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Abstract

The purpose of this paper is to present a new modified Halpern-Mann type iterative
scheme by using the generalized f-projection operator for finding a common
element in the set of zeroes of a system of maximal monotone operators, the set of
fixed points of a totally quasi-¢-asymptotically nonexpansive mapping and the set of
solutions of a system of generalized Ky Fan's inequalities in a uniformly smooth and
strictly convex Banach space with the Kadec-Klee property. Furthermore, we show
that our proposed iterative scheme converges strongly to a common element of the
sets mentioned above.
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1 Introduction

In 1972, Ky Fan’s inequalities were first introduced by Fan [1]. The study concerning Ky
Fan’s inequalities, fixed points of nonlinear mappings and their approximation algorithms
constitutes a topic of intensive research efforts. Many well-known problems arising in
various branches of science can be studied by using algorithms which are iterative in their
nature. As an example, in computer tomography with limited data, each piece of informa-
tion implies the existence of a convex set in which the required solution lies.

Many authors have considered a family of nonexpansive mappings to show the existence
of fixed points and related topics. Especially, the well-known convex feasibility problem
reduces to finding a point in the intersection of the fixed point sets of a family of nonex-
pansive mappings and the problem of finding an optimal point that minimizes a given cost
function over the set of common fixed points of a family of nonexpansive mappings.

Solving the convex feasibility problem for a system of generalized Ky Fan’s inequal-
ities is very general in the sense that it includes, as special cases, optimization prob-
lems, equilibrium problems, variational inequality problems, minimax problems. More-
over, the generalized Ky Fan’s inequality was shown in [2] to cover monotone inclusion
problems, saddle point problems, variational inequality problems, minimization prob-
lems, optimization problems, vector equilibrium problems, Nash equilibria in noncooper-
ative games. In other words, the generalized Ky Fan’s inequality and equilibrium problem
are a unified model for several problems arising in physics, engineering, science, optimiza-
tion, economics and related topics.
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One of the most interesting and important problems in the theory of maximal mono-
tone operators is to find a zero point of maximal monotone operators. This problem con-
tains the convex minimization problem and the variational inequality problem. A popular
method for approximating this problem is called the proximal point algorithm introduced
by Martinet [3] in a Hilbert space. In 1976, Rockafellar [4] extended the knowledge of
Martinet [3] and proved weak convergence of the proximal point algorithm. The proxi-
mal point algorithm of Rockafellar [4] is a successful algorithm for finding a zero point
of maximal monotone operators. Thereafter, many papers have shown convergence the-
orems of the proximal point algorithm in various spaces (see [5-14]).

A pointx € Cisafixed point of S provided Sx = x. We denote by F(S) the fixed point set of
S, that s, F(S) = {x € C: Sx = x}. A point p in C is called an asymptotic fixed point of S [15]
if C contains a sequence {x,} which converges weakly to p such that lim,,_, ||, —Sx,| = 0.
The set of asymptotic fixed points of S is denoted by E(S). Recently, Halpern and Mann
iterative algorithms have been considered for approximations of common fixed points by
many authors. For example, in 2011, Saewan and Kumam [16] introduced a modified Mann
iterative scheme by using the generalized f-projection method for approximating a com-
mon fixed point of a countable family of relatively quasi-nonexpansive mappings. Chang
et al. [17] considered a modified Halpern iterative scheme for approximating a common
fixed point for a totally quasi-¢-asymptotically nonexpansive mapping. Recently, Li et al.
[18] introduced a hybrid iterative scheme for approximation of a fixed point of relatively
nonexpansive mappings by using the properties of generalized f-projection operators in
a uniformly smooth real Banach space, which is also uniformly convex, and proved some
strong convergence theorems for the hybrid iterative scheme.

On the other hand, Ofoedu and Shehu [19] extended the algorithm of Li et al. [18] to
prove strong convergence theorems for a common solution of the set of solutions of a
system of Ky Fan’s inequalities and the set of common fixed points of a pair of relatively
quasi-nonexpansive mappings in a Banach space by using the generalized f-projection
operator. Chang et al. [20] extended and improved the results of Qin and Su [21] to obtain
strong convergence theorems for finding a common element of the set of solutions for a
generalized Ky Fan’s inequality, the set of solutions for a variational inequality problem
and the set of common fixed points for a pair of relatively nonexpansive mappings in a
Banach space.

Motivated and inspired by the work mentioned above, in this paper, we introduce a new
hybrid iterative scheme of the generalized f-projection operator based on the Halpern-
Mann type iterative scheme for finding a common element of the set of zeroes of a system
of maximal monotone operators, the set of fixed points of a totally quasi-¢-asymptotically
nonexpansive mapping and the set of solutions of a system of generalized Ky Fan’s in-
equalities in a uniformly smooth and strictly convex Banach space with the Kadec-Klee

property.

2 Preliminaries
A Banach space E with the norm | - | is called strictly convex if || % |<1foralx,yel
with x # y, where U = {x € E : ||x|| = 1} is the unit sphere of E. A Banach space E is called
smooth if the limit

X+ tyl| —|[|x
lim llx + gyl = llxll

t—0 t
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exists for each x,y € U. It is also called uniformly smooth if the limit exists uniformly for
all x,y € U. In this paper, we denote the strong convergence and weak convergence of a
sequence {x,} by x, — x and x,, — x, respectively.

