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1 Introduction
Games with strategic complementarities (see Amir [], Vives [], among others) are based
on two fundamental properties: (i) the ability to order the elements of the players’ strat-
egy sets; and (ii) the strategic complementarity which implies upward sloping best replies
(see Topkis [], Cooper []). Contrary to the topologically oriented approaches that gener-
ally require quasiconcavity of each utility function in own action, the properties of games
with strategic complementarities release the reliance on mixed strategies to ensure the
existence of a Nash equilibrium.
Games with strategic complementarities in which the joint best reply correspondence is

Veinott increasing (Veinott [], Calciano []) rely on Zhou’s [] extension of Tarski fixed
point theorem (Tarski []) to set-valued maps. Earlier attempts that aim to generalize
games with strategic complementarities have mainly concentrated on the increasingness
notions (see Antoniadou [], Calciano []). In particular, recently, using the notions of up-
per and lower increasingness (Smithson []) which are substantially weaker than Veinott
increasingness, Calciano [] has presented games with general complementarities and
g-modular games that retain the main properties of supermodular games. On the other
hand, among those very few attempts to extend the set of strategy sets, d’Orey [] has
employed quasilattices while requiring even a stronger notion of increasingness than that
of Veinott []. A notion of quasilattices has also been introduced by Calciano [], and
this notion has been linked to that of lattices by means of specific theorems, contrary to
the notion of d’Orey []. Specifically, Calciano [] has provided the conditions under
which quasilattices and sublattices coincide after showing that the set of maximizers of a
g-modular function on a lattice is a quasilattice.a

The purpose of this paper is to further extend the theory and the scope of application of
games with strategic complementarities. Extending the set of games with (weak) general
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complementarities (see Calciano []) to include games with complete partially ordered
(CPO) strategy sets, our aim is to provide a weaker structure on the set of strategy pro-
files. To do so, we show that the fixed point set of an order-preserving set-valued map
on a CPO is itself a nonempty CPO. Note that the nonemptiness of the fixed point set
already follows from Abian and Brown [] and from Smithson [], whereas the exis-
tence of the least fixed point follows from Stouti []. However, we present short proofs
in the way that Echenique [] has proved Tarski [] and Zhou [] fixed point theorems
by means of transfinite recursion. Beside the existence result, the approach may provide
a convenient way of construction towards the least Nash equilibrium. For this approach,
we assume that the correspondence satisfies a certain notion of increasingness (Calciano
[]) weaker than that of Veinott [], hence than that of Stouti []. Also, we require that
the correspondence has a bottom element for eachmember of its domain. As for the result
on the order structure, we additionally prove that the chains in the fixed point set have a
supremum.
The contribution of this paper consists in showing that the theory of games with gen-

eral complementarities developed by Calciano [] can be shown to hold in the context
of CPOs as well. In particular, the paper analyzes the existence and the order structure
of Nash equilibria for extended (semi-) uniform g-modular games in which the strategy
space is a CPO, and the joint best reply correspondence satisfies monotonicity require-
ments weaker than that of Veinott.
As the strategy set of each player is no longer required to be a complete lattice, our re-

sults prove to be crucial in providing the existence of equilibrium for the games in which
at least one of the players has a multidimensional strategy set and faces a form of budget
constraint, or capacity constraint, or law regulation that makes some of her strategies in-
feasible or unavailable. For instance, if such constraints are introduced into multi-stage
R&Dmodels (Amir []), or into Bertrand competition with pricing and advertising (Vives
[], Calciano []), or into generalized contest games (Acemoglu and Jensen []), the strat-
egy set would no longer be a lattice, but aCPO. In particular, in a generalized contest game,
the players make two types of costly effort, each corresponding to a separate contest. One
contest can correspond to an educational competition while the other can represent com-
petition in sports.b Since the total amount of effort that can bemade by players is bounded
from above, the maximum amount cannot be exerted for both type of contests. Thus, the
strategy set ceases to be a lattice. For such cases, the existence of equilibrium cannot be
verified by the existing results in the context of games with strategic complementarities.
However, utilizing games with general complementarities, we show that the set of equi-
librium is indeed a nonempty CPO.
The article is organized as follows. The next section introduces the related definitions,

and it shows the existence of fixed points onCPOs. In Section , extended (semi-) uniform
g-modular games are presented, and the Nash equilibrium set is characterized. Finally,
Section  concludes.

