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Abstract
The purpose of this research is to modify the variational inclusion problems and prove
a strong convergence theorem for finding a common element of the set of fixed
points of a κ-strictly pseudononspreading mapping and the set of solutions of a finite
family of variational inclusion problems and the set of solutions of a finite family of
equilibrium problems in Hilbert space. By using our main result, we prove a strong
convergence theorem involving a κ-quasi-strictly pseudo-contractive mapping in
Hilbert space. We give a numerical example to support some of our results.
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1 Introduction
Throughout this article, letH be a realHilbert spacewith inner product 〈·, ·〉 andnorm ‖·‖.
Let C be a nonempty closed convex subset of H . Let S : C → C be a nonlinear mapping.
A point u ∈ C is called a fixed point of S if Su = u. The set of fixed points of S is denoted
by Fix(S) := {u ∈ C : Su = u}. A mapping S is called nonexpansive if

‖Su – Sv‖ ≤ ‖u – v‖, ∀u, v ∈ C.

In , Kohsaka and Takahashi [] introduced the nonspreading mapping in Hilbert
space H as follows:

‖Su – Sv‖ ≤ ‖Su – v‖ + ‖u – Sv‖, ∀u, v ∈ C. (.)

It is shown in [] that (.) is equivalent to

‖Su – Sv‖ ≤ ‖u – v‖ + 〈u – Su, v – Sv〉, ∀u, v ∈ C. (.)

The mapping S : C → C is called a κ-strictly pseudononspreading mapping if there exists
κ ∈ [, ) such that

‖Su – Sv‖ ≤ ‖u – v‖ + κ
∥∥(I – S)u – (I – S)v

∥∥ + 〈u – Su, v – Sv〉, ∀u, v ∈ C.
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This mapping was introduced by Osilike and Isiogugu [] in . Clearly every non-
spreading mapping is a κ-strictly pseudononspreading mapping.

Remark . Let C be a nonempty closed convex subset of H . Then a mapping S : C → C
is a κ-strictly pseudononspreading if and only if

 – κ


∥∥(I – S)u – (I – S)v

∥∥ ≤ 〈
(I – S)u – (I – S)v,u – v

〉
+

〈
(I – S)u, (I – S)v

〉
,

for all u, v ∈ C.

Proof Let u, v ∈ C and S be a κ-strictly pseudononspreading mapping, then there exists
κ ∈ [, ) such that

‖Su – Sv‖ ≤ ‖u – v‖ + κ
∥∥(I – S)u – (I – S)v

∥∥ + 〈u – Su, v – Sv〉. (.)

Since

∥∥(I – S)u – (I – S)v
∥∥ = ‖Su – Sv‖ – 〈Su – Sv,u – v〉 + ‖u – v‖, (.)

then we have

‖Su – Sv‖ = ∥∥(I – S)u – (I – S)v
∥∥ + 〈Su – Sv,u – v〉 – ‖u – v‖. (.)

From (.) and (.), we have

∥∥(I – S)u – (I – S)v
∥∥ + 〈Su – Sv,u – v〉 – ‖u – v‖

≤ ‖u – v‖ + κ
∥∥(I – S)u – (I – S)v

∥∥ + 〈u – Su, v – Sv〉.

It follows that

( – κ)
∥∥(I – S)u – (I – S)v

∥∥ ≤ ‖u – v‖ – 〈Su – Sv,u – v〉 + 〈u – Su, v – Sv〉
= 

〈
(I – S)u – (I – S)v,u – v

〉
+ 〈u – Su, v – Sv〉.

Then

 – κ


∥∥(I – S)u – (I – S)v

∥∥ ≤ 〈
(I – S)u – (I – S)v,u – v

〉
+

〈
(I – S)u, (I – S)v

〉
.

On the other hand, let u, v ∈ C and

 – κ


∥∥(I – S)u – (I – S)v

∥∥ ≤ 〈
(I – S)u – (I – S)v,u – v

〉
+ 〈u – Su, v – Sv〉

= ‖u – v‖ – 〈Su – Sv,u – v〉 + 〈u – Su, v – Sv〉.

Then

( – κ)
∥∥(I – S)u – (I – S)v

∥∥ ≤ ‖u – v‖ – 〈Su – Sv,u – v〉 + 〈u – Su, v – Sv〉.
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It follows that

〈Su – Su,u – v〉 ≤ ‖u – v‖ – ( – κ)
∥∥(I – S)u – (I – S)v

∥∥

+ 〈u – Su, v – Sv〉. (.)

From (.), we have

〈Su – Sv,u – v〉 = ‖Su – Sv‖ + ‖u – v‖ – ∥∥(I – S)u – (I – S)v
∥∥. (.)

From (.) and (.), we have

‖Su – Sv‖ + ‖u – v‖ – ∥∥(I – S)u – (I – S)v
∥∥

≤ ‖u – v‖ – ( – κ)
∥∥(I – S)u – (I – S)v

∥∥ + 〈u – Su, v – Sv〉.

Then

‖Su – Sv‖ ≤ ‖u – v‖ + κ
∥∥(I – S)u – (I – S)v

∥∥ + 
〈
(I – S)u, (I – S)v

〉
. �

Example . Let S : [,∞) → [,∞) be defined by

Su = sinu, ∀u ∈ [,∞).

Then S is a κ-strictly pseudononspreading mapping where κ ∈ [, ).

Example . Let S : [,∞)→ [,∞) be defined by

Su =
u

 + u
, ∀u ∈ C.

Then S is a 
 -strictly pseudononspreading mapping.

The mapping A : C → H is called α-inverse strongly monotone if there exists a positive
real number α such that

〈Au –Av,u – v〉 ≥ α‖Au –Av‖,

for all u, v ∈ C.
Let B : H → H be a mapping and M : H → H be a multi-valued mapping. The varia-

tional inclusion problem is to find x ∈H such that

θ ∈ Bx +Mx, (.)

where θ is a zero vector in H . The set of the solution of (.) is denoted by VI(H ,B,M).
It is well known that the variational inclusion problems are widely studied in mathemat-
ical programming, complementarity problems, variational inequalities, optimal control,
mathematical economics, and game theory, etc. Many authors have increasingly investi-
gated such a problem (.); see for instance [–] and references therein.

http://www.fixedpointtheoryandapplications.com/content/2014/1/209
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LetM :H → H be a multi-valued maximal monotone mapping, then the single-valued
mapping JM,λ :H →H defined by

JM,λ(x) = (I + λM)–(x), ∀x ∈H ,

is called the resolvent operator associated withM, where λ is any positive number and I is
an identity mapping; see [].
Let � : C × C → R be a bifunction. The equilibrium problem for � is to determine its

equilibrium point. The set of solution of equilibrium problem is denoted by

EP(�) =
{
u ∈ C :�(u, v)≥ ,∀v ∈ C

}
. (.)

Finding a solution of an equilibrium problem can be applied to many problems in physics,
optimization, and economics. Many researchers have proposed some methods to solve
the equilibrium problem; see, for example, [, ] and the references therein.
In , Zhang et al. [] introduced an iterative scheme for finding a common element

of the set of solutions of the variational inclusion problem with multi-valued maximal
monotone mapping and inverse strongly monotone mappings and the set of fixed points
of nonexpansive mappings in Hilbert space as follows:

⎧⎨
⎩vn = JM,λ(wn – λAwn),

wn+ = αnw + ( – αn)Svn, ∀n≥ ,

and they proved a strong convergence theorem of the sequence {wn} under suitable con-
ditions of the parameters {αn} and λ.
In , Kangtunyakarn [] introduced an iterative algorithm for finding a common

element of the set of fixed points of a κ-strictly pseudononspreading mapping and the set
of solutions of a finite family of variational inequality problems as follows:

wn+ = αnu + βnPC
(
I – λn(I – S)

)
wn + γnSwn, ∀n ∈N,

and proved a strong convergence theorem of the sequence {wn} under suitable conditions
of the parameters {αn}, {βn}, {γn}, and {λn}.
Very recently, Suwannaut and Kangtunyakarn [] have modified (.) as follows:

EP

( N∑
i=

ai�i

)
=

{
u ∈ C :

( N∑
i=

ai�i

)
(u, v)≥ ,∀v ∈ C

}
, (.)