Let E be a real Banach space with the dual space E” and let C be a nonempty closed and
convex subset of E. A mapping S: C — C is said to be:

(1) nonexpansive if
(1S = Syll < [l -yl

forallx,y € C;
(2) quasi-nonexpansive if F(S) # @ and

ISx =yl < llx -yl
for all x € C and y € F(S);

(3) asymptotically nonexpansive if there exists a sequence {k,} C [1,00) with k, — 1 as
n — oo such that

|87 = S"y|| < Kl =yl
forallx,y € C;

(4) asymptotically quasi-nonexpansive if F(S) # ¥ and there exists a sequence
{k,} C [1,00) with k, — 1 as n — oo such that

[8%% = y]| < kallx =y
for all x € C and y € F(S);

(5) totally asymptotically nonexpansive if there exist nonnegative real sequences {v,},

{in} with v, > 0, u,, = 0 as n — oo and a strictly increasing continuous function
¥ : RY — R* with ¥(0) = 0 such that

|57 = 8"y < llx =yl + putr (Ix = y11) + vy
forallx,y e Cand n>1.

A mapping S: C — C is said to be uniformly L-Lipschitz continuous if there exists a
constant L > 0 such that

| 8%~ 8"y[| < Lilx-yl (0
forall x,y € C. A mapping S : C — C is said to be closed if, for any sequence {x,} C C such
that lim,,_, » %, = %o and lim,,_, o Sx,, = Yo, we have Sxy = yj.

The normalized duality mapping ] : E — 2F is defined by

J@x) ={x €E :(xx) = |x]?

x || = llxll}
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for all x € E. If E is a Hilbert space, then J = I, where [ is the identity mapping. Consider
the functional ¢ : E x E — R defined by

P, y) = llxl> = 2(x, Jy) + Iyl% 2)

where J is the normalized duality mapping and (-, -) denotes the duality pairing of Eand E .
If E is a Hilbert space, then ¢(y,x) = ||y — x||?. It is obvious from the definition of ¢ that

(Ilyll = ||x||)2 <omx) < (lyl + ||x||)2 3)
forallx,y € E.

A mapping S: C — C is said to be:
(1) relatively nonexpansive [22, 23] if F(S) = F(S) and

o, Sx) < p(p,x)
forallx € C and p € F(S);

(2) relatively asymptotically nonexpansive [24] if F(S) =F(S) # ) and there exists a

sequence {k,} C [1,00) with k,, — 1 as n — oo such that

¢(P, Snx) < k.9(p,x)

forallx € C, p € F(S) and n > 1;
(3) ¢-nonexpansive [25, 26] if

P(Sx,Sy) < ¢(x, )

forallx,y € C;
(4) quasi-¢-nonexpansive (25, 26] if F(S) # @ and

¢ (p, Sx) < ¢(p,x)
for allx € C and p € F(S);

(5) asymptotically ¢p-nonexpansive [26] if there exists a sequence {k,} C [0, c0) with
k, — 1 as n — oo such that

¢(S"x, S”y) <k, (x,9)
forallx,y € Cand n>1;

(6) quasi-¢-asymptotically nonexpansive [26] if F(S) # ¥ and there exists a sequence
{k,} C [0, 00) with k,, — 1 as n — oo such that

¢(p, S"x) < kup(p, %)

forallx € C, p € F(S) and n > 1;
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(7) totally quasi-¢-asymptotically nonexpansive if F(S) # ¢ and there exist nonnegative
real sequences {v,}, {1t } with v, = 0, u, — 0 as » — oo and a strictly increasing
continuous function ¥ : R* — R* with ¥(0) = 0 such that

¢(p,S"x) < (L, %) + vu¥ (¢, %)) + s
forallx e C,pe F(S)and n > 1.

Lemma 1 [27] Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. Let S : C — C be a closed and
totally quasi-¢-asymptotically nonexpansive mapping with nonnegative real sequences
{v,} and {i,} with v, — 0 and u,, — 0 as n — 00, respectively, and a strictly increasing
continuous function ¢ : R* — R* with ¢(0) = 0. If uy = 0, then the set F(S) of fixed points
of S is a closed convex subset of C.

Alber [28] introduced that the generalized projection Ilc : E — C is a mapping that
assigns to an arbitrary point x € E the minimum point of the functional ¢(x,y), that is,
Icx = X, where X is the solution of the minimization problem

¢(x,x) = inf ¢(y, x). (4)
yeC

The existence and uniqueness of the operator I1¢ follows from the properties of the
functional ¢(y, x) and strict monotonicity of the mapping J (see, for example, [28—32]).

If E is a Hilbert space, then ¢(x,y) = ||x — y||> and ITc becomes the metric projection
Pc:H — C.1If C is a nonempty closed and convex subset of a Hilbert space H, then P¢ is

nonexpansive.

Remark 1 The basic properties of a Banach space E related to the normalized duality
mapping J are as follows (see [30]):

(1) If E is an arbitrary Banach space, then J is monotone and bounded;

(2) If E is a strictly convex Banach space, then J is strictly monotone;

(3) If E is a smooth Banach space, then J is single-valued and semicontinuous;

(4) If E is a uniformly smooth Banach space, then J is uniformly norm-to-norm
continuous on each bounded subset of E;

(5) If E is a reflexive smooth and strictly convex Banach space, then the normalized
duality mapping J is single-valued, one-to-one and onto;

(6) If E is a reflexive strictly convex and smooth Banach space and J is the duality
mapping from E into E’, then /™! is also single-valued, bijective and is also the
duality mapping from E” into E, and thus JJ ! = I;» and J 7V = I;

(7) If E is a uniformly smooth Banach space, then E is smooth and reflexive;

(8) E is a uniformly smooth Banach space if and only if E” is uniformly convex;

(9) If E is a reflexive and strictly convex Banach space, then J! is

norm—weak* -continuous.

Remark 2 If E is a reflexive, strictly convex and smooth Banach space, then ¢(x,y) =0
if and only if x = y. It is sufficient to show that if ¢(x,y) = 0, then x = y. From (2) we
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have

0 = [lxl* = 2(x, Jy) + IylI*
= [loell® = 21l Uyl + [IylI>
= [loll® = 21|l Uyl + [lylI>

= [lx - ylI>.