2 Preliminaries
Let X be a nonempty set on which a reflexive, antisymmetric, and transitive binary re-
lation, denoted by ≤, is defined. (X,≤) turns out to be a complete partially ordered set
(CPO) if (i) X has a bottom element, ⊥; and (ii) for each directed subsetD of X, the supre-
mum exists. An equivalent definition writes as (ii′) each chain in X has a supremum.c
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Furthermore, only for notational purposes, we let Y to be some complete lattice satisfying
X ⊂ Y . By the topological characterization of completeness (see Birkhoff []), Y is com-
pact in its interval topology which is the topology generated by taking the close intervals,
[y, z] = {x ∈ Y : y ≤ x≤ z} with y, z ∈ Y , as a subbasis of closed sets. Moreover, let  denote
the greatest element of Y .d

In the definitions we use throughout the paper, upper contour set of every x ∈ X, for-
mally Ux ≡ {y ∈ X | x ≤ y}, is essential. On a CPO, this set can naturally be defined as fol-
lows.Ux is the union of all directed subsets of X including x as a bottom element. Though,
in this study, we obtain this set by a different approach: Take an element outside X which
is greater than x. The greatest element, , of the complete lattice Y is utilized only at this
stage. It is straightforward that Ux = [x, ] ∩ X for every x ∈ X. We prefer this approach,
because the following proofs become more tractable. Also, our results become compara-
ble with those of Calciano [] which this paper builds on. Finally, since X is a CPO, ∨ (∧)
may not be well defined on X; if so, we set ∨ (∧) as ∨Y (∧Y ).
A map f : X → X is said to be order preserving if for any x, y ∈ X with x < y, we have

f (x) ≤ f (y). For the following definitions, consider a correspondence F : X → X. The cor-
respondence F is upper increasing if for every x, y ∈ X, x ≤ y implies that for every a ∈ F(x),
there is some b ∈ F(y) such that a≤ b. It is lower increasing if for every x, y ∈ X, x≤ y im-
plies that for every b ∈ F(y), there is some a ∈ F(x) such that a ≤ b. These definitions are
attributed to Smithson []. Moreover, the notions of strong upper/lower increasingness
introduced by Calciano [] are defined as follows. The correspondence F is strongly up-
per increasing if for every x, y ∈ X with x ≤ y, every a ∈ F(x), and every b ∈ F(y), there
is some p ∈ F(y) such that p ∈ [a,a ∨ b] ∩ X. It is strongly lower increasing if for every
x, y ∈ X with x ≤ y, every a ∈ F(x), and every b ∈ F(y), there is some q ∈ F(x) such that
q ∈ [a∧ b,b]∩X.
In this paper, we utilize uniform g-modularity defined by Calciano []. We first state a

regularity condition, and then we slightly change the definition in order to guarantee that
our definition is applicable to a CPO-setting for any CPO.

Condition  Let Y be a complete lattice, X ⊂ Y be a CPO. We say that (a,b) ∈ X × X
satisfies Condition  if b � a implies that [a ∧ b,b) ∩ X �= ∅ and a � b implies that
[a∧ b,a)∩X �=∅.

Definition  Let Y be a complete lattice, X ⊂ Y be a CPO, and T be a poset. A function
u : X × T → R is semi-uniform g-modular in (x, t) on X × T if for every (a,b) ∈ X × X
satisfying Condition :

(i) b� a implies that there are p ∈ [a∧ b,b) and q ∈ X such that:
(i.a) ∀t ∈ T : u(a, t) + u(b, t)≤ u(p, t) + u(q, t),
(i.b) and furthermore, ∀t′, t′′ ∈ T with t′ < t′′:

u
(
q, t′

)
– u

(
b, t′

) ≤ u
(
q, t′′

)
– u

(
b, t′′

)
;

(ii) a� b implies that there are p′ ∈ [a∧ b,a) and q′ ∈ X such that:
(ii.a) ∀t ∈ T : u(a, t) + u(b, t) ≤ u(p′, t) + u(q′, t),
(ii.b) and furthermore, ∀t′, t′′ ∈ T with t′ < t′′:

u
(
q′, t′

)
– u

(
b, t′

) ≤ u
(
q′, t′′

)
– u

(
b, t′′

)
.
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The above definition of semi-uniform g-modularity does not require q and q′ to be in-
cluded in specific sets. For our results, we also need a version in which the sets including
q and q′ are restricted.