where �i : C×C → R is for bifunctions and ai >  with
∑N

i= ai =  for every i = , , . . . ,N .
It is obvious that (.) reduces to (.), if�i =� , for all i = , , . . . ,N . They also introduced
an iterative method for finding a common element of the set of fixed points of an infinite
family of κi-strictly pseudo-contractive mappings and the set of solutions of a finite family
of an equilibrium problem and a variational inequalities problem as follows:

⎧⎨
⎩

∑N
i= ai�i(zn, y) + 

rn 〈y – zn, zn –wn〉 ≥ , ∀y ∈ C,

wn+ = βn(αnμ + ( – αn)Snwn) + ( – βn)PC(I – ρn
∑N

i= biAi)zn, ∀n≥ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/209
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Under some appropriate conditions, they proved a strong convergence theorem of the se-
quence {wn} converging to an element of a set

⋂N
i= EP(�i)∩⋂N

i=VP(Ai,C)∩⋂∞
i= Fix(Si)

where Ai is a strongly positive linear bounded operator for every i = , , . . . ,N .
For i = , , . . . ,N , let Ai : H → H be a single-valued mapping and let M : H → H be

a multi-valued mapping. From the concept of (.), we introduce the problem of finding
u ∈ H such that

θ ∈
N∑
i=

aiAiu +Mu, (.)

for all ai ∈ (, ) with
∑N

i= ai =  and θ is a zero vector. This problem is called the modified
variational inclusion. The set of solutions of (.) is denoted by VI(H ,

∑N
i= aiAi,M). If

Ai ≡ A for all i = , , . . . ,N , then (.) reduces to (.).
In this paper, motivated by the research described above, we prove fixed point theory

involving the modified variational inclusion and introduce iterative scheme for finding a
common element of the set of fixed points of a κ-strictly pseudononspreading mapping
and the set of solutions of a finite family of variational inclusion problems and the set
of solutions of a finite family of equilibrium problem. By using the same method as our
main theorem, we prove a strong convergence theorem for finding a common element
of the set of fixed points of a κ-quasi-strictly pseudo-contractive mapping and the set of
solutions of a finite family of variational inclusion problems and the set of solutions of a
finite family of equilibrium problem in Hilbert space. Applying such a problem, we have
a convergence theorem associated with a nonspreading mapping. In the last section, we
also give numerical examples to support some of our results.

2 Preliminaries
In this paper, we denote weak and strong convergence by the notations ‘⇀’ and ‘→’, re-
spectively. In a real Hilbert space H , recall that the (nearest point) projection PC from H
onto C assigns to each u ∈H the unique point PCu ∈ C satisfying the property

‖u – PCv‖ =min
v∈C ‖u – v‖.

For a proof of the main theorem, we will use the following lemmas.

Lemma. ([]) Given u ∈H and v ∈ C, then PCu = v if and only if we have the inequality

〈u – v, v – z〉 ≥ , ∀z ∈ C.

Lemma . ([]) Let {pn} be a sequence of nonnegative real numbers satisfying

pn+ ≤ ( – an)pn + bn, ∀n≥ ,

where {an} is a sequence in (, ) and {bn} is a sequence such that
()

∑∞
n= an =∞,

() lim supn→∞
bn
an ≤  or

∑∞
n= |bn| < ∞.

Then limn→∞ pn = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/209
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Lemma . Let H be a real Hilbert space. Then

‖u + v‖ ≤ ‖u‖ + 〈v,u + v〉,

for all u, v ∈H .

Lemma . ([]) Let H be a Hilbert space. Then for all u, v ∈ H and αi ∈ [, ] for i =
, , . . . ,n such that α + α + · · · + αn =  the following equality holds:

‖αw + αw + · · · + αnwn‖ =
n∑
i=

αi‖wi‖ –
∑

≤i,j≤n

αiαj‖wi –wj‖.

For finding solutions of the equilibrium problem, assume a bifunction � : C × C → R

to satisfy the following conditions:
(A) �(u, v) =  for all u ∈ C;
(A) � is monotone, i.e., �(u, v) +�(v,u)≤  for all u, v ∈ C;
(A) for each u, v, z ∈ C,

lim
t↓ �

(
tz + ( – t)u, v

) ≤ �(u, v);

(A) for each u ∈ C, v �→ �(u, v) is convex and lower semicontinuous.

Lemma . ([]) Let C be a nonempty closed convex subset of H and let� be a bifunction
of C ×C into R satisfying (A)-(A). Let r >  and u ∈H . Then there exists z ∈ C such that

�(z, v) +

r
〈v – z, z – u〉 ≥ , ∀v ∈ C.

Lemma . ([]) Assume that � : C ×C →R satisfies (A)-(A). For r > , define a map-
ping �r :H → C as follows:

�r(u) =
{
z ∈ C :�(z, v) +


r
〈v – z, z – u〉 ≥ ,∀v ∈ C

}
,

for all u ∈H . Then the following hold:
(i) �r is single-valued;
(ii) �r is firmly nonexpansive, i.e., for any u, v ∈H ,

∥∥�r(u) –�r(v)
∥∥ ≤ 〈

�r(u) –�r(v),u – v
〉
;

(iii) Fix(�r) = EP(�);
(iv) EP(�) is closed and convex.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . For
i = , , . . . ,N , let �i : C ×C →R be bifunctions satisfying (A)-(A) with

⋂N
i= EP(�i) �= ∅.

Then

EP

( N∑
i=

ai�i

)
=

N⋂
i=

EP(�i),

where ai ∈ (, ) for every i = , , . . . ,N and
∑N

i= ai = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/209
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Remark . ([]) From Lemma .,

Fix(�r) = EP

( N∑
i=

ai�i

)
=

N⋂
i=

EP(�i),

where ai ∈ (, ), for each i = , , . . . ,N , and
∑N

i= ai = .

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space H . Let∑N
i= ai�i : C × C → R be bifunctions satisfying (A)-(A) where ai ∈ (, ), for each

i = , , . . . ,N and
∑N

i= ai = . For every n ∈ N, let  < c ≤ rn ≤ d with rn → r as n → ∞.
Then ‖�rnu –�ru‖ →  as n→ ∞ for all u ∈H .

Proof For every n ∈ N, let  < c≤ rn ≤ d with rn → r as n→ ∞, fromwhich it follows that
 < c≤ r ≤ d. For every u ∈ H , by Lemma ., we have

N∑
i=

ai�i(�rnu, v) +

rn

〈v –�rnu,�rnu – u〉 ≥ , ∀v ∈ C

and

N∑
i=

ai�i(�ru, v) +

r
〈v –�ru,�rnu – u〉 ≥ , ∀v ∈ C.

In particular, we have

N∑
i=

ai�i(�rnu,�ru) +

rn

〈�ru –�rnu,�rnu – u〉 ≥  (.)

and

N∑
i=

ai�i(�ru,�rnu) +

r
〈�rnu –�ru,�ru – u〉 ≥ . (.)

Summing up (.) and (.) and using (A), we have


r
〈�rnu –�ru,�ru – u〉 + 

rn
〈�ru –�rnu,�rnu – u〉 ≥ .

It follows that
〈
�rnu –�ru,

�ru – u
r

–
�rnu – u

rn

〉
≥ .

This implies that

 ≤
〈
�ru –�rnu,�rnu – u –

rn
r
(�ru – u)

〉

=
〈
�ru –�rnu,�rnu –�ru +

(
 –

rn
r

)
(�ru – u)

〉
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/209
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It follows that

‖�ru –�rnu‖ ≤
∣∣∣∣ – rn

r

∣∣∣∣‖�ru –�rnu‖(‖�ru‖ + ‖u‖).
Then we have

‖�ru –�rnu‖ ≤ 
r
|r – rn|L,

where L = sup{‖�ru‖ + ‖u‖}. Since rn → r as n→ ∞, we have

‖�rnu –�ru‖ →  as n → ∞. �

Remark . Let S : H → H be a κ-strictly pseudononspreading mapping with
Fix(S) �= ∅. Define T : H → H by Tu := (( – λ)I + λS)u, where λ ∈ (,  – κ). Then the
following hold:

(i) Fix(S) = Fix(T) = Fix(I – λ(I – S));
(ii) for every u ∈ H and v ∈ Fix(S),

‖Tu – v‖ ≤ ‖u – v‖.