That s, ||x| = ||y||. This implies that (x, Jy) = ||x|? = ||/y||>. From the definition of J, one has
Jx = Jy. Therefore, we have x = y (see [30, 32, 33] for more details).

In 2006, Wu and Huang [34] introduced a new generalized f-projection operator in a
Banach space. They extended the definition of the generalized projection operators intro-
duced by Abler [35] and proved some properties of the generalized f-projection operator.
Consider the functional G: C x E" — R U {+00} defined by

G @) =yI* -2, @) + @) + 20f () (5)

for all (y,w) € C x E’, where p is a positive number and f : C — R U {+00} is proper,
convex and lower semicontinuous. From the definition of G, Wu and Huang [34] proved
the following properties:

(1) G(y, ) is convex and continuous with respect to @ when y is fixed;

(2) G(y,w) is convex and lower semicontinuous with respect to y when @ is fixed.

Definition 1 Let E be a real Banach space with its dual space E” and let C be a nonempty
closed and convex subset of E. We say that njé :E" — 2€ is a generalized f-projection op-

erator if
o = {u €C:Gu,w) =Ji,2£G(y,w),Vw eE*}.

Recall that a Banach space E has the Kadec-Klee property [30, 32, 36] if for any sequence
{x,} C E and x € E with x,, — x and ||x,|| — [|x]|, we have ||x,, —x|| — 0 as n — o0. It is well

known that if E is a uniformly convex Banach space, then E has the Kadec-Klee property.

Lemma 2 [34] Let E be a real reflexive Banach space with its dual space E* and let C be a
nonempty closed and convex subset of E. The following statements hold:

1) njézzr is a nonempty, closed and convex subset of C for all w € E';

(2) IfE is smooth, then for all o € E', x € néw if and only if

-y, @ —Jx)+ pf(y) - of(x) >0

forally e C;
(3) IfE is strictly convex and f : C — RU {+00} is positive homogeneous (i.e., f (tx) = tf (x)
forall t > 0 such that tx € C, where x € C), then néw is a single-valued mapping.
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Recently, Fan et al. [37] showed that the condition, f is positive homogeneous, which
appears in [37, Lemma 2.1(iii)], can be removed.

Lemma 3 [37] Let E be a real reflexive Banach space with its dual space E' and let C be a
nonempty closed and convex subset of E. If E is strictly convex, then nfcw is single-valued.

Recall that ] is a single-valued mapping when E is a smooth Banach space. There exists
a unique element @ € E~ such that @ = Jx, where x € E. This substitution in (5) gives the
following:

Gy, Jx) = lIyll* = 2. J) + lx11* + 2pf (9). (6)

Now, we consider the second generalized f projection operator in a Banach space
(see [18]).

Definition 2 Let E be a real smooth Banach space and let C be a nonempty closed and
convex subset of E. We say that Hé : E — 2€ is a generalized f-projection operator if

Héx = {u € C: G(u,Jx) = inf G(y,Jx),Vx € E}.
yeC

Lemma 4 [38] Let E be a Banach space and let f : E — R U {+o0} be a lower semicontin-
uous and convex function. Then there exist x' € E and o € R such that

fx) > <x,x) +a
forallx € E.

Lemma 5 [18] Let E be a reflexive smooth Banach space and let C be a nonempty closed
and convex subset of E. The following statements hold:

1) Héx is a nonempty closed and convex subset of C for all x € E;

(2) PorallxeE,x € Héx if and only if

&=y Jx=Jx) + pf () — pf (%) = 0

forally e C;
(3) IfE is strictly convex, then Hé is a single-valued mapping.

Lemma 6 [18] Let E be a real reflexive smooth Banach space and let C be a nonempty

closed and convex subset of E. Then, for any x € E and x € Héx,

(%) + G(&, Jx) < G(y, Jx)
forallye C.

Lemma 7 [18] Let E be a Banach space and let f : E — RU {+00} be a proper, convex and
lower semicontinuous mapping with convex domain D(f). If {x,} is a sequence in D(f) such
that x, — x € D(f) and lim,,_, o, G(x,,, Jy) = G(%, Jy), then lim,_ || x| = ||X]|.
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Remark 3 Let E be a uniformly convex and uniformly smooth Banach space and f(y) =0
forall y € E. Then Lemma 6 reduces to the property of the generalized projection operator
considered by Alber [28].

If f(y) > 0 for all y € C and £(0) = 0, then the definition of a totally quasi-¢-asymptot-
ically nonexpansive S is equivalent to the following:

For F(S) # ¥ and there exist nonnegative real sequences {v,}, {i,} with v, - 0, u,, - 0
as n — 0o, respectively, and a strictly increasing continuous function ¥ : R* — R* with
¥ (0) = 0 such that

G(p,S"x) < G(p,x) + V¥ G(p, %) + n

forallxe C,pe F(S) and n > 1.
Let 6 be a bifunction from C x C to R, where R denotes the set of real numbers. The
equilibrium problem (for short, (EP)) is to find x € C such that

0%,y =0 7)

for all y € C. The set of solutions of (EP) (7) is denoted by EP(6).

For solving the equilibrium problem for a bifunction 6 : C x C — R, let us assume that
0 satisfies the following conditions:

(Al) O(x,x) =0 forallx € C;

(A2) 6 is monotone, i.e., (x,y) + 6(y,x) <0 for all x,y € C;

(A3) forallx,y,ze C,

ltlng(tz +(1- t)x,y) <0(x,9);

(A4) forallx € C, y— O(x,y) is convex and lower semicontinuous.
For example, let B be a continuous and monotone operator of C into E” and define

Q(x’y) = (ery - x)
for all x,y € C. Then 0 satisfies (A1)-(A4).

Lemma 8 [2] Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E and let 0 be a bifunction from C x C to R satisfying the conditions (Al)-
(A4). Then, for any r > 0 and x € E, there exists z € C such that

1
0@y) + (y-2zJz-Jx) 20
forallye C.