Condition  Let Y be a complete lattice, X ⊂ Y be a CPO. We say that (a,b) ∈ X × X
satisfies Condition  if b � a implies that (a,a ∨ b] ∩ X �= ∅ and a � b implies that
(b,a∨ b]∩X �=∅.

Definition  Let Y be a complete lattice, X ⊂ Y be a CPO, and T be a poset. A function
u : X × T → R is uniform g-modular on CPO in (x, t) on X × T if for every (a,b) ∈ X ×X
satisfying Conditions  and :

(i) b� a implies that there are p ∈ [a∧ b,b)∩X and q ∈ (a,a∨ b]∩X such that:
(i.a) ∀t ∈ T : u(a, t) + u(b, t)≤ u(p, t) + u(q, t),
(i.b) and furthermore, ∀t′, t′′ ∈ T with t′ < t′′:

u
(
q, t′

)
– u

(
b, t′

) ≤ u
(
q, t′′

)
– u

(
b, t′′

)
;

(ii) a� b implies that there are p′ ∈ [a∧ b,a)∩X and q′ ∈ (b,a∨ b]∩X such that:
(ii.a) ∀t ∈ T : u(a, t) + u(b, t) ≤ u(p′, t) + u(q′, t),
(ii.b) and furthermore, ∀t′, t′′ ∈ T with t′ < t′′:

u
(
q′, t′

)
– u

(
b, t′

) ≤ u
(
q′, t′′

)
– u

(
b, t′′

)
.

Finally, the set of fixed points of f relative to X, denoted by ε(f ), is defined as follows:e

ε(f ) =
{
x ∈ X : x = f (x)

}
.

Synonymously, the set of fixed points of F relative to X is then given by

ε(F) =
{
x ∈ X : x ∈ F(x)

}
.

2.1 The existence of fixed points on CPOs
Thefirst theorem is the existence of fixedpoints of an order-preserving self-mapon aCPO.
In fact, the nonemptiness of the fixed point set already follows from Abian and Brown
[]; however, our proof is in line with Echenique’s [] arguments. Echenique’s [] proof
is constructive in the sense that it gives a procedure for finding a fixed point. Yet, since the
proof utilizes ordinal numbers, there are notions of constructiveness that the proof would
not satisfy.

Theorem (Abian and Brown []) Let X be a CPO, and f : X → X be an order-preserving
self-map. Then the set of fixed points of f is a nonempty CPO.

Proof See the Appendix. �

Moving to correspondences on CPOs, we know that Smithson [] has proved the
nonemptiness of the fixed point set, and that Stouti [] has shown the existence of the
least fixed point. The following theorem indicates that a weaker notion of increasingness
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is sufficient for the existence of the least fixed point. The proof relies on the approach
given in the proof of Theorem .

Theorem  Let X be a CPO, and F : X → X be a correspondence such that for every x ∈ X,
F(x) has a bottom element. If F is lower increasing, then F has a least fixed point.

Proof See the Appendix. �

2.2 The order structure of the set of fixed points
In this section, we provide the conditions under which the set of fixed points turns out to
be a CPO. To our knowledge, this paper is the first to present such a result. At this point,
we need further notations to state the necessary assumptions for the proof. Let

A =
{
x ∈ X : ∃y ∈ F(x) : x ≤ y

}

be the set of elements of X at which F weakly jumps the diagonal. For a fixed h ∈ A, define
Fh : [h, ]∩X → [h, ]∩X as

Fh(x) = F(x)∩ [h, ].

The set A and the correspondence Fh are borrowed from Calciano [], and they are well
defined in a CPO setting. They are essentially utilized in Lemma  and Theorem  in a
similar way to Calciano’s [].

Lemma Let F : X → X be a correspondence. If F is upper increasing, then Fh is nonempty-
valued.

Proof See Calciano []. �

Theorem  Let Y be a complete lattice, X ⊂ Y be a CPO, and F : X → X be a correspon-
dence. If (i) F is strongly upper increasing and strongly lower increasing; (ii) ∀x ∈ X: F(x) is
a CPO in X; and (iii) ∀h ∈ A and ∀x ∈ X: Fh(x) has a bottom element whenever nonempty,
then the fixed point set of F is a CPO.