Proof (i) It is easy to see that Fix(S) = Fix(T) = Fix(I – λ(I – S)).
(ii) Next, we show that ‖Tu – v‖ ≤ ‖u – v‖. For every u ∈H and v ∈ Fix(S), we have

‖Tu – v‖ =
∥∥(
I – λ(I – S)

)
u – v

∥∥

=
∥∥( – λ)(u – v) + λ(Su – v)

∥∥

= ( – λ)‖u – v‖ + λ‖Su – v‖ – λ( – λ)‖Su – u‖

≤ ( – λ)‖u – v‖ + λ
(‖u – v‖ + κ

∥∥(I – S)u
∥∥)

– λ( – λ)‖Su – u‖

= ‖u – v‖ + κλ‖Su – u‖ – λ( – λ)‖Su – u‖

= ‖u – v‖ + λ
(
λ – ( – κ)

)‖Su – u‖

≤ ‖u – v‖. �

Lemma. ([]) u ∈H is a solution of variational inclusion (.) if and only if u = JM,λ(u–
λBu), ∀λ > , i.e.,

VI(H ,B,M) = Fix
(
JM,λ(I – λB)

)
, ∀λ > .

Further, if λ ∈ (, α], then VI(H ,B,M) is a closed convex subset in H .

Lemma . ([]) The resolvent operator JM,λ associated with M is single-valued, nonex-
pansive for all λ >  and -inverse strongly monotone.

Lemma. Let H be a real Hilbert space and letM :H → H be amulti-valuedmaximal
monotonemapping. For every i = , , . . . ,N , let Ai :H → H be αi-inverse stronglymonotone

http://www.fixedpointtheoryandapplications.com/content/2014/1/209
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mapping with η =mini=,,...,N {αi} and ⋂N
i=VI(H ,Ai,M) �= ∅. Then

VI

(
H ,

N∑
i=

aiAi,M

)
=

N⋂
i=

VI(H ,Ai,M),

where
∑N

i= ai = , and  < ai <  for every i = , , . . . ,N .Moreover, JM,λ(I – λ
∑N

i= aiAi) is a
nonexpansive mapping, for all  < λ < η.

Proof Clearly
⋂N

i=VI(H ,Ai,M) ⊆VI(H ,
∑N

i= aiAi,M).
Let u ∈VI(H ,

∑N
i= aiAi,M) and let u∗ ∈ ⋂N

i=VI(H ,Ai,M). From Lemma ., we have

u ∈ Fix

(
JM,λ

(
I – λ

N∑
i=

aiAi

))
.

Since
⋂N

i=VI(H ,Ai,M) ⊆ VI(H ,
∑N

i= aiAi,M), we have u∗ ∈ VI(H ,
∑N

i= aiAi,M). From
Lemma ., we have

u∗ ∈ Fix

(
JM,λ

(
I – λ

N∑
i=

aiAi

))
.

From the nonexpansiveness of JM,λ, we have

∥∥u∗ – u
∥∥ =

∥∥∥∥∥JM,λ

(
I – λ

N∑
i=

aiAi

)
u∗ – JM,λ

(
I – λ

N∑
i=

aiAi

)
u

∥∥∥∥∥


≤
∥∥∥∥∥
(
I – λ

N∑
i=

aiAi

)
u∗ –

(
I – λ

N∑
i=

aiAi

)
u

∥∥∥∥∥


=

∥∥∥∥∥(
u∗ – u

)
– λ

( N∑
i=

aiAiu∗ –
N∑
i=

aiAiu

)∥∥∥∥∥


≤ ∥∥u∗ – u
∥∥ – λ

N∑
i=

ai
〈
u∗ – u,Aiu∗ –Aiu

〉
+ λ

N∑
i=

ai
∥∥Aiu∗ –Aiu

∥∥

≤ ∥∥u∗ – u
∥∥ – λ

N∑
i=

aiαi
∥∥Aiu∗ –Aiu

∥∥ + λ
N∑
i=

ai
∥∥Aiu∗ –Aiu

∥∥

≤ ∥∥u∗ – u
∥∥ – λη

N∑
i=

ai
∥∥Aiu∗ –Aiu

∥∥ + λ
N∑
i=

ai
∥∥Aiu∗ –Aiu

∥∥

=
∥∥u∗ – u

∥∥ + λ

N∑
i=

ai(λ – η)
∥∥Aiu∗ –Aiu

∥∥. (.)

This implies that

λ

N∑
i=

ai(η – λ)
∥∥Aiu∗ –Aiu

∥∥ ≤ .

http://www.fixedpointtheoryandapplications.com/content/2014/1/209
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Then

Aiu∗ = Aiu, ∀i = , , . . . ,N . (.)

Since u ∈VI(H ,
∑N

i= aiAi,M), we have

θ ∈Mu +
N∑
i=

aiAiu. (.)

From u∗ ∈VI(H ,
∑N

i= aiAi,M), we have

θ ∈Mu∗ +
N∑
i=

aiAiu∗. (.)

From (.) and (.), we have

θ ∈Mu +
N∑
i=

aiAiu –Mu∗ –
N∑
i=

aiAiu∗. (.)

From (.) and (.), we have

θ ∈Mu –Mu∗. (.)

Since u∗ ∈ ⋂N
i=VI(H ,Ai,M) and we have (.) and (.),

θ ∈Mu –Mu∗ +Mu∗ +Aiu∗ =Mu +Aiu,

for all i = , , . . . ,N . It implies that u ∈ ⋂N
i=VI(H ,Ai,M).

Hence

VI

(
H ,

N∑
i=

aiAi,M

)
⊆

N⋂
i=

VI(H ,Ai,M).

Applying (.), we can conclude that JM,λ(I – λ
∑N

i= aiAi) is a nonexpansive mapping for
all i = , , . . . ,N . �

3 Main result
Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
M : H → H be a multi-valued maximal monotone mapping. For every i = , , . . . ,N , let
�i : C ×C →R be a bifunction satisfying (A)-(A) and Ai :H → H be αi-inverse strongly
monotone mapping with η = mini=,,...,N {αi}. Let S : H → H be a κ-strictly pseudonon-
spreading mapping. Assume 
 := Fix(S)∩ ⋂N

i= EP(�i)∩ ⋂N
i=VI(H ,Ai,M) �= ∅. Let the se-

quences {wn} and {zn} be generated by w,μ ∈H and

⎧⎪⎪⎨
⎪⎪⎩

∑N
i= ai�i(zn, y) + 

rn 〈y – zn, zn –wn〉 ≥ , ∀y ∈ C,

wn+ = αnμ + βnwn + γnJM,λ(I – λ
∑N

i= biAi)wn

+ ηn(I – ρn(I – S))wn + δnzn, ∀n≥ ,

(.)
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Khuangsatung and Kangtunyakarn Fixed Point Theory and Applications 2014, 2014:209 Page 11 of 27
http://www.fixedpointtheoryandapplications.com/content/2014/1/209

where {αn}, {βn}, {γn}, {ηn}, {δn} ⊆ (, ) and λ >  with αn + βn + γn + ηn + δn = ,  < α < ,
and  ≤ ai,bi ≤ , for every i = , , . . . ,N , rn ∈ [c,d] ⊂ (, ),  < p ≤ βn,γn,ηn, δn ≤ q < ,
ρn ∈ (,  – κ) for all n ≥ . Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn =∞,
(ii)

∑∞
n= ρn < ∞,

(iii)  < λ < η, where η =mini=,,...,N {αi},
(iv)

∑N
i= ai =

∑N
i= bi = ,

(v)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞,
∑∞

n= |γn+ – γn| <∞,∑∞
n= |ρn+ – ρn| <∞,

∑∞
n= |δn+ – δn| < ∞,

∑∞
n= |rn+ – rn| < ∞.

Then the sequences {wn} and {zn} converge strongly to ω = P
μ.