Lemma 9 [39] Let C be a closed convex subset of a uniformly smooth, strictly convex and
reflexive Banach space E and let 6 be a bifunction from C x C to R satisfying the conditions
(A1)-(A4). For all r > 0 and x € E, define a mapping T¢ : E — C as follows:

1
Tx = {ze C:0(z,9)+-(y—zJz—Jx) > 0,¥y € c}.
r
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Then the following hold:
(1) TY is single-valued;
(2) T? is a firmly nonexpansive-type mapping [40), that is, for all x,y € E,

(Tex—T0y,JT %~ JTy) < (T0x — TPy, Jx ~ Jy);

(3) E(T?) = EP(9);
(4) EP(0) is closed and convex.

Lemma 10 [39] Let C be a closed convex subset of a smooth, strictly convex and reflexive
Banach space E and let 6 be a bifunction from C x C to R satisfying the conditions (Al)-
(A4). Then, for any r >0, x € E and q € F(T?),

¢(q, T?x) + ¢(T?x,x) < (g, ).
An operator A C E x E is said to be monotone if
(x=ya =y)=0
for all (x,x"), (y,y") € A. A point z € E is called a zero point of A if
0€cAz 8)
We denote the set of zeroes of the operator A by A710, that is,
A0={z€E:0eAz).

A monotone A C E x E is said to be maximal if its graph G(A) = {(x,y") : ¥ € Ax} is
not property contained in the graph of any other monotone operator. If A is maximal
monotone, then the solution set A0 is closed and convex.

Let E be a smooth strictly convex and reflexive Banach space, let C be a nonempty closed
convex subset of E and let A C E x E" be a monotone operator satisfying D(4) C C C
J7H(;50 RU + AA)). Then the resolvent J; : C — D(A) of A is defined by

Lx = {ZGD(A) Jx €Jz+ MAz,Vx € C}.

J;. is a single-valued mapping from E to D(A). On the other hand, J; = (J + AA)7YJ for all
A>0.

For any A > 0, the Yosida approximation A; : C — E of A is defined by A;x = ]x’#
for all x € C. We know that A;x € A(Jxx) for all A > 0 and x € E. Since relatively quasi-
nonexpansive mappings and quasi-@-nonexpansive mappings are the same, we can see

that /; is a quasi-¢-nonexpansive mapping (see [41, Theorem 4.7]).

Lemma 11 [42] Let E be a smooth strictly convex and reflexive Banach space, let C be a
nonempty closed convex subset of E and let A C E x E~ be a monotone operator satisfying
D(A) C C CJ™M(N),.9 RU +AA)). Forany A > 0, let J, and A, be the resolvent and the Yosida
approximation of A, respectively. Then the following hold:
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(1) ¢(p,)rx) + dp(ix,x) < ¢(p,x) forallx € C and p € A710;
(2) (hx,Asx) € Aforallx e C;
(3) F(J,)=A"t0.

Lemma 12 [43] Let E be a reflexive strictly convex and smooth Banach space. Then an
operator A C E x E’ is maximal monotone if and only if R(J + MA) = E for all . > 0.

3 Main result

Now, we give the main results in this paper.

Theorem 1 Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. For each i=1,2,...,m, let 6;
be a bifunction from C x C to R satisfying the conditions (A1)-(A4). Let A; CE X E" bea
maximal monotone operator satisfying D(A;) C C and ];‘:’n = (J + MuA)) ™Y for all Ay, > 0
andj=1,2,...,1. Let S : C — C be a closed and totally quasi-$-asymptotically nonexpan-
sive mapping with nonnegative real sequences {v,}, {i,} with v, — 0, u, - 0 as n - 0o,
respectively, and a strictly increasing continuous function v : R* — R* with y(0) = 0.
Let f : E — R* be a convex and lower semicontinuous function with C C int(D(f)) and
f(0) = 0. Assume that S is uniformly L-Lipschitz continuous and F = F(S) N ([, EP(6;)) N
(ﬂ;=1 A]TIO) # (. For any initial point x, € E, define C, = C and the sequence {x,} in C by

zu=Ti, O, 0 o T A

tn =T o Tyl o0 Tyl 7,

Y =T %1 + Bu) S % + Yulth), ©)
Cun = {ve Cy: G, Jyn) < @, G(v, Jxr) + (1 = ) G(v, Jxu) + C}s

Xpsl = Hémlxl

foreachn > 1, where {a,}, {B,} and {y,} are the sequences in (0,1) such that o, + By + vy = 1,
Cn = VuSUp,er ¥ (G(q, Jxy)) + by and for each i=1,2,...,m, {ri,} C [d,00) for some d > 0.
If, foreach j=1,2,...,1, liminf,_, o A, > 0, lim,,_, o &t = 0 and liminf,,_, o, B, <1, then the

sequence {x,} converges strongly to a point Hj}xl.

Proof We split the proof into five steps.

Step 1. We first show that C, is closed and convex for all # > 1. From the definitions
C; = C is closed and convex. Suppose that C, is closed and convex for all # > 1. For any
b € C,, we know that G(b, Jy,) < G(b,Jx,) + ¢, is equivalent to the following:

20ty (br]xl) + 2(1 - an)<br]xn> - Z(b,]er

2 2
I [

< aulall® + @ =) lxall® = [yall® + Cu-
Therefore, C,,1 is closed and convex for all n > 1.