Proof Since strong lower increasingness implies lower increasingness, we say that ε(F) has
a bottom element by Theorem . Now, take any directed nonempty subset E of ε(F). We
have to show that

∨
ε(F) E exists. If E is finite, then the result is trivial. Then assume oth-

erwise, and let h =
∨

E. Noting that E is a directed set, let (xn) be an increasing sequence
consisting of all elements of E. As h is the least upper bound of E, the infinite intersection⋂{x ∈ X | xi ≤ x < h} =∅.
Assume that ∃a ∈ F(h) such that a ≥ h. Then h ∈ A. If not, there are two cases: (i) ∃a ∈

F(h) such that a < h; and (ii) ∀a ∈ F(h), a and h are unordered. Case (i) has two subcases:
(i.a) ∃xk ∈ E such that xk ≥ a; and (i.b) ∀xi ∈ E, xi � a. Under case (i.a), by strong upper
increasingness, there exists ai ∈ F(h) such that ai ∈ [xi,xi∨a] for every i≥ k. That is ai = xi
for every i ≥ k. We then have a directed subset E′ of F(h). It is obvious that

∨
E′ = h.

Since F(h) is a CPO, h is included in F(h). Under cases (i.b) and (ii), we can construct a
directed subset of F(h), denoted by E′′, in such a way that for every xi ∈ E, there exists

http://www.fixedpointtheoryandapplications.com/content/2014/1/101
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bi ∈ E′′ such that bi ≥ xi.f Since F(h) is a CPO, the supremum
∨

E′′ is included in F(h).
Since the supremum of E is unique, by construction, we have

∨
E′′ ≥ h. That is to say, the

correspondence F weakly jumps the diagonal at h.
In all of the above cases, h ∈ A. For every x ∈ [h, ] ∩ X, Lemma  verifies that Fh(x) is

nonempty. Thus, Fh(x) has a bottom element by assumption. Take any z, z′ ∈ [h, ] ∩ X
such that z ≤ z′, and take any y ∈ Fh(z) and y′ ∈ Fh(z′). If y≤ y′, then Fh is lower increasing.
If otherwise, there are two cases. Either y′ < y, or y and y′ are unordered. For the former
case, by strong lower increasingness of F , there exists t ∈ F(z) such that h ≤ y′ = y ∧ y′ ≤
t ≤ y′, concluding that y′ ∈ Fh(z). For the latter case, by strong lower increasingness of F ,
there exists t ∈ F(z) with y ∧ y′ ≤ t ≤ y′. As h ≤ y ∧ y′ ≤ t, we have t ∈ Fh(z). By applying
Theorem  for Fh, we find that ε(Fh) is nonempty and has a least element. Let e∗ ∈ ε(Fh) be
the least fixed point of Fh. Check that e∗ ∈ ε(F) by the definition of a fixed point. If ē ∈ ε(F)
is an upper bound on E, then ē ≥ h. This implies that ē ∈ ε(Fh), i.e., e∗ ≤ ē. We conclude
that e∗ =

∨
ε(F) E which completes the proof that the supremum of E exists. Thus, ε(F) is

a CPO. �

3 General complementarities on CPOs
Let � = (N , (Xi)i∈N , (ui)i∈N ) be a normal form game in which N is the player set, Xi is the
set of strategies for player i ∈ N , and ui : X → R is the utility function for player i ∈ N
where X ≡ ∏

i∈N Xi denotes the set of strategy profiles.
For a normal form game, a strategy profile x∗ ∈ X is a Nash equilibrium if for every i ∈N ,

and every xi ∈ Xi,

ui
(
x∗) ≥ ui

(
xi,x∗

–i
)
.

Accordingly, for a given x–i ∈ X–i ≡ ∏
j∈N\{i} Xj, the best response of player i ∈ N is defined

as the set of maximizers. In particular, the best response correspondence of i ∈N , denoted
by Bi : X–i → Xi, is

Bi(x–i) =
{
x∗
i | ∀x′

i ∈ Xi : ui
(
x∗
i ,x–i

) ≥ ui
(
x′
i,x–i

)}
.

Then the joint best response correspondence, denoted by F : X → X, is defined as

F(x) =
∏

i∈N
Bi(x–i).

This, in turn, implies that a strategy profile x∗ ∈ X is a Nash equilibrium if x∗ ∈ F(x∗); i.e.,
if it is a fixed point of the joint best response correspondence.