Proof The proof of Theorem . will be divided into five steps:
Step . We show that the sequence {wn} is bounded.
Since

∑N
i= ai�i satisfies (A)-(A), and

N∑
i=

ai�i(zn, y) +

rn

〈y – zn, zn –wn〉 ≥ , ∀y ∈ C,

by Lemma . and Remark ., we have zn =�rnwn and Fix(�rn ) =
⋂N

i= EP(�i).
Let ω ∈ 
. From Lemma . and Lemma ., we have

ω = JM,λ

(
I – λ

N∑
i=

biAi

)
ω.

From the nonexpansiveness of JM,λ(I – λ
∑N

i= biAi), we have∥∥∥∥∥JM,λ

(
I – λ

N∑
i=

biAi

)
wn –ω

∥∥∥∥∥ ≤ ‖wn –ω‖. (.)

From Remark ., we have

∥∥(
I – ρn(I – S)

)
wn –ω

∥∥ =
∥∥( – ρn)wn + ρnSwn –ω

∥∥

≤ ‖wn –ω‖. (.)

From the definition of wn, (.), and (.), we have

‖wn+ –ω‖ =
∥∥∥∥∥αnμ + βnwn + γnJM,λ

(
I – λ

N∑
i=

biAi

)
wn

+ ηn
(
I – ρn(I – S)

)
wn + δnzn –ω

∥∥∥∥∥
≤ αn‖μ –ω‖ + βn‖wn –ω‖ + γn

∥∥∥∥∥JM,λ

(
I – λ

N∑
i=

biAi

)
wn –ω

∥∥∥∥∥
+ ηn

∥∥(
I – ρn(I – S)

)
wn –ω

∥∥ + δn‖zn –ω‖
≤ αn‖μ –ω‖ + ( – αn)‖wn –ω‖
≤ max

{‖μ –ω‖,‖w –ω‖} = K .
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Bymathematical induction, we have ‖wn – z‖ ≤ K , ∀n ∈N. It implies that {wn} is bounded
and so is {zn}.
By continuing in the same direction as in Step  of Theorem . in [], we have

‖Swn –ω‖ ≤  + κ

 – κ
‖wn –ω‖. (.)

From (.), we can conclude that {Swn} is bounded.
Step . PutG =

∑N
i= biAi and P = I –S . We will show that limn→∞ ‖wn+ –wn‖ = . From

the definition of wn, we have

‖wn+ –wn‖ =
∥∥αnμ + βnwn + γnJM,λ(I – λG)wn + ηn(I – ρnP)wn

+ δnzn – αn–μ – βn–wn– – γn–JM,λ(I – λG)wn–

– ηn–(I – ρn–P)wn– – δn–zn–
∥∥

≤ |αn – αn–|‖μ‖ + βn‖wn –wn–‖ + |βn – βn–|‖wn–‖
+ γn

∥∥JM,λ(I – λG)wn – JM,λ(I – λG)wn–
∥∥

+ |γn – γn–|
∥∥JM,λ(I – λG)wn–

∥∥
+ ηn

∥∥(I – ρnP)wn – (I – ρn–P)wn–
∥∥ + |ηn – ηn–|

∥∥( – ρn–P)wn–
∥∥

+ δn‖zn – zn–‖ + |δn – δn–|‖zn–‖
≤ |αn – αn–|‖μ‖ + βn‖wn –wn–‖ + |βn – βn–|‖wn–‖ + γn‖wn –wn–‖

+ |γn – γn–|
∥∥JM,λ(I – λG)wn–

∥∥ + |ηn – ηn–|
∥∥(I – ρn–P)wn–

∥∥
+ ηn

(‖wn –wn–‖ + ρn‖Pwn – Pwn–‖ + |ρn – ρn–|‖Pwn–‖
)

+ δn‖zn – zn–‖ + |δn – δn–|‖zn–‖
≤ |αn – αn–|‖μ‖ + βn‖wn –wn–‖ + |βn – βn–|‖wn–‖ + γn‖wn –wn–‖

+ |γn – γn–|
∥∥JM,λ(I – λG)wn–

∥∥ + |ηn – ηn–|
∥∥(I – ρn–P)wn–

∥∥
+ ηn‖wn –wn–‖ + ρn‖Pwn – Pwn–‖ + |ρn – ρn–|‖Pwn–‖
+ δn‖zn – zn–‖ + |δn – δn–|‖zn–‖. (.)

By continuing in the same direction as in Step  of Theorem . in [], we have

‖zn – zn–‖ ≤ ‖wn –wn–‖ + 
d

|rn – rn–|‖zn –wn‖. (.)

By substituting (.) into (.), we obtain

‖wn+ –wn‖ ≤ |αn – αn–|‖μ‖ + βn‖wn –wn–‖ + |βn – βn–|‖wn–‖ + γn‖wn –wn–‖
+ |γn – γn–|

∥∥JM,λ(I – λG)wn–
∥∥ + |ηn – ηn–|

∥∥(I – ρn–P)wn–
∥∥

+ ηn‖wn –wn–‖ + ρn‖Pwn – Pwn–‖ + |ρn – ρn–|‖Pwn–‖
+ δn‖zn – zn–‖ + |δn – δn–|‖zn–‖

≤ |αn – αn–|‖μ‖ + βn‖wn –wn–‖ + |βn – βn–|‖wn–‖ + γn‖wn –wn–‖
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+ |γn – γn–|
∥∥JM,λ(I – λG)wn–

∥∥ + |ηn – ηn–|
∥∥(I – ρn–P)wn–

∥∥
+ ηn‖wn –wn–‖ + ρn‖Pwn – Pwn–‖ + |ρn – ρn–|‖Pwn–‖

+ δn

(
‖wn –wn–‖ + 

d
|rn – rn–|‖zn –wn‖

)
+ |δn – δn–|‖zn–‖

≤ |αn – αn–|‖μ‖ + ( – αn)‖wn –wn–‖ + |βn – βn–|‖wn–‖
+ |γn – γn–|

∥∥JM,λ(I – λG)wn–
∥∥ + |ηn – ηn–|

∥∥(I – ρn–P)wn–
∥∥

+ ρn‖Pwn – Pwn–‖ + |ρn – ρn–|‖Pwn–‖
+

d

|rn – rn–|‖zn –wn‖ + |δn – δn–|‖zn–‖. (.)

Applying Lemma ., (.), and the conditions (i), (ii), (v), we have

lim
n→∞‖wn+ –wn‖ = . (.)

Step .We show that limn→∞ ‖zn –wn‖ = limn→∞ ‖(I –ρnP)wn –wn‖ = limn→∞ ‖JM,λ(I –
λG)wn –wn‖ = . By the definition of wn, (.), and (.), we have

‖wn+ –ω‖ =
∥∥αnμ + βnwn + γnJM,λ(I – λG)wn

+ ηn(I – ρnP)wn + δnzn –ω
∥∥

≤ αn‖μ –ω‖ + βn‖wn –ω‖ + γn
∥∥JM,λ(I – λG)wn –ω

∥∥

+ ηn
∥∥(I – ρnP)wn –ω

∥∥ + δn‖zn –ω‖ – βnδn‖wn – zn‖

– βnγn
∥∥JM,λ(I – λG)wn –wn

∥∥

= αn‖μ –ω‖ + ( – αn)‖wn –ω‖ – βnδn‖wn – zn‖

– βnγn
∥∥JM,λ(I – λG)wn –wn

∥∥

≤ αn‖μ –ω‖ + ‖wn –ω‖ – βnδn‖wn –ωn‖

– βnγn
∥∥JM,λ(I – λG)wn –wn

∥∥.

It implies that

βnδn‖zn –wn‖ ≤ αn‖μ –ω‖ + ‖wn –ω‖ – ‖wn+ –ω‖

– βnγn
∥∥JM,λ(I – λG)wn –wn

∥∥

≤ αn‖μ –ω‖ + (‖wn –ω‖ + ‖wn+ –ω‖)‖wn+ –wn‖.

From the condition (i) and (.), we have

lim
n→∞‖zn –wn‖ = . (.)

By continuing in the same direction as (.), we have

lim
n→∞

∥∥JM,λ(I – λG)wn –wn
∥∥ = . (.)
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From the definition of wn, we have

wn+ –wn = αn(μ –wn) + γn
(
JM,λ(I – λG)wn –wn

)
+ ηn

(
(I – ρnP)wn –wn

)
+ δn(zn –wn).