Step 2. We show that F C C, for all n > 1. Now, we show by induction that F C C, for
all n > 1. It is obvious that F C C; = C. Suppose that F C C, for some n > 1. Define u,, =

Kz, when K, = Ty Ty} - Tp) forall j=1,2,...,m with KO = I and define z, = Alx,

Tin = Ti-ln
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when AL ::}?j’;1 oJ.7! o--~o]f11n forallj=1,2,...,/ with A% = 1. Let ¢ € F. Then we have

Aj-1n

Glq,Jun) = G(q,JK)'zy)
< G(g,Jzn)
= G(q.](42))
= G(g,Jxn). (10)

Since S is a totally quasi-¢-asymptotically nonexpansive mapping, from (10) we have

G(q,Jyn)
= G(q, (w1 + BuJS % + YJthn))
= 111 = 20,(q, 1) = 2Bu{@,JS" %) = 2V (q, i)
+ ol + BuIS™xn + vuJitn|” + 201 (q)
< qlI* = 20 (g, Jx1) = 2B4{qJS" %) = 2 (q, )
ol l? + Ba 7S5 |* + viallJital® + 20f (@)
= a,G(q,Jx%1) + BuG(4,7S" %) + vuG(q, Ju)
< a,G(q,J%1) + Bu(G(q, Jxn) + vV (G(q, Jxn)) + 1hn) + YnG(q, Jun)
< ,G(q,Jx1) + BuG(q, Jxn) + VG (@ Jtin) + Bu(vu W (G(q, Jn)) + 1)

< a,Glg,Jx1) + BuG(q, Jxu) + VnG(q, Jt) + v,y SUP IP(G(qun)) + Un
qeF

< a,G(gq,Jx1) + BuG(q, Jxn) + VuG(q, Jtin) + Cn

< anG(q,Jx%1) + BnG(qJ%n) + YnG(q:J2n) + Cn

< anG(q,Jx%1) + BnG(q,J%n) + YnG(q>J%n) +

< anG(q,Jx%1) + (B + Y)G(q, Jxn) + §n

=0, G(q,Jx%1) + (1 = @) G(q, J%n) + En (11)

This shows that g € C,,;1, which implies that 7 C C,;; and so F C C,, for all #» > 1 and the
sequence {x,} is well defined.

Step 3. We show that x, — p, y, = p, z, — pand u,, > pas n — 00. Since f : E — Ris
a convex and lower semi-continuous function, from Lemma 4, we known that there exist
x € E and « € R such that

f@)=(xx)+a
for all x € E. Since x,, € C,, C E, it follows that

G, J1) = (121 = 2 1) + 211 + 20f (x,)

*

> [[26ull* = 240, J1) + 121 ]1% + 20,5 ) + 2pcx
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= loall? = 2(s, 1 = px) + 21]1% + 2002

2
[

> [l = 2, | [ Jr = o | + [l ) + 2

= (Il = 1 = o)) + 1% = 1 = o)) + 20 (12)
Forallg € F and %, = Héﬂxl, we have
Glg,Jx1) = G Jx1) = (I1xall = |1 = px ) + ) = [[Joer = o || + 2.

That is, {x,} is bounded and so are {G(x,,/x1)} and {y,}. By using the fact that x,,; =
Hémxl €Cy1CCyandux, = Hénxl, it follows from Lemma 6 and (3) that

0 < (||xn+l - ”xn”)2 = ¢(xn+1:xn) = G(xn+17]x1) - G(xm]xl)' (13)

This implies that {G(x,, Jx;)} is nondecreasing and so lim,,_, oo G(x,,, Jx;) exists. Taking n —
00, we obtain

lim ¢(%,11,%,) = 0. (14)
n— o0

Since {x,} is bounded, E is reflexive and C, is closed and convex for all # > 1. We can
assume that x, — p € C,, as n — oo. From the fact that x,, = Héﬂxl, we get

G(xy, Jx1) < G(p, Jx1) (15)
for all n > 1. Since f is convex and lower semi-continuous, we have

lim inf G(x,, Jx1) = limiolgf{ %l = 24, 1) + 16111 + 20f (%) }
> lpl? = 2(p. Jx1) + %111 + 20f (p)
= Gy, Jx1). (16)

By (15) and (16), we get

G(p,Jx1) < liminf G(x,, Jx1) < limsup G(x,, Jx;) < G(p, Jx1).
n— o0

n—00

That is, lim,,_, o0 G(x,, Jx1) = G(p,Jx1), which implies that ||x,| — ||p|l as # — oo. Since E
has the Kadec-Klee property, we obtain

lim x, = p. 17)

n—00

We also have
lim %, = p. (18)
Hn—0Q

From (17), we get

lim ¢, = lim (vn sup ¥ (G(q,Jxn)) + un) =0. (19)
n—00 n— 00 qef
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From (17) and (18), we have lim,,_, ||, — %,,41]| = 0. Since J is uniformly norm-to-norm
continuous, it follows that

lim ”]xn _]xn+1” =0. (20)
n—0oQ
Moreover, since x,,,1 = Hémxl € Cy41 C C, and (9), we have

G(xn+1;]yn) < anG(an’]xl) + (1 - an)G(anr]xn) + é‘n

is equivalent to the following:

¢(xn+1;yn) < an¢(xn+1;x1) + (1 - arz)(p(xm—l’xn) + (n' (21)
Since lim,,_, o &, = 0, (14) and (19), we have
lim ¢(xn+lryn) =0. (22)
n—00
By (3), it follows that

yall = llpl (23)

as n — 00. Since J is uniformly norm-to-norm continuous, we obtain

yull = 1Pl (24)

as n — o0o. This implies that {||/y, ||} is bounded in E, Since E" is reflexive, we assume that
Jyn —y € E asn— oo.Inview of J(E) = E, there exists y € E such that Jy = y". It follows
that

¢(xn+1:yn) = ||xn+1||2 = 2{%p11,Jyn) + ||yn||2

= 1%s11? = 201, ) + 1yl (25)

Taking liminf,_, o on both sides of the equality above, since | - || is weak lower semi-
continuous, this yields that

0= llpl> = 2p.y)+ |y’