3.1 Extended semi-uniform g-modular games and the existence of Nash
equilibria

In this section, we first show that under semi-uniform g-modularity, the set of maximizers
is strongly lower increasing which provides us more than we need to apply Theorem .

Theorem  Let Y be a complete lattice, X ⊂ Y be a compact CPO in its interval topology,
and T be a poset. Assume that u : X × T → R is upper semi-continuous in x on X, for
every t in T , and is semi-uniform g-modular in (x, t) on X × T . Let B(t) denote the set of

http://www.fixedpointtheoryandapplications.com/content/2014/1/101
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maximizers for a given t ∈ T . If every (a,b) ∈ B(t) × B(t′) satisfies Condition  for every
t, t′ ∈ T with t ≤ t′, then B is strongly lower increasing.

Proof This result can, in fact, be attributed to Calciano [] since an extension to CPOs
does not affect the monotonicity of the set of maximizers. See the Appendix for a detailed
proof. �

Next two definitions extend the domain of games with weak general complementarities
(see Calciano []) to CPOs.

Definition  A game� has extendedweak general complementarities on CPOs (hence, is
a GEWGC) if (i) each strategy set Xi (a subset of a complete lattice Y ) is a CPO; (ii) ∀x ∈ X:
the joint best reply correspondence F is nonempty and has a least element; and (iii) F is
lower increasing.

Definition Agame� is extended semi-uniform g-modular if (i) each individual strategy
space Xi (a subset of a complete lattice Y ) is a compact CPO; (ii) every utility function ui is
upper semi-continuous in own strategies xi for every strategy profile of the other players
x–i; (iii) every ui is semi-uniform g-modular in (xi,x–i); and (iv) ∀x,x′ ∈ X with x ≤ x′:
every (a,b) ∈ F(x) × F(x′) satisfies Condition  where F is the corresponding joint best
reply correspondence.

Theorem  Let � be an extended semi-uniform g-modular game. Then � is a GEWGC,
and the least Nash equilibrium of � exists.

Proof Weneed to show that all three properties of a GEWGC are satisfied: (i) is trivial and
(iii) follows from Theorem . For (ii), we refer to Calciano [], and we provide a detailed
proof in the Appendix. Then, by Theorem , there exists the least fixed point of the joint
best reply correspondence, which is the least Nash equilibrium of the game. �

So far, we have provided the conditions for games with CPO strategy sets to have a Nash
equilibrium. The following result is the comparative statics property due to Topkis [],
a well-appreciated property of extremal equilibria in games with strategic complementar-
ities.

Theorem  Let T be a partially ordered set, and (�t)t∈T be a collection of games with ex-
tended weak general complementarities such that the joint best reply correspondence F(·, t)
is lower increasing in (x, t) on X × T and has a bottom element for every (x, t) ∈ X × T .
Then the least Nash equilibrium is increasing in t.

Proof Let F(·, t) be the joint best reply correspondence of the game �t . Noting that a bot-
tom element exists in every F(x, t), define ft(x) =

∧
F(x, t) for every (x, t) ∈ X × T . The

function ft is order preserving since F(·, t) is lower increasing. Pick any t′ < t′′ in T . Let �

be the set of all ordinal numbers, and � be the linear order on ordinal numbers. For every
t ∈ {t′, t′′}, define gt : � → X by transfinite recursion as gt() = ⊥, and

gt(β) =
∨{

ft
(
gt(α)

)
: β � α

}
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/101
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Recalling the arguments from Theorems  and , we know that the smallest fixed points
e∗
t′ and e∗

t′′ of the games �t′ and �t′′ can be obtained by using gt′ and gt′′ respectively.
Also, lower increasingness of F(·, t) in (x, t) implies that gt is order preserving. Noting
that gt′ (β) ≤ gt′′ (β) for every β ∈ �, one has e∗

t′ ≤ e∗
t′′ . �

The following section is devoted to the order structure of Nash equilibria.

3.2 Extended uniform g-modular games and the order structure of Nash
equilibria

In this section, we present additional assumptions under which the set of Nash equilib-
rium is a CPO. The theorem below indicates that under uniform g-modularity, the set of
maximizers is strongly upper increasing and strongly lower increasing.