From the condition (i), (.), (.), and (.), we have

lim
n→∞

∥∥(
I – ρn(I – S)

)
wn –wn

∥∥ = . (.)

Step . We will show that lim supn→∞〈μ –ω,wn –ω〉 ≤ , where ω = P
μ.
To show this, choose a subsequence {wnk } of {wn} such that

lim sup
n→∞

〈μ –ω,wn –ω〉 = lim
k→∞

〈μ –ω,wnk –ω〉. (.)

Without loss of generality, we can assume that wnk ⇀ ξ as k → ∞. From (.), we obtain
znk ⇀ ξ as k → ∞.
First, we will show that ξ ∈ ⋂N

i=VI(H ,Ai,M). Assume that ξ /∈ ⋂N
i=VI(H ,Ai,M). By

Lemmas . and .,
⋂N

i=VI(H ,Ai,M) = Fix(JM,λ((I – λG))). Then ξ �= JM,λ(I – λG)ξ ,
where G =

∑N
i= biAi. By the nonexpansiveness of JM,λ((I – λG)), (.), and Opial’s con-

dition, we obtain

lim
k→∞

inf‖wnk – ξ‖ < lim
k→∞

inf
∥∥wnk – JM,λ

(
(I – λG)

)
ξ
∥∥

≤ lim
k→∞

inf
(∥∥wnk – JM,λ

(
(I – λG)

)
wnk

∥∥
+

∥∥JM,λ
(
(I – λG)

)
wnk – JM,λ

(
(I – λG)

)
ξ
∥∥)

≤ lim
k→∞

inf‖wnk – ξ‖.

This is a contradiction. Then we have

ξ ∈
N⋂
i=

VI(H ,Ai,M). (.)

Next, we will show that ξ ∈ Fix(S). Assume that ξ /∈ Fix(S). From Remark .(i), we get
Fix(S) = Fix(I – ρnk (I – S)). Then ξ �= (I – ρnk (I – S))ξ . From the condition (ii), (.), and
Opial’s condition, we obtain

lim
k→∞

inf‖wnk – ξ‖ < lim
k→∞

inf
∥∥wnk –

(
I – ρnk (I – S)

)
ξ
∥∥

≤ lim
k→∞

inf
(∥∥wnk –

(
I – ρnk (I – S)

)
wnk

∥∥
+

∥∥(
I – ρnk (I – S)

)
wnk –

(
I – ρnk (I – S)

)
ξ
∥∥)

≤ lim
k→∞

inf
(∥∥wnk –

(
I – ρnk (I – S)

)
wnk

∥∥
+ ‖wnk – ξ‖ + ρnk

∥∥(I – S)wnk – (I – S)ξ
∥∥)

= lim
k→∞

inf‖wnk – ξ‖.
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This is a contradiction. Then we have

ξ ∈ Fix(S). (.)

Since  < c ≤ rn ≤ d, ∀n ∈ N, then we have rnk → r as k → ∞ with  < c ≤ r ≤ d. Ap-
plying Lemma ., we have ‖�rnk wnk – �rwnk‖ →  as k → ∞. Next, we will show that
ξ ∈ ⋂N

i= EP(�i). Assume that ξ /∈ ⋂N
i= EP(�i). From Remark ., we have ξ /∈ Fix(�r). By

Opial’s condition and (.), we have

lim
k→∞

inf‖wnk – ξ‖ < lim
k→∞

inf‖wnk –�rξ‖

≤ lim
k→∞

inf
(‖wnk –�rnk wnk‖

+ ‖�rnk wnk –�rwnk‖ + ‖�rwnk –�rξ‖)
≤ lim

k→∞
inf‖wnk – ξ‖.

This is a contradiction. Then we have

ξ ∈
N⋂
i=

EP(�i). (.)

From (.), (.), and (.), we can conclude that ξ ∈ 
.
Since wnk ⇀ ξ as k → ∞ and ξ ∈ 
. By (.) and Lemma ., we have

lim sup
n→∞

〈μ –ω,wn –ω〉 = lim
k→∞

〈μ –ω,wnk –ω〉

= 〈μ –ω, ξ –ω〉
≤ . (.)

Step . Finally, we will show that limn→∞ wn = ω, where ω = P
μ. From the definition of
wn, we have

‖wn+ –ω‖ =
∥∥αnμ + βnwn + γnJM,λ(I – λG)wn + ηn(I – ρnP)wn + δnzn –ω

∥∥

≤ ∥∥αn(μ –ω) + βn(wn –ω) + γn
(
JM,λ(I – λG)wn –ω

)
+ ηn

(
(I – ρnP)wn –ω

)
+ δn(zn –ω)

∥∥

≤ (
βn‖wn –ω‖ + γn

∥∥JM,λ(I – λG)wn –ω
∥∥ + ηn

∥∥(I – ρnP)wn –ω
∥∥

+ δn‖zn –ω‖) + αn〈μ –ω,wn+ –ω〉
≤ ( – αn)‖wn –ω‖ + αn〈μ –ω,wn+ –ω〉.

From the condition (i), (.), and Lemma ., we can conclude that the sequence {wn}
converges strongly to ω = P
μ. By (.), we find that {zn} converges strongly to ω = P
μ.
This completes the proof. �

As a direct proof of Theorem ., we obtain the following results.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and let
M : H → H be a multi-valued maximal monotone mapping. For every i = , , . . . ,N , let
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�i : C × C → R be a bifunction satisfying (A)-(A) and let A : H → H be an α-inverse
strongly monotone mapping. Let S :H → H be a κ-strictly pseudononspreading mapping.
Assume 
 := Fix(S) ∩ ⋂N

i= EP(�i) ∩ VI(H ,A,M) �= ∅. Let the sequences {wn} and {zn} be
generated by w,μ ∈H and

⎧⎪⎪⎨
⎪⎪⎩

∑N
i= ai�i(zn, y) + 

rn 〈y – zn, zn –wn〉 ≥ , ∀y ∈ C,

wn+ = αnμ + βnwn + γnJM,λ(I – λA)wn

+ ηn(I – ρn(I – S))wn + δnzn, ∀n≥ ,

(.)

where {αn}, {βn}, {γn}, {ηn}, {δn} ⊆ (, ) and λ >  with αn + βn + γn + ηn + δn = ,  < α < ,
and  ≤ ai ≤ , for every i = , , . . . ,N , rn ∈ [c,d] ⊂ (, ),  < p ≤ βn,γn,ηn, δn ≤ q < ,
ρn ∈ (,  – κ) for all n ≥ . Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn =∞,
(ii)

∑∞
n= ρn < ∞,

(iii)  < λ < α,
(iv)

∑N
i= ai = ,

(v)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞,
∑∞

n= |γn+ – γn| <∞,∑∞
n= |ρn+ – ρn| <∞,

∑∞
n= |δn+ – δn| < ∞,

∑∞
n= |rn+ – rn| < ∞.

Then the sequences {wn} and {zn} converge strongly to ω = P
μ.

Proof Put Ai ≡ A for all i = , , . . . ,N in Theorem .. So, from Theorem ., we obtain
the desired result. �

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H and
let M : H → H be a multi-valued maximal monotone mapping. Let � : C × C → R be a
bifunction satisfying (A)-(A). For every i = , , . . . ,N , Ai : H → H be αi-inverse strongly
monotone mapping with η = mini=,,...,N {αi}. Let S : H → H be a κ-strictly pseudonon-
spreading mapping.Assume
 := Fix(S)∩EP(F)∩⋂N

i=VI(H ,Ai,M) �= ∅. Let the sequences
{wn} and {zn} be generated by w,μ ∈H and

⎧⎪⎪⎨
⎪⎪⎩

�(zn, y) + 
rn 〈y – zn, zn –wn〉 ≥ , ∀y ∈ C,

wn+ = αnμ + βnwn + γnJM,λ(I – λ
∑N

i= biAi)wn

+ ηn(I – ρn(I – S))wn + δnzn, ∀n≥ ,

(.)

where {αn}, {βn}, {γn}, {ηn}, {δn} ⊆ (, ) and λ >  with αn + βn + γn + ηn + δn = ,  < α < ,
and  ≤ bi ≤ , for every i = , , . . . ,N , rn ∈ [c,d] ⊂ (, ),  < p ≤ βn,γn,ηn, δn ≤ q < ,
ρn ∈ (,  – κ) for all n ≥ . Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn =∞,
(ii)

∑∞
n= ρn < ∞,

(iii)  < λ < η, where η =mini=,,,...,N {αi},
(iv)

∑N
i= bi = ,

(v)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞,
∑∞

n= |γn+ – γn| <∞,∑∞
n= |ρn+ – ρn| <∞,

∑∞
n= |δn+ – δn| < ∞,

∑∞
n= |rn+ – rn| < ∞.