= llpI* = 2(p.Jy) + VyI1®

= lIpI* =2, Jy) + Iy
=o@y) (26)
From Remark 2, p = y, which implies that y* = Jp. It follows that Jy, — Jp € E" as n — oo.
From (24) and the Kadec-Klee property of E', we have Jy, — Jp as n — oc. Note that

J1: E" — E is norm-weak -continuous, that is, Yu; = p as n — o0. From (23) and the
Kadec-Klee property of E, we have

lim y, = p. (27)

n—00
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From (11), we have

G(q,Jyn) < anG(q,Jx1) + BuG(q, Jxn) + YuG(q,J2n) +
< a,Glg,Jx1) + (1 - &) G(q, Jx) + Ene
From (17), (19), (27) and the conditions lim,_, o, o, = 0, liminf,_, o, B, < 1, it follows that

for any q € F, lim,, o #(q,2,) = (g, p). Let z, = Al x, for all n > 1. From Lemma 11(1), it
follows that for any g € F,

¢(Zntxn) = ¢(quxn:xn)
< ¢(q! Xp) — ¢(6I, qux}’l)

= ¢(q’ xn) - ¢(q’ Zn)-

Taking n — 0o on both sides of the inequality above, we have
lim ¢(z,,%,) = 0.
n— o0

From (3), it follows that (||x,|| — ||z.|[)> — 0 as n — 0. Since ||x,|| — ||p|| as n — oo, we
have

lzull = lipl (28)

as n — 00. Since J is uniformly norm-to-norm continuous on bounded subsets of E, it
follows that

Vzull = 1P|l (29)

as n — oo. This implies that {||/z, |} is bounded in E". Since E” is reflexive, we can assume
that Jz, — z' € E" as n — o0. In view of J(E) = E’, there exists z € E such that Jz = z', and
)

DX zn) = 1%ull® = 205, J2n) + 12 ]|
= ||xn||2 - 2<xmlzn> + ”]Zn”Z' (30)

Taking liminf, ., on both sides of the equality above, from the weak lower semi-
continuity of the norm | - |, it follows that

0> Ipl*-2p.2) + | |
= IpI? - 2(p. J2) + 211
= Ipl* - 2(p.J2) + |zl
= ¢(p,2). (31)

From Remark 2, we have p = z, which implies that z" = Jp and so Jz, — Jp € E as n — oc.
From (29) and the Kadec-Klee property of E', we have Jz, — Jp as n — oo. Since J ! is
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norm-weak -continuous, that is, z, — p, from (28) and the Kadec-Klee property of E, it
follows that

lim z, = p. (32)

n—00

From (11), we have

G(q,Jyn) < anGlg, Jx1) + B G(q, Jxn) + vuG(q, Jtin) + En
E anG(q:]xl) + (1 - Oln)G(qun) + {n'

From (17), (19), (27) and the conditions lim,_, » «, = 0, liminf,_, o, B, < 1, it follows that
lim,, o« #(q, un) = (g, p). From Lemma 9, it follows that for any g € F and u,, = K}/'z,,

¢(un’xn) = ¢(1<;Tznrxn)
S ¢(6I»Zn) - ¢(0I:K;"xn)
= ¢(q,20) — d(q, Un).

Taking n — 0o on both sides of the inequality above, we have

lim ¢(x,, u,) =0. (33)

n>00
From (3), we have

(12l = l411)* > 0 (34)
as n — 00. Since ||x,|| = ||p|l, we have

lnll — lipll (35)
as n — 00, and so

Vel — 1Pl (36)
as 1 — oo. That is, {||Ju,||} is bounded in E". Since E’ is reflexive, we can assume that

Ju, — u € E asn— oo.Inview of J(E) = E, there exists u € E such that Ju = . It follows
that

2 2
O Xnsts thn) = %1 l” = 248041, Jtt) + ||

= %1 I = 2 (X1, Jt) + [t ]| 37)

Taking liminf,_, . on both sides of the equality above, since | - || is weak lower semi-
continuous, it follows that

0= lIpl>=2p.u)+ |u’])

= |pll* = 2{p, Ju) + |Jul®
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= lIpll? = 2(p,Ju) + [lu]?
= ¢(p,u). (38)

From Remark 2, p = u, that is, u” = Jp. It follows that ju, — Jp € E. From (36) and
the Kadec-Klee property of E’, we have Ju,, — Jp as n — oo. Since /™! is norm-weak -
continuous, that is, 4, — p as n — oo. From (35) and the Kadec-Klee property of E, we

have

lim u, =p. (39)

n—00

Step 4. We show that p € F = F(S) N (N, EP(6:) N (ﬂ;;lAj‘lO). First, we show that
pE ﬂjzlA}TIO. Let z, = Alx, for each n > 1. Then, for any g € F, it follows that for each

j=12,...,1,
(g, z) = ¢(q»quxn)
< ¢(q, AL %)
< ¢(q, AL %)
< ¢(q, Axn). (40)

By Lemma 11, for each j =1,2,...,m, we have

D (A%, %) < G(q,%0) — D (g A
< ¢(q, %) — d(q,20)- (41)

Sincex, — pandz, - pasn — oo,wegetqb(ALx,,,x,,) — Oasn— ooforallj=1,2,...,m.
From (3), it follows that

i 2

(120 = tlall)” — 0
asn— oo forallj=1,2,...,m. Since ||x,|| — ||p| as n — oo, we also have

| || = ol (42)
asn— ooforallj=1,2,...,m. This implies that for each j = 1,2,...,m, {A’,;xn} is bounded.
Since E is reflexive, without loss of generality, we can assume that A)x, — k as n — oo.
Since C,, is closed and convex for each # > 1, it is obvious that k € C,,. Again, since