Theorem  Let Y be a complete lattice, X ⊂ Y be a compact CPO in its interval topology,
and T be a poset. Assume that u : X ×T → R is upper semi-continuous in x on X, for every
t in T , and is uniform g-modular on CPO in (x, t) on X × T . Let B(t) denote the set of
maximizers for a given t ∈ T . If every (a,b) ∈ B(t) × B(t′) satisfies Conditions  and  for
every t, t′ ∈ T with t ≤ t′, then B is strongly upper increasing and strongly lower increasing.

Proof The result follows from Calciano []. See the Appendix for a detailed proof. �

Then we define two classes of games, and show that the set of Nash equilibrium is a
CPO for these games.

Definition  A game � has extended general complementarities on CPOs (hence, is a
GEGC) if (i) each strategy setXi (a subset of a complete latticeY ) is aCPO; (ii) the joint best
reply correspondence F is strongly upper increasing; (iii) F is strongly lower increasing;
(iv) ∀x ∈ X: F(x) is a CPO in X; and (v) ∀h ∈ A and ∀x ∈ X: the correspondence Fh(x) has
a bottom element whenever nonempty.

Definition  A game � is extended uniform g-modular if (i) each strategy set Xi (a subset
of a complete lattice Y ) is a compact CPO such that the lower contour set of each x ∈ X
is closed;g (ii) every utility function ui is upper semi-continuous in own strategies xi for
every strategy profile of the other players x–i; (iii) every ui is uniform g-modular on CPO
in (xi,x–i); and (iv) ∀x,x′ ∈ X with x ≤ x′: every (a,b) ∈ F(x)× F(x′) satisfies Conditions 
and  where F is the corresponding joint best reply correspondence.

Theorem  Let � be an extended uniform g-modular game. Then � is a GEGC, and the
Nash equilibrium set of � is a CPO.

Proof Weneed to show that all four properties of a GEGC are satisfied: (i) is trivial, (ii) and
(iii) follow fromTheorem, and (v) follows from an approach similar to the one used in the
proof of Theorem . For (iv), we need to show that F(x) is a CPO for every x ∈ X. Note that
since F⊥ coincides with F , it is true that F has a bottom element. Then take any x ∈ X and
any directed set E ⊂ F(x). We need to show that

∨
F(x) E exists. If E is finite, then the result

trivially follows. Assume otherwise, and set k =
∨

E. Now, we aim to construct a sequence
in E converging to k. We start by taking e ∈ E. Then there must be an element e ∈ E

http://www.fixedpointtheoryandapplications.com/content/2014/1/101
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such that e < e < k. This follows because E is infinite and directed. Since X is compact,
and the lower contour sets are closed, this construction returns a sequence (en) ∈ E such
that (en) → k. Since each ui is upper semi-continuous, k ∈ E ⊂ F(x). Hence,

∨
F(x) E = k

so that
∨

F(x) E exists. Then, by Theorem , the set of fixed points of the joint best reply
correspondence, that is, the Nash equilibrium set is a CPO. �

4 Conclusion
In this study, we first provide a short proof for the existence of fixed points of monotone
correspondences defined on CPOs, in a constructive way that Echenique [] has proved
Tarski [] and Zhou [] fixed point theorems.We also give conditions under which the set
of fixed points turns out to be a nonempty CPO. Thereafter, we prove the nonemptiness
of the set of Nash equilibria for extended semi-uniform g-modular games, and we show
that the set of Nash equilibria is a nonempty CPO for extended uniform g-modular games.
Finally, we provide a monotone comparative statics result on the equilibrium set.

Appendix
Proof of Theorem h Let � be the set of all ordinal numbers, and � be the linear order on
ordinal numbers. Define g :� → X by transfinite recursion as g() = ⊥, and

g(β) =
∨{

f
(
g(α)

)
: β � α

}
.

The function g is order preserving by definition. For each α ∈ �, it follows that g(α + ) =
f (g(α)). By the axiom of replacement, there must exist γ ∈ � such that g(γ ) = g(γ + ). Let
γ ∗ be the smallest of such γ ’s.i Finally, let e∗ = g(γ ∗). Then e∗ = f (e∗), so that e∗ is a fixed
point of f . In fact, it is the smallest fixed point of f . To see this, take any e ∈ ε(f ). If e = ⊥,
then e∗ =⊥ is the smallest element of ε(f ). If e > ⊥, there exists α such that g(α) < e. Since f
is an order-preserving map, g(α + ) = f (g(α))≤ f (e) = e. By transfinite induction, we have
e∗ ≤ e, concluding that e∗ is the smallest fixed point.
Then we need to show that each directed nonempty subset E of ε(f ) has a supremum;