Then the sequences {wn} and {zn} converge strongly to ω = P
μ.

Proof Take � =�i, ∀i = , , . . . ,N . By Theorem ., we obtain the desired conclusion. �
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4 Applications
In this section, we utilize our main theorem to prove a strong convergence theorem
for finding a common element of the set of fixed points of a κ-quasi-strictly pseudo-
contractivemapping and the set of solutions of a finite family of variational inclusion prob-
lems and the set of solutions of a finite family of equilibrium problem in Hilbert space. To
obtain this result, we recall some definitions, lemmas, and remarks as follows.

Definition . LetC be a subset of a real Hilbert spaceH and letS : C → C be amapping.
Then S is said to be κ-quasi-strictly pseudo-contractive if there exists a constant κ ∈ [, )
such that

‖Su – p‖ ≤ ‖u – p‖ + κ‖u – Su‖, ∀u ∈ C and ∀p ∈ Fix(S).

S is said to be quasi-nonexpansive if

‖Su – p‖ ≤ ‖u – p‖, ∀u ∈ C and ∀p ∈ Fix(S).

The class of κ-quasi-strictly pseudo-contractions includes the class of quasi-nonexpan-
sive mappings.

Remark . If S : C → C be a κ-strictly pseudononspreading mapping with Fix(S) �= ∅,
then S is a κ-quasi-strictly pseudo-contractive mapping.

Example . Let S : [, ] → [, ] be defined by

Su =
u + 


, for all u ∈ [, ].

Then S is a κ-strictly pseudononspreading mapping where κ ∈ [, ). Since  ∈ Fix(S), S
is also κ-quasi-strictly pseudo-contractive mapping.

Next, we give the example to show that the converse of Remark . is not true.

Example . Let S : [–, ]→ [–, ] be defined by

Su = –


u, ∀u ∈ [–, ].

First, show that S is a κ-quasi-strictly pseudo-contractive mapping for all u ∈ [–, ].
Observe that Fix(S) = {}. Let u ∈ [–, ], we have

|Su – S| =
∣∣∣∣–u – 

∣∣∣∣


=



|u|

and

|u – | + 


∣∣(I – S)u
∣∣ = |u| + 



∣∣∣∣u +


u
∣∣∣∣


= |u| + 


∣∣∣∣u
∣∣∣∣

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= |u| + 


(



)
|u|

=
(



)
|u|.

Then S is a 
 -quasi-strictly pseudo-contractive mapping. Next, we show that S is not a


 -strictly pseudononspreading mapping.
Choose u = 

 and v = –
 , we have

∣∣∣∣S
(



)
– S

(
–



)∣∣∣∣


=
∣∣∣∣–

(



)
+



(
–



)∣∣∣∣


=
∣∣∣∣–

∣∣∣∣


= ,

|u – v| =
∣∣∣∣ +




∣∣∣∣


= ,




∣∣∣∣(I – S)
(



)
– (I – S)

(
–


)∣∣∣∣


=



∣∣∣∣
(



)
+



(



)
–

((
–



)
+



(
–



))∣∣∣∣


=



||

= 

and


〈
(I – S)

(



)
, (I – S)

(
–


)〉
= 

〈(



)
+



(



)
,
((

–



)
+



(
–



))〉

= ()(–) = –.

Then we have

|Su – Sv| > |u – v| + 


∣∣(I – S)u – (I – S)v
∣∣ + 〈u – Su, v – Sv〉.

By changing S from being a κ-strictly pseudononspreading mapping with Fix(S) �= ∅
into a κ-quasi-strictly pseudo-contractive mapping, we obtain the same result as in Re-
mark ..

Remark . Let S : H → H be a κ-quasi-strictly pseudo-contractive mapping with
Fix(S) �= ∅. Define T : H → H by Tu := (( – λ)I + λS)u, where λ ∈ (,  – κ). Then the
following hold:

(i) Fix(S) = Fix(T) = Fix(I – λ(I – S));
(ii) for every u ∈ H and v ∈ Fix(S),

‖Tu – v‖ ≤ ‖u – v‖.

In , Kangtunyakarn and Suantai [] introduced the S-mapping generated byS,S,
. . . ,SN and α,α, . . . ,αN as follows.
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Definition. ([]) LetC be a nonempty convex subset of a real Banach space. Let {Si}Ni=
be a finite family of (nonexpansive) mappings of C into itself. For each j = , , . . . , let αj =
(αj

,α
j
,α

j
) ∈ I × I × I where I = [, ] and α

j
 + α

j
 + α

j
 = . Define the mapping S : C → C

as follows:

U = I,

U = α
SU + α

U + α
I,

U = α
SU + α

U + α
I,

U = α
SU + α

U + α
I,

...

Un– = αN–
 SN–UN– + αN–

 UN– + αN–
 I,

S =Un = αN
 SNUn– + αN

 Un– + αN
 I.

This mapping is called the S-mapping generated by S,S, . . . ,SN and α,α, . . . ,αN .

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{Si}Ni= be a finite family of nonspreading mappings of C into itself with

⋂N
i= Fix(Si) �= ∅

and let αj = (αj
,α

j
,α

j
) ∈ I × I × I where I = [, ], α

j
 + α

j
 + α

j
 = , α

j
,α

j
 ∈ (, ) for all

j = , , . . . ,N –  and αN
 ∈ (, ], αN

 ∈ [, ), αj
 ∈ (, ) for all j = , , . . . ,N . Let S be the

S-mapping generated by S,S, . . . ,SN and α,α, . . . ,αN . Then Fix(S) =
⋂N

i= Fix(Si) and S
is a quasi-nonexpansive mapping.

Remark . From Lemma . it still holds if C ≡H .

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
M : H → H be a multi-valued maximal monotone mapping. For every i = , , . . . ,N , let
�i : C ×C →R be a bifunction satisfying (A)-(A) and Ai :H → H be αi-inverse strongly
monotone mapping with η = mini=,,...,N {αi}. Let S : H → H be a κ-quasi-strictly pseudo-
contractive mapping. Assume 
 := Fix(S) ∩ ⋂N

i= EP(�i) ∩ ⋂N
i=VI(H ,Ai,M) �= ∅. Let the

sequences {wn} and {zn} be generated by w,μ ∈ H and
⎧⎪⎪⎨
⎪⎪⎩

∑N
i= ai�i(zn, y) + 

rn 〈y – zn, zn –wn〉 ≥ , ∀y ∈ C,

wn+ = αnμ + βnwn + γnJM,λ(I – λ
∑N

i= biAi)wn

+ ηn(I – ρn(I – S))wn + δnzn, ∀n≥ ,

(.)

where {αn}, {βn}, {γn}, {ηn}, {δn} ⊆ (, ), and λ >  with αn + βn + γn + ηn + δn = ,  < α < 
and  ≤ ai,bi ≤ , for every i = , , . . . ,N , rn ∈ [c,d] ⊂ (, ),  < p ≤ βn,γn,ηn, δn ≤ q < ,
ρn ∈ (,  – κ) for all n ≥ . Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn =∞,
(ii)

∑∞
n= ρn < ∞,

(iii)  < λ < η, where η =mini=,,...,N {αi},
(iv)

∑N
i= ai =

∑N
i= bi = ,

(v)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞,
∑∞

n= |γn+ – γn| <∞,∑∞
n= |ρn+ – ρn| <∞,

∑∞
n= |δn+ – δn| < ∞,

∑∞
n= |rn+ – rn| < ∞.

