M) = {0}. (5.3)
i=1 i=1
— — _ 5 -
For every n € N, i = g5, B = 555,20 ¥ = 2555, thn = 3550 80 = 25550 1 = o

and p, = # Then the sequences {o,}, {By}, {Vu} {10}, {8u}, {rn}, and {p,} satisfy all the
conditions of Theorem 3.1. For every n € N, from (5.2), we rewrite (3.1) as follows:

1 3(20m - 1) 20201 - 1) 1 i 8 1 \iw,
Wyl = — U+ Wy + Wy — — —+ — | ==
"= Sont 20n 2201 " N 9i " N9N J 10

i=1
5(201 - 1) 1
+ 7(1— ﬁ(1—8)>wy,

220m
20n -1 Wy
. 5.4
220n (1 +4N (3 + L)i)3_n) (5.4)
i=1\4i N4N 7"/ 5n+6

Using the algorithm (5.4) and choosing u = w; =5 with N =1 and N =100, we have the
numerical results in Table 1.
Conclusion
1. The sequences {w,} and {z,} converge to 0 as shown in Table 1 and Figure 1.
2. From Theorem 3.1, we can conclude that the sequences {w,} and {z,}, in
Example 5.1, converge to 0.

Next, we give the numerical example to support our some result in a three dimensional
space of real numbers.

Example 5.2 Let an inner product {-,-) : R? x R® — R be defined by (w,y) =w-y=w; -

Y1+ Wy - y2 + ws - y3 and a usual norm || - || : R®> — R defined by ||w| = \/w} + w3 + w}

for all w = (wy, wa, w3),y = (§1,¥2,¥3) € R3. For every i = 1,2,...,N, let ¥; : R® x R® — R,
A;:R?® — R3 be defined by

Wi(w,y) = i(y - w) - Ow +Y), A,w:<m 2 %>

6 6 6
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5 - 5 T -
+* Z : * Z
451 " 45 N "
oW B . W
4t T P S Y P P S
.
35 35+
1 ; 3
c c
E
B 25L- i E < 25 B
& ¥ &
N: N:
20 2y

0 10 20 30 40 50 60 70 =) 80 100 0 10 20 30 40 50 60 70 80 90 100

(a) N =1 (b) N = 100

Figure 1 The convergence of {z,} and {w),} with initial values p =w; = 5.

for all w = (wy, wy, w3) € R3, y = (y1,¥2,¥3) € R® and let S : R? — R3 be defined by

( 3W1 —5W2 —7W3)

if w; € [0,00) foralli=1,2,3,

Sw=
(wy, wy, w3) if w; € (—00,0) foralli=1,2,3.
For every i =1,2,...,N, suppose that /iy =1, A = %, a; = % + ﬁ, b; = ; N8N Let
w, = (WL, w2 w?) and z, = (z.,2%,23) be generated by (3.1), where «,, = ﬁ, By = %,

2(15n-1)

_ _ 5(15n-1) 15n-1
Vn = "1e5n

"= iesn o On = Tegn o Tn = 7n+6’ and p, =

12 for every n € N. Then the

sequences w,, = (W, w?,w3) and z,, = (2},22,23) converge strongly to 0 where 0 = (0,0,0).
Solution. It is easy to see that S is a %—strictly pseudononspreading mapping. Since a; =

% + ﬁ, we obtain

N N oy 1

iqji ) = 9

;a w,y) ;(51 NsN)l(Y w) - (y +9w),
for all w = (wy, wy, w3) € R3, y = (31,y2,73) € R3. It is easy to check that W; satisfies the
condition of Theorem 3.1 and EP(Zl 1a:\V;) ﬂl 1 EP(¥;) = {0}. Then we have

N
Fix(8) N (") EP(¥)) = {0}. (5.5)

i=1
Put Sy = Zl 1(51 + W)l, we have

N

0 < Zﬂ,\lf (Zn)y) + - Y Z,,Z, — wn)
i=1

=Sy —22) - (v + 92) + —(y ~ s — W)

=S — 22 — 200 y3 = 20) - (01 + 92,02 + 92,3 + 92))

1
1 2 3 1 1 .2 2 .3 3
+ _(yl —Zp)2—%2,,)3 _Zn) : (Zn W2, =Wy 2, — Wn)

T'n

= 52((n - 2,) (01 +92,) + (72 = 23) (72 +923) + (13 = 23) (93 +92;))
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+ %((yl =zn) (@ =w) + 02 =2) (2 - W) + (03 = 2) (2, - w,)

- (5160161 +92) + 61wl

n

N (52 (72— 22) (32 + 922) + rl(yz ~2,) (2 - wﬁ))

n

 (52s- 200 95+ L= )t

& 0= (Soru(n—2) (1 +92y) + 1 —2,) (2, = w)))
+ (Sarn(y2 = 22) (92 + 922) + (2 — 22) (22 — W)
+(Soru(y3 = 22) (93 + 923) + (y3 = 23) (5 — W)
= (Soru () + (2 + 8ruSazh — wh)yr + 2w — 97,85 (21)” - (21)°)
2)’)
2)’)

= GOn) + G(2) + G(y3), (5.6)