i.e.,
∨

ε(f ) E exists. Let x =
∨

ε(f ) E, and let UE = {y ∈ X : x ≤ y} be the set of upper bounds
of E. Note that f (UE) is a subset of UE , because for every y ∈ UE and every e ∈ E, we
have e ≤ f (y) since e = f (e) ≤ f (y). Let ϕ = f |UE . Then ϕ maps UE into UE , and ϕ is order
preserving as well. Hence, ε(ϕ) has a smallest element. By definition of ϕ, this smallest
element is

∨
ε(f ) E. Thus, ε(f ) is a CPO. �

Proof of Theorem  Define f : X → X such that f (x) =
∧

F(x) for every x ∈ X. Note that
f (x) ∈ F(x) and f is order preserving by construction. By Theorem , there is a smallest
fixed point; say e∗ ∈ ε(f ). We also have e∗ = f (e∗) ∈ F(e∗) and, thus, e∗ ∈ ε(F). We have
shown that ε(F) is nonempty. Take any e ∈ ε(F). As in the proof of Theorem , one can
then easily show e∗ ≤ e, so that e∗ is the smallest fixed point. �

Proof of Theorem  Here, we construct the directed subset E′′ ⊂ F(h) in such a way that
for every xi ∈ E, there exists bi ∈ E′′ such that bi ≥ xi. Consider the bottom element of
F(h), say a. For every xi ∈ E, by strong upper increasingness, ∃ai ∈ F(h) such that ai ∈
[xi,xi ∨a]. Since a is the bottom element, we also have a≤ ai. That is to say, ai ∈ [a,xi ∨a].

http://www.fixedpointtheoryandapplications.com/content/2014/1/101
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Consequently, ai ∈ [xi,xi ∨ a]∩ [a,xi ∨ a]. This implies that ai = xi ∨ a. Recalling that (xn)
is an increasing sequence, the set of all ai’s is the desired set E′′. �

Proof of Theorem  Since u is upper semi-continuous, and X is compact, B(t) is closed
and nonempty. Take a ∈ B(t′) and b ∈ B(t′′) with t′ ≤ t′′. If a ≤ b, then the result trivially
follows. Consider the case that they are unordered. Since b� a, there exist p ∈ [a ∧ b,b)
and q ∈ X such that

 ≤ u
(
a, t′

)
– u

(
p, t′

) ≤ u
(
q, t′

)
– u

(
b, t′

) ≤ u
(
q, t′′

)
– u

(
b, t′′

) ≤ ,

where the second inequality follows from Definition (i.a), the third follows from Defini-
tion (i.b), and the rest follow from the optimality of a and b. Thus, p ∈ B(t′) which we
need to show.
The only remaining case is b < a. Now, we have to show that b ∈ B(t′) to prove strong

lower increasingness. Note that there exist p′
 ∈ [a∧ b,a) and q′ ∈ X such that

 ≤ u
(
a, t′

)
– u

(
p′
, t

′) ≤ u
(
q′, t′

)
– u

(
b, t′

) ≤ u
(
q′, t′′

)
– u

(
b, t′′

) ≤ ,

implying that p′
 ∈ B(t′). Since [a ∧ b,a) ≡ [b,a), we have p′

 ≥ b. If p′
 = b, we are done. If

not, then itmust be the case that p′
 > b. By the same argumentwe can find some p′

 ∈ [p′
,a)

such that p′
 ∈ B(t′). If p′

 = b, we are done. If not, we can find p′
 by repeating the argument.

We either have some p′
n ∈ B(t′) with p′

n = b, or we find a sequence (p′
n) which is strictly

decreasing and bounded from below by b. The former completes the proof, and the latter
implies that the sequence converges to some m ∈ B(t′) with m ≥ b by the fact that B(t′)
is closed in the interval topology of X. Now, if m = b, we are done. If not, then m > b.
By the same process, we can construct a convergent sequence between m and b, which
converges tom which is not less than b. At the end, either we have somemn = b, or we find
a sequence (mn) ∈ B(t′) converging to b. Since B(t′) is closed, we have b ∈ B(t′), concluding
that B(t) is strongly lower increasing. �

Proof of Theorem  Here, we only prove (ii) which states that F(x) has a bottom element.
Take any x ∈ X. If F(x) is a chain, we are done. If not, take any unordered y, y′ ∈ F(x). Con-
sider yi, y′

i ∈ Bi(x–i). We need to show that yi ∧ y′
i ∈ Bi(x–i). By semi-uniform g-modularity,

ui(yi,x–i) + ui
(
y′
i,x–i

) ≤ ui(p,x–i) + ui(q,x–i)

for some p ∈ [yi ∧ y′
i, yi) and q ∈ Xi, implying that p,q ∈ Bi(x–i). By a sequence con-

struction similar to the one in the proof of Theorem , one can show that yi ∧ y′
i ∈ Bi(x–i).

Repeating similar arguments for each i ∈ N , we have y∧ y′ ∈ F(x). Hence, F(x) has a bot-
tom element. �

Proof of Theorem  Since u is upper semi-continuous, and X is compact, B(t) is closed
and nonempty. Take a ∈ B(t′) and b ∈ B(t′′) with t′ ≤ t′′. If a ≤ b, then the result trivially
follows. Consider the case that they are unordered. Since b� a, by uniform g-modularity,
there exist p ∈ [a∧ b,b)∩X and q ∈ (a,a∨ b]∩X such that

 ≤ u
(
a, t′

)
– u

(
p, t′

) ≤ u
(
q, t′

)
– u

(
b, t′

) ≤ u
(
q, t′′

)
– u

(
b, t′′

) ≤ ,

http://www.fixedpointtheoryandapplications.com/content/2014/1/101


Keskin et al. Fixed Point Theory and Applications 2014, 2014:101 Page 11 of 12
http://www.fixedpointtheoryandapplications.com/content/2014/1/101

where the second inequality follows from Definition (i.a), the third follows from Defini-
tion (i.b), and the rest follow from the optimality of a and b. Thus, p ∈ B(t′) and q ∈ B(t′′).
The former implies strong lower increasingness, and the latter implies strong upper in-
creasingness. The only remaining case is b < a. Now, showing that a ∈ B(t′′) and b ∈ B(t′)
is enough to prove strong upper increasingness and strong lower increasingness, respec-
tively. Since we have a � b, by uniform g-modularity, there exist p′ ∈ [a ∧ b,a) ∩ X and
q′ ∈ (b,a∨ b]∩X such that

 ≤ u
(
a, t′

)
– u

(
p′, t′

) ≤ u
(
q′, t′

)
– u

(
b, t′

) ≤ u
(
q′, t′′

)
– u

(
b, t′′

) ≤ ,

implying that p′ ∈ B(t′) and q′ ∈ B(t′′). Since (b,a∨b]≡ (b,a] and [a∧b,a)≡ [b,a), we have
q′ ≤ a and p′ ≥ b. Let us consider strong lower increasingness first: If p′ = b, we are done.
If not, then it must be the case that p′ > b. By a sequence construction similar to the one in
the proof of Theorem , we can find a decreasing sequence bounded by bwhich converges
tom ∈ B(t′) withm ≥ b. We continue constructing such sequences until we reach some
mn = b, or the sequence (mn) converges to b ∈ B(t′), concluding that B is strongly lower
increasing. For strong upper increasingness, a similar method applies to find increasing
convergent sequences bounded by a from above. That completes the proof. �
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Endnotes
a Moreover, Calciano [20] has extended the monotone comparative statics results of Milgrom and Shannon [21] to

general binary algebras.
b See Acemoglu and Jensen [18] for the details in an aggregate large game context.
c This definition is provided by Davey and Priestly [22]. In some studies, such a set is also referred to as CPO with

bottom element or pointed CPO.
d Note that the set Y is arbitrary, and so is its greatest element 1. In fact, we only need a set including an element

which is greater than every x ∈ X .
e It is also referred to as the fixed point set of f .
f The construction of this directed set is relegated to the Appendix.
g Lower contour set of x on X is defined as {y ∈ X | y ≤ x}. Note that closedness is a topological property, and recall

that we use the interval topology.
h We do not claim the originality of the proof as it significantly borrows from Echenique [15]. We give this proof to

show that Echenique’s [15] proof can be generalized to hold on a CPO; a result that may not seem trivial to the
reader.

i Note that γ ∗ is well defined as any set of ordinal numbers has a smallest element.
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