(N 2 %0) = | ALt |~ = 2( A 0, Joe) + |1

taking liminf,_, - on both sides of the equality above, we have

0> [IklI* - 2(k,Jp) + lIpll* = ¢ (k, p). (43)


http://www.fixedpointtheoryandapplications.com/content/2013/1/199

Saewan et al. Fixed Point Theory and Applications 2013, 2013:199
http://www.fixedpointtheoryandapplications.com/content/2013/1/199

That is, k = p and it follows that for allj =1, 2,...,/,

A)xn = p (44)
as n — 00. Thus, from (42), (44) and the Kadec-Klee property, it follows that

lim A x, = p (45)
forallj=1,2,...,m. We also have

nli)ngo AN, =p (46)
forallj=1,2,...,m, and so

Tim | 4%, — A ] = 0 (47)

forall j =1,2,...,m. Since J is uniformly norm-to-norm continuous on bounded subsets
of E and liminf,_, . A;, > 0 for each j =1,2,...,/, we have

lim LH JA %, —J A, | = 0. (48)

n—00 )\j,n

Let A’;,xn = ]ijnA’;lxn foreachj=1,2,...,.. Then we have
, 1 . ,
; j-1 — lim — T A+ —TAL _
i A | = Jimm, = =T A | = 0 (49)

Forany (w,w’) € G(4;) and (A];,xn,A,\/.,n Ax,) e G(A)) foreachj=1,2,...,/,itfollows from
the monotonicity of A; that forall » > 1,

(w - A{lxn, w— Akm A’;lx,,) >0

forallj=1,2,...,1 Letting n — oo in the inequality above, we get (w — p,w’) > 0 for all
j=1,2,...,1. Since A; is maximal monotone forallj=1,2,...,/, we obtain p € ﬂle AI.‘10.
Next, we show that p € ﬂl”il EP(9;). For any g € F and u,, = K}/'z,, we observe that

(g, un) = ¢(0,K])'z,)
< ¢(q. K z,)

< ¢(q. K z,)

< ¢(a.K;z0). (50)
By Lemma 10, for i =1, 2,...,m, we have

¢ (Kizm %) < ¢(g, %) — & (q, K2

= ¢(q1xn) —¢(61, Mn) (51)

Page 17 of 23
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Sincex, — pand u, — pasn — 0o, we get p(K!z,,x,) — 0asn — ooforalli=1,2,...,m.
From (3), it follows that

i 2

(IKi ]| = Nxall)” — 0
as n — 00. Since ||x,|| — ||pll as # — oo, we also have

|Kizu| = lIpl (52)
asn — 00. Since {K'z,} is bounded and E is reflexive, without loss of generality, we assume
that I(flzn — Jas n — oo. Since C,, is closed and convex for each # > 1, it is obvious that
h € C,. Again, since

, S )

& (Kzn %) = | Kizn ||~ = 2(K iz Joou) + %1%,
taking liminf,_, - on both sides of the equality above, we have

0> |14 = 2(h Jp) + lIpII* = $(h, p). (53)
That is, & = p and it follows that for all i = 1,2, ..., m, it follows that

Kz, —~p (54)
as n — 00. Thus, from (52), (54) and the Kadec-Klee property, it follows that

lim Krilz,, =p (55)

n—0o0
foralli=1,2,...,m. We also have

lim Kfl_lz,, =p (56)

n—oQ
foralli=1,2,...,m, and so

|Kizw — K} 2| = 0
foralli=1,2,...,m. Since J is uniformly norm-to-norm continuous, we obtain

. i i—1

lim 7K, 2, = K, 2 || = 0

foralli=1,2,...,m. Fromr;, >0 foralli=1,2,...,m, we have

IJK:z, — JK: 2, || o

ri,n

as n — 0o and

0:(Klzny) + i(y ~ K}z, JK} 2w = JK} ' 24) > 0 (57)

Tin
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for all y € C. Thus, by (A2), we have

i, _ i—1
”_)/—I(,i,zn H ”]I(;izn ]I(; Zn” > L
ri,n ri,n

> —6i(K\zm y)

(y = Klzn JK 2w — JK} ' 2,,)

= ei(y:K;iZn) (58)
forally € Cand Klz, — pasn — 0o,and so 6;(y,p) <0 forall y € C. Forany t with 0 < £ <

1, define y; = ty + (1 — £)p. Then y, € C, which implies that 6;(y;,p) <0 foralli=1,2,...,m.
Thus, from (Al), it follows that

0=6:06y0) < t0:0r,y) + (1= 06: (v, p) < t0: (0, y),
and so 6;(y;,y) > 0 forall i =1,2,...,m. From (A3), we have 0;(p,y) > 0 for all y € C and
i=1,2,...,m, thatis, p € EP(¢;) forall i = 1,2,...,m. This implies that p € (-, EP(6;).

Finally, we show that p € F(S). Since {x,} is bounded, the mapping S is also bounded.
From y, — p as n — oo and (9), we have

178"%a | — el (59)
as 1 — 00. Since J7! : E' — E is norm-weak -continuous,
4 (60)

as n — oo.
On the other hand, in view of (59), it follows that

18" = 2] = [17(S"n) | = WPl < |7 (") ~Jp]| = 0
and so ||§"x,|| — ||p||. Since E has the Kadee-Klee property, we get
S"x, —>p (61)

for all n > 1. By using the triangle inequality, since S is uniformly L-Lipschitz continuous,
we get

5715, - 57,

= Hsnﬂxn - SVHlanrl ” + ”SVHlan —Xn+l ” + 1% — x|l + Hxn — 8"y ”

< L+ Dlter =2l + | S 6000 = 2| + [0 = S0 . (62)
Since S"x,, — p as n — oo, we get S"*'x,, — p as n — 00, and so S5"x,, — p as n — oo. In
view of the closedness of S, we have Sp = p, which implies that p € F(S). Hence p € F.