+ (Soru(2)® + (20 + 87,8z — W2)y2 + Z2Ws, — 97uS) (zﬁ)2 -
()" -

+ (Saru(y3)? + (22 + 81,Sazs — W )ys + 2w — 97,85(2))

where G(1) = S2r,,(1)* + (2L + 87, Sazk —wh)y1 + 2L Wk — 97,55 (21)% — (21)2, G(32) = Sar(y2)? +
(22 + 81, S222 — W2)ya + Z2w% — 91, 85(22)% — (22)? and G(y3) = Sor(33)? + (25 + 87,5225 —
W2)ys + Zows — 9r,82(23)* — (23)%. Then G(1), G(32), and G(y3) are a quadratic function of
y with coefficients a; = Syryy, by = 2. + 87,522, —wl, ¢1 = ZLwl — 97, 85(2L)* — (21)%, a2 = Sary,
by =22 + 87,8222 — W2, ¢ = Z2W2 — 971, 82(22)? — (22)%, a3 = Sary, by = 25 + 87,8225 — w’ and
c3 = 2ow> —97,8,(23)? - (23)?, respectively. Determine the discriminant A; of G as follows:

Al = b% - 461161
= (zi, + 8r,,Szzil - wi,)2 - 4(527’,,)(21’ L - 97,8, (zi,)2 - (z;)z)
1,1

= (21)% + 207, (2L) +1007283 (L) - 22- wh, = 207, So2-wh, + (wh)?

n
= (zl, +10S,7,2, — w;)z.
From (5.6), if G(y;) > 0, Vy; € R and it has most one solution in R, then A; <0, so we

obtain

1
1 Wn
= 5.7
“ = 14 10S,r, (.7)

Next, determine the discriminant Ay of G5 as follows:

Az = h% - 4-6!262
= (22 +8r,$222 = w2)? = &(Sor,) (222 - 91,55(22)” — (22)°)
= (zi)2 + 20rn52(zf,)2 +10072S; (zf,)2 —222W2 — 207, S22 W5 + (Wf,)2

= (22 +108yr,2% - w?)™.
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From (5.6), if G(y,) > 0, Yy, € R and it has at most one solution in R, then A, <0, so we
obtain
2

2 Wn
=M 5.8
“ T 171087, (58)

Next, determine the discriminant Az of Gz as follows:

A3 = b% - 4'(13C3

= (22 + 81,5225 — Wfl)2 — 4(Sary) (2w, - 9r,,Sz(zf,)2 - (23)2)

n

= (22)" +201,85,(2)* +100r282(22)” = 222 w2 — 207,85, 22 w2 + (W)’

n
= (2 +108y7,2% - w?)”.
From (5.6), if G(y3) > 0, Vy3 € R and it has at most one solution in R, then A3 <0, so we

obtain

3
3 w

20 =—"" 5.9
" 1+10S,r, (5:9)
Since A;w = (”gl , ”’;2, ”23) and b; = % + W’ then

7 1

From (5.5) and the definition of A;, we have

N N
Fix(8) N () EP(W) N[ | VI(H, A;, M) = {0). (5.10)
i=1 i=1
Foreveryn € N, a, = 1, g, = 20220 o, = 200) 1, SWnl) 5 1ol e o 2 gnd

On = #. Then the sequences {o,}, {Bn}, {Vu} {1u}s {84}, {7}, and {p,} satisfy all the con-
ditions of Theorem 3.1. For every n € N, from (5.7), (5.8), and (5.9), we rewrite (3.1) as

follows:
1 3(15n - 1) 2(151 1) 1 i 7,1,
Wyl = — R+ Wy, + W, — — —+ — |Aiw,
= " T 165m 165n N &\8 " N8Y
5151 -1 1 1511
G0N g e 2L, (5.11)
165n 212 165n
W1 W2 W3
where w,, = (WL, w2, w3) and z, = (z},2%,23) = (-2 1),

1410897, ? 141087y, ° 141081y,
Using the algorithm (5.11), choose p = (5,10,15), w; = (2,12,20), n = 100, and N = 100.

The numerical results for the sequences w, and z, are shown in Table 2 and Figure 2.
Conclusion
1. The sequences {w,} and {z,} converge to 0 as shown in Table 2 and Figure 2.
2. From Theorem 3.1, we can conclude that the sequences {w,} and {z,}, in
Example 5.2, converge to 0.
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Table 2 The values of the sequences {z,} and {w,} with initial values u = (5,10, 15),

wi=(2,12,20),and n=N=100

n Zn Wn
1 (0.453608,2.721649,4.536082)  (2.000000, 12.000000,20.000000)
2 (0.336995,1.776168,2.930220)  (1.916656,10.101958,16.665628)
3 (0.289738,1.439132,2364314)  (1.841903,9.148767,15.030279)
4 (0.259512,1.239451,2.030799)  (1.756695,8.390131,13.746949)
5 (0.236507,1.096332,1.792646)  (1.666990,7.727376,12.635260)
50 (0.017724,0.045633,0.070850)  (0.147537,0.379859,0.589773)
96 0.006069,0.012338,0.018554; 0.051022,0.103729,0.155990

97

99

0.005987,0.012158,0.018280

0.005830,0.011816,0.017760,

0.050339,0.102226,0.153703

0.049033,0.099372,0.149365

( 18554)  ( )
( 18280)  ( )
98  (0.005907,0.011984,0.018015)  (0.049677,0.100775,0.151496)
( 17760)  ( )
( 17513)  ( )

0.005755,0.011653,0.017513 0.048408,0.098015,0.147304

n

z_and w
n

0 o

o
X

(a) 2D (b) 3D

Figure 2 The convergence of {z,} and {w,} with initial values x = (5,10, 15), w; =(2,12,20), and
n=N=100.
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