Then the sequences {wn} and {zn} converge strongly to ω = P
μ.
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Proof Using Remark . and the same method of proof in Theorem ., we have the de-
sired conclusion. �

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
M : H → H be a multi-valued maximal monotone mapping. For every i = , , . . . ,N , let
�i : C × C → R be a bifunction satisfying (A)-(A), and let Ai : H → H be αi-inverse
strongly monotone mapping with η = mini=,,...,N {αi}. Let Si : H → H , for i = , , . . . ,N
be a finite family of nonspreading mappings with � :=

⋂N
i= Fix(Si) ∩ ⋂N

i= EP(�i) ∩⋂N
i=VI(H ,Ai,M) �= ∅. Let θj = (αj

,α
j
,α

j
) ∈ I × I × I , j = , , . . . ,N , where I = [, ],

α
j
 + α

j
 + α

j
 = , α

j
,α

j
 ∈ (, ) for all j = , , . . . ,N – , and αN

 ∈ (, ], αN
 ∈ [, ),

α
j
 ∈ (, ) for all j = , , . . . ,N , and let S be the S-mapping generated by S,S, . . . ,SN

and θ, θ, . . . , θN . Let the sequences {wn} and {zn} be generated by w,μ ∈H and

⎧⎪⎪⎨
⎪⎪⎩

∑N
i= ai�i(zn, y) + 

rn 〈y – zn, zn –wn〉 ≥ , ∀y ∈ C,

wn+ = αnμ + βnwn + γnJM,λ(I – λ
∑N

i= biAi)wn

+ ηn(I – ρn(I – S))wn + δnzn, ∀n≥ ,

(.)

where {αn}, {βn}, {γn}, {ηn}, {δn} ⊆ (, ) and λ >  with αn + βn + γn + ηn + δn = ,  < α < 
and  ≤ ai,bi ≤ , for every i = , , . . . ,N , rn ∈ [c,d] ⊂ (, ),  < p ≤ βn,γn,ηn, δn ≤ q < ,
ρn ∈ (, ) for all n ≥ . Suppose the following conditions hold:

(i) limn→∞ αn =  and
∑∞

n= αn =∞,
(ii)

∑∞
n= ρn < ∞,

(iii)  < λ < η, where η =mini=,,...,N {αi},
(iv)

∑N
i= ai =

∑N
i= bi = ,

(v)
∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| < ∞,
∑∞

n= |γn+ – γn| <∞,∑∞
n= |ρn+ – ρn| <∞,

∑∞
n= |δn+ – δn| < ∞,

∑∞
n= |rn+ – rn| < ∞.

Then the sequences {wn} and {zn} converge strongly to ω = P
μ.

Proof From Theorem . and Remark ., we obtain the desired conclusion. �

5 Numerical results
The purpose of this section we give a numerical example to support our some result. The
following example is given for supporting Theorem ..

Example . LetR be the set of real numbers. For every i = , , . . . ,N , let�i :R×R →R,
Ai :R →R be defined by

�i(u, v) = i(v – u)(u + v),

Aiu =
iu


,

for all u, v ∈R and let S :R →R be defined by

Su =

⎧⎨
⎩

–u
 if u ∈ [,∞),

u if u ∈ (–∞, ).
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For every i = , , . . . ,N , suppose that JM,λ = I , λ = 
N , ai =


i +


NN , bi =


i +


NN . Let {wn}

and {zn} be generated by (.), where αn = 
n , βn = (n–)

n , γn = (n–)
n , ηn = (n–)

n , δn =
n–
n , rn =

n
n+ , and ρn = 

n for every n ∈ N. Then the sequences {wn} and {zn} converge
strongly to .
Solution. It is easy to see that S is a κ-strictly pseudononspreading mapping. Since ai =


i +


NN , we obtain

N∑
i=

ai�i(u, v) =
N∑
i=

(

i

+


NN

)
i(v – u)(v + u).

It is easy to check that �i satisfies all the conditions of Theorem . and EP(
∑N

i= ai�i) =⋂N
i= EP(�i) = {}. Then we have

Fix(S)∩
N⋂
i=

EP(�i) = {}. (.)

Put S =
∑N

i=(

i +


NN )i, then we have

 ≤
N∑
i=

ai�i(zn, y) +

rn

〈y – zn, zn –wn〉

= S(y – zn)(y + zn) +

rn
(y – zn)(zn –wn)

⇔ ≤ Srn(y – zn)(y + zn) + (y – zn)(zn –wn)

= Srny + (zn + rnSzn –wn)y + znwn – rnSzn – zn.

Let G(y) = Srny + (zn + rnSzn –wn)y + znwn – rnSzn – zn. G(y) is a quadratic function
of y with coefficient a = Srn, b = zn + rnSzn –wn, and c = znwn – rnSzn – zn. Determine
the discriminant � of G as follows:

� = b – ac

= (zn + rnSzn –wn) – (Srn)
(
znwn – rnSzn – zn

)
= zn + rnSzn + rnS


 z


n – znwn – rnSznwn +w

n

= (zn + Srnzn –wn).

We know that G(y) ≥ , ∀y ∈ R. If it has at most one solution in R, then � ≤ , so we
obtain

zn =
wn

 + Srn
, (.)

where S =
∑N

i=(

i +


NN )i.

Since Aiu = iu
 and bi = 

i +


NN ,

N∑
i=

biAiu =
N∑
i=

(

i

+


NN

)
iu


.
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Table 1 The values of the sequences {zn} and {wn} with initial values μ =w1 = 5

n N = 1 N = 100

zn wn zn wn

1 2.391304 5.000000 2.037037 5.000000
2 1.480316 3.700791 1.211068 3.633203
3 0.982649 2.667191 0.784335 2.577101
4 0.667619 1.900147 0.523043 1.810533
5 0.459689 1.349410 0.354712 1.270096
...

...
...

...
...

50 0.004726 0.015803 0.003739 0.015422
...

...
...

...
...

96 0.002359 0.007951 0.001867 0.007854
97 0.002334 0.007866 0.001847 0.007687
98 0.002309 0.007783 0.001828 0.007606
99 0.002284 0.007702 0.001808 0.007526
100 0.002261 0.007622 0.001790 0.007448

From (.) and the definition of Ai, we have

Fix(S)∩
N⋂
i=

EP(�i)∩
N⋂
i=

VI(H ,Ai,M) = {}. (.)

For every n ∈ N, αn = 
n , βn = (n–)

n , γn = (n–)
n , ηn = n–

n , δn = (n–)
n , rn = n

n+ ,
and ρn = 

n . Then the sequences {αn}, {βn}, {γn}, {ηn}, {δn}, {rn}, and {ρn} satisfy all the
conditions of Theorem .. For every n ∈N, from (.), we rewrite (.) as follows:

wn+ =


n
μ +

(n – )
n

wn +
(n – )

n

(
wn –


N

N∑
i=

(

i

+


NN

)
iwn



)

+
(n – )

n

(
I –


n

(I – S)
)
wn

+
n – 
n

(
wn

 + (
∑N

i=(

i +


NN )i)

n
n+

)
. (.)

Using the algorithm (.) and choosing μ = w =  with N =  and N = , we have the
numerical results in Table .
Conclusion
. The sequences {wn} and {zn} converge to  as shown in Table  and Figure .
. From Theorem ., we can conclude that the sequences {wn} and {zn}, in

Example ., converge to .

Next, we give the numerical example to support our some result in a three dimensional
space of real numbers.

Example . Let an inner product 〈·, ·〉 : R ×R
 → R be defined by 〈w,y〉 = w · y = w ·

y + w · y + w · y and a usual norm ‖ · ‖ : R → R defined by ‖w‖ =
√
w
 +w

 +w


for all w = (w,w,w),y = (y, y, y) ∈ R
. For every i = , , . . . ,N , let �i : R × R

 → R,
Ai :R →R

 be defined by

�i(w,y) = i(y –w) · (w + y), Aiw =
(
iw


,
iw


,
iw



)
,
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Figure 1 The convergence of {zn} and {wn} with initial values μ =w1 = 5.

for all w = (w,w,w) ∈R
, y = (y, y, y) ∈R

 and let S :R →R
 be defined by

Sw =

⎧⎨
⎩( –w

 , –w
 , –w

 ) if wi ∈ [,∞) for all i = , , ,

(w,w,w) if wi ∈ (–∞, ) for all i = , , .