Step 5. We show that p = I'[j;-xl. Since F is a closed and convex set, it follows from
Lemma 5 that Hj;:xl is single-valued, which is denoted by p. By the definitions of x,, =
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Hé”xl and p € F C C,, we also have
G(xn,]xl) =< G@,]xl)

for all n > 1. By the definitions of G and f, we know that for any x € E, G(§, Jx) is convex

and lower semicontinuous with respect to &, and so

G(p, Jx1) < liminf G(x,, Jx;) < limsup G(x,,Jx;) < G(p,Jx1).
n—oQ

n—00

From the definition of Hj;:xl, since p € F, we conclude that p=p = Hé_-xl and x, — p as
n — o0. This completes the proof. O

Setting v, = (k, — 1), ity = 0 and ¥ : R* — 1 in Theorem 1, we have the following result.

Corollary 1 Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. For each i=1,2,...,m, let 6;
be a bifunction from C x C to R satisfying the conditions (A1)-(A4). Let A; CE x E" bea
maximal monotone operator satisfying D(A) C Cand/ji{n = (J +Aj,A)) Y forall A, > 0 and
j=12,...,1.Let S: C — C bea closed and quasi-p-asymptotically nonexpansive mapping.
Let f : E — R* be a convex and lower semicontinuous function with C C int(D(f)) and
f(0) = 0. Assume that S is uniformly L-Lipschitz continuous and F = F(S) N (.2, EP(6;)) N
(ﬂ]l.zl AITIO) # (. For an initial point x, € E, define Cy = C and the sequence {x,} in C by

_7A Al A
Zn _])”l,n ° )‘l—l,n °© O]}Ll,nxm
O 0,
Uy = Tf,:’,n ° Trr:ln—ll,n -0 T”ll,nz”’
-1
In =] (an]xl + ,ansnxn + Vn]un)> (63)

Cn+1 = {V € Cn : G(V:]yn) < OlnG(qu1) + (1 - Oln)G(qun) + gn};
KXnl = n'é'nﬂxl

for all n > 1, where {a,}, {B,} and {y,} are the sequences in (0,1) with o, + B, + vn =1,
= supqef(k,, -1)G(g,Jx,) and, for each i =1,2,3,...,m, {r;,} C [d,o0) for some d > 0.
Iflim,_, o, = 0, liminf, . B, <1 and liminf,_, A, >0 for all j = 1,2,...,1, then the

sequence {x,} converges strongly to a point I'[J;-xl.

Iff(x) = 0 for all x € E in Theorem 1, then G(x, Jy) = ¢(x,y) and 1'[]_;_- = ITr and so we have

the following corollary.

Corollary 2 Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. Foreach i =1,2,...,m,let 6; be
a bifunction from C x C to R satisfying the conditions (A1)-(A4). Let A; C E x E" be a max-
imal monotone operator satisfying D(A;) C C and}fj{n = (J +jud;)7Y forall 3;, > 0 and j =
1,2,...,1. Let S: C — C be a closed and totally quasi-¢-asymptotically nonexpansive map-
ping with nonnegative real sequences {v,}, {i,} with v, — 0, u, — 0 as n — oo, respec-
tively, and a strictly increasing continuous function ¥ : R* — R* with ¥ (0) = 0. Assume
that S is uniformly L-Lipschitz continuous and F = F(S) N (%, EP(6;)) N (ﬂ]l.zlAj‘lO) .
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For an initial point x; € E, define C, = C and the sequence {x,} in C by

_ 74 A AL
Zn _])‘l,n ° A1 ° o])hl,nxn’
61— 0
uy =T o Tl o0 Ty, 2
Yn :]_1(an]x1 + ﬁn]Snxn + Vn]un); (64)

Cu1={veC, 3¢(V’yn) <oV, 1) + (1 —0n)p(v, ) + Cn)s
X1 = Ic, ;%1

for all n > 1, where {,}, {B,} and {y,} are the sequences in (0,1) with a,, + B, + v, = 1,
n = Vn SUPe 7 Y (p(q,x4)) + b and, foreach i =1,2,3,...,m, {r,,} C [d,0) for some d > 0.
Iflim,_, &, = 0, liminf,_, , B, <1 and liminf,_, o A;,, > 0 for each j =1,2,...,1, then the
sequence {x,} converges strongly to a point Il1rx;.

Setting v, = (k, — 1), u,, = 0 and ¥ (x) = x in Theorem 1, we have the following corollary.

Corollary 3 Let C be a nonempty closed and convex subset of a uniformly smooth and
strictly convex Banach space E with the Kadec-Klee property. For each i=1,2,...,m, let 6;
be a bifunction from C x C to R satisfying the conditions (A1)-(A4). Let A; C E x E be
a maximal monotone operator satisfying D(A) C C and ]f;’n = (] + MuA) 7Y for all Ay, >
Oandj=12,...,1. Let S: C — C be a closed and quasi-¢-asymptotically nonexpansive
mapping. Assume that S uniformly L-Lipschitz continuous and F = F(S) N (N, EP(6,)) N
(ﬂ;=1 A]TIO) # (. For an initial point x, € E, define C; = C and the sequence {x,} in C by

zn =Ty, ool 0 o T
= Tl o Tind -0 Thh 2
Y =T Mo + BuJS % + YuJitn), (65)
Cri={veCy:d(v,yn) < aup(q,x1) + (1 — a)p(q, %) + L0}

xn1 = I, %1

for all n > 1, where {a,}, {B,} and {y,} are the sequences in (0,1) with a,, + B, + vn =1,
Ly = supqe}—(kn - 1)¢(g,x,) and, for each i =1,2,3,...,m, {r;,} C [d,00) for some d > 0.
Iflim,_, &, = 0, liminf,_, , B, <1 and liminf,_. o A;,, > 0 for each j =1,2,...,1, then the

sequence {x,} converges strongly to a point I1rx,.
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