For every i = , , . . . ,N , suppose that JM,λ = I , λ = 
N , ai =


i +


NN , bi =


i +


NN . Let

wn = (w
n,w

n,w
n) and zn = (zn, zn, zn) be generated by (.), where αn = 

n , βn = (n–)
n ,

γn = (n–)
n , ηn = (n–)

n , δn = n–
n , rn = n

n+ , and ρn = 
n for every n ∈ N. Then the

sequences wn = (w
n,w

n,w
n) and zn = (zn, zn, zn) converge strongly to  where  = (, , ).

Solution. It is easy to see that S is a 
 -strictly pseudononspreading mapping. Since ai =


i +


NN , we obtain

N∑
i=

ai�i(w,y) =
N∑
i=

(

i

+


NN

)
i(y –w) · (y + w),

for all w = (w,w,w) ∈ R
, y = (y, y, y) ∈ R

. It is easy to check that �i satisfies the
condition of Theorem . and EP(

∑N
i= ai�i) =

⋂N
i= EP(�i) = {}. Then we have

Fix(S)∩
N⋂
i=

EP(�i) = {}. (.)

Put S =
∑N

i=(

i +


NN )i, we have

 ≤
N∑
i=

ai�i(zn,y) +

rn

〈y – zn,zn –wn〉

= S(y – zn) · (y + zn) +

rn
(y – zn)(zn –wn)

= S
(
y – zn, y – zn, y – zn

) · (y + zn, y + zn, y + zn
)

+

rn

(
y – zn, y – zn, y – zn

) · (zn –w
n, z


n –w

n, z

n –w

n
)

= S
((
y – zn

)(
y + zn

)
+

(
y – zn

)(
y + zn

)
+

(
y – zn

)(
y + zn

))
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+

rn

((
y – zn

)(
zn –w

n
)
+

(
y – zn

)(
zn –w

n
)
+

(
y – zn

)(
zn –w

n
))

=
(
S

(
y – zn

)(
y + zn

)
+


rn

(
y – zn

)(
zn –w

n
))

+
(
S

(
y – zn

)(
y + zn

)
+


rn

(
y – zn

)(
zn –w

n
))

+
(
S

(
y – zn

)(
y + zn

)
+


rn

(
y – zn

)(
zn –w

n
))

⇔ ≤ (
Srn

(
y – zn

)(
y + zn

)
+

(
y – zn

)(
zn –w

n
))

+
(
Srn

(
y – zn

)(
y + zn

)
+

(
y – zn

)(
zn –w

n
))

+
(
Srn

(
y – zn

)(
y + zn

)
+

(
y – zn

)(
zn –w

n
))

=
(
Srn(y) +

(
zn + rnSzn –w

n
)
y + znw


n – rnS

(
zn

) – (
zn

))
+

(
Srn(y) +

(
zn + rnSzn –w

n
)
y + znw


n – rnS

(
zn

) – (
zn

))
+

(
Srn(y) +

(
zn + rnSzn –w

n
)
y + znw


n – rnS

(
zn

) – (
zn

))
=G(y) +G(y) +G(y), (.)

whereG(y) = Srn(y) +(zn+rnSzn–w
n)y +znw

n–rnS(zn) –(zn),G(y) = Srn(y) +
(zn + rnSzn – w

n)y + znw
n – rnS(zn) – (zn) and G(y) = Srn(y) + (zn + rnSzn –

w
n)y + znw

n – rnS(zn) – (zn). Then G(y), G(y), and G(y) are a quadratic function of
y with coefficients a = Srn, b = zn +rnSzn –w

n, c = znw
n –rnS(zn) – (zn), a = Srn,

b = zn + rnSzn –w
n, c = znw

n – rnS(zn) – (zn), a = Srn, b = zn + rnSzn –w
n and

c = znw
n–rnS(zn) –(zn), respectively. Determine the discriminant� ofG as follows:

� = b – ac

=
(
zn + rnSzn –w

n
) – (Srn)

(
znw


n – rnS

(
zn

) – (
zn

))
=

(
zn

) + rnS
(
zn

) + rnS


(
zn

) – znw

n – rnSznw


n +

(
w
n
)

=
(
zn + Srnzn –w

n
).

From (.), if G(y) ≥ , ∀y ∈ R and it has most one solution in R, then � ≤ , so we
obtain

zn =
w
n

 + Srn
. (.)

Next, determine the discriminant � of G as follows:

� = b – ac

=
(
zn + rnSzn –w

n
) – (Srn)

(
znw


n – rnS

(
zn

) – (
zn

))
=

(
zn

) + rnS
(
zn

) + rnS


(
zn

) – znw

n – rnSznw


n +

(
w
n
)

=
(
zn + Srnzn –w

n
).
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From (.), if G(y) ≥ , ∀y ∈ R and it has at most one solution in R, then � ≤ , so we
obtain

zn =
w
n

 + Srn
. (.)

Next, determine the discriminant � of G as follows:

� = b – ac

=
(
zn + rnSzn –w

n
) – (Srn)

(
znw


n – rnS

(
zn

) – (
zn

))
=

(
zn

) + rnS
(
zn

) + rnS


(
zn

) – znw

n – rnSznw


n +

(
w
n
)

=
(
zn + Srnzn –w

n
).

From (.), if G(y) ≥ , ∀y ∈ R and it has at most one solution in R, then � ≤ , so we
obtain

zn =
w
n

 + Srn
. (.)

Since Aiw = ( iw
 , iw

 , iw
 ) and bi = 

i +


NN , then

N∑
i=

biAiw =
N∑
i=

(

i

+


NN

)
Aiw.

From (.) and the definition of Ai, we have

Fix(S)∩
N⋂
i=

EP(�i)∩
N⋂
i=

VI(H ,Ai,M) = {}. (.)

For every n ∈ N, αn = 
n , βn = (n–)

n , γn = (n–)
n , ηn = (n–)

n , δn = n–
n , rn =

n
n+ , and

ρn = 
n . Then the sequences {αn}, {βn}, {γn}, {ηn}, {δn}, {rn}, and {ρn} satisfy all the con-

ditions of Theorem .. For every n ∈ N, from (.), (.), and (.), we rewrite (.) as
follows:

wn+ =


n
μ +

(n – )
n

wn +
(n – )

n

(
wn –


N

N∑
i=

(

i

+


NN

)
Aiwn

)

+
(n – )

n

(
I –


n

(I – S)
)
wn +

n – 
n

zn, (.)

where wn = (w
n,w

n,w
n) and zn = (zn, zn, zn) = ( w

n
+Srn

, w
n

+Srn
, w

n
+Srn

).
Using the algorithm (.), choose μ = (, , ), w = (, , ), n = , and N = .

The numerical results for the sequences wn and zn are shown in Table  and Figure .
Conclusion
. The sequences {wn} and {zn} converge to  as shown in Table  and Figure .
. From Theorem ., we can conclude that the sequences {wn} and {zn}, in

Example ., converge to .
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Table 2 The values of the sequences {zn} and {wn} with initial values μ = (5, 10, 15),
w1 = (2, 12, 20), and n = N = 100

n zn wn

1 (0.453608, 2.721649, 4.536082) (2.000000, 12.000000, 20.000000)
2 (0.336995, 1.776168, 2.930220) (1.916656, 10.101958, 16.665628)
3 (0.289738, 1.439132, 2.364314) (1.841903, 9.148767, 15.030279)
4 (0.259512, 1.239451, 2.030799) (1.756695, 8.390131, 13.746949)
5 (0.236507, 1.096332, 1.792646) (1.666990, 7.727376, 12.635260)
...

...
...

50 (0.017724, 0.045633, 0.070850) (0.147537, 0.379859, 0.589773)
...

...
...

96 (0.006069, 0.012338, 0.018554) (0.051022, 0.103729, 0.155990)
97 (0.005987, 0.012158, 0.018280) (0.050339, 0.102226, 0.153703)
98 (0.005907, 0.011984, 0.018015) (0.049677, 0.100775, 0.151496)
99 (0.005830, 0.011816, 0.017760) (0.049033, 0.099372, 0.149365)
100 (0.005755, 0.011653, 0.017513) (0.048408, 0.098015, 0.147304)

Figure 2 The convergence of {zn} and {wn} with initial values μ = (5, 10, 15), w1 = (2, 12, 20), and
n = N = 100.
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