
Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228
http://jwcn.eurasipjournals.com/content/2013/1/228

RESEARCH Open Access

Advanced spectrum sensing with parallel
processing based on software-defined radio
Wei Liu*, Daan Pareit, Eli De Poorter and Ingrid Moerman

Abstract

Due to interference between co-located wireless networks, obtaining accurate channel assessment becomes
increasingly important for wireless network configuration. This information is used, among others, for cognitive radio
solutions and for intelligent channel selection in wireless networks. Solutions such as spectrum analyzers are capable
of scanning a wide spectrum range, but are not dedicated for channel occupation assessment because they are
extremely costly and not able to perform continuous recording for a time period longer than a few seconds. On the
other hand, low-cost solutions lack the flexibility and required performance in terms of configuration and sensing
efficiency. To remedy the situation, this paper presents an alternative for channel assessment on top of a commercial
software-defined radio platform. Although there exist software solutions for performing spectrum sensing on such
platforms, to the best of our knowledge, continuous spectrum sensing and long-term recording remain challenging.
We propose a pioneering solution that is capable of seamless spectrum sensing over a wide spectrum band and
guarantees sufficient flexibility in terms of configurations. The proposed solution is validated experimentally. We
demonstrate two advantages of seamless spectrum sensing: the capability of accurate channel occupancy
measurement and detecting transient signals such as Bluetooth.

1 Introduction
As the density of co-located wireless networks grows,
wireless systems are more and more susceptible to mutual
interference, leading to degraded network performance.
At the same time, end users demand high quality of ser-
vice from wireless networks. This conflict gains increased
interest in both the industrial and the academic world,
resulting in several research projects [1,2]. Cognitive radio
(CR) is a promising technology for solving the above prob-
lem. Originally, CR is a frequency-agile radio, capable of
accessing licensed spectrum without influencing the pri-
mary users [3]. The concept of CR can be extended for
more efficient sharing of unlicensed band among hetero-
geneous technologies.
The fundamental requirement for CR is the ability to

correctly examine the spectrum usage. One approach is
to register the primary user’s location and power coverage
into a central database, which obviously does not apply

*Correspondence: wei.liu@intec.ugent.be
Internet Based Communication Networks and Services (IBCN), Department of
Information Technology, Ghent University - iMinds, Gaston Crommenlaan 8
Bus 201, Gent 9050, Belgium

for a dynamic environment. Another approach is to per-
form channel assessment locally, allowing fast reaction to
changes in the spectrum.
The localized spectrum sensing approach appears to be

more appealing, thanks to its adaptivity to a changing
spectrum environment. Most wireless devices have only
one radio module. Therefore, it is common to interleave
the channel assessment and data transmission activity.
How to find the optimal sensing frequency is crucial
to improve the system performance and hence becomes
a popular research topic on itself [4,5]. However, it is
not always convenient to limit transmission into prede-
fined intervals. Sensing a broad spectrum range with lim-
ited radio front-end capability and processing resources
results in limited sensing performance.
An alternative is to add a few more advanced devices

dedicated for sensing above the original network. Such
devices are referred to as sensing engines [6]. Apart from
the CR context, sensing engines can help operators of
wireless technology to better identify the location and
characteristics of the interference. In addition, for wire-
less researchers, an accurate sensing engine can provide
a more detailed view on the physical layer. One use case

© 2013 Liu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 2 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

could be aMAC layer researcher that needs to identify the
interpacket interval or the duty cycle of a channel.
One of the most crucial aspects of the sensing engine

is its efficiency because discontinuity in spectrum sensing
often leads to inaccurate assessment and missed detec-
tion of interference or primary usage. Spectrum sensing
generally consists of two phases:

• The sampling phase, in which raw samples are
collected from the air

• The processing phase, in which buffered samples are
processed for spectrum analysis

Depending on the processing speed, the processing phase
can partially or completely happen in parallel with the
sampling phase. The time used for collecting samples
from the air is referred to as the sampling time, while
the time required by the processing phase in addition to
the sampling time is referred to as the processing time.
The sensing efficiency is then defined as the ratio of the
sampling time and the summation of the sampling time
and the processing time. During the processing time, the
sampling of the wireless medium is put onto hold, which
means that the sensing engine is ‘blind’. It is possible
that a number of transient signals are missed during this
period. The time interval when sampling activity is put
onto hold is referred to as the blind time. Ideally, the blind
time should be reduced to zero, meaning 100% sensing
efficiency to achieve seamless detection.
There are various sensing devices on today’s market.

Solutions such as spectrum analyzers are capable of scan-
ning a wide spectrum range, but are not dedicated for
channel assessment and extremely costly. For instance, a
spectrum analyzer usually cannot do continuous record-
ing for a time period longer than a few seconds, and
the recorded spectrum needs to have high frequency
resolution for visualization purposes. However, the raw
spectrum information still requires further processing to
obtain the energy for specified channels. On the other
hand, low-cost solutions are trimmed for simple and
steady recording but lack the flexibility and required per-
formance. For instance, they are not able to achieve seam-
less spectrum sensing and usually have nonconfigurable
frequency span and resolution bandwidth.
The key requirements for channel assessment in the CR

context are flexibility, reliability, and the capability of con-
tinuous recording. Energy per channel with a timestamp
is the desired output format; an excessively fine frequency
resolution is generally not appreciated. To enable cooper-
ative or distributed spectrum sensing, the measurement
should be obtained with a relatively low-cost platform.
Finally, from a developer’s point of view, the implemen-
tation should be flexible and transparent in order to
achieve fast prototyping and testing. After realizing the

gap between the capability of high-end spectrum analyz-
ers and the need of cognitive radio researching, we decide
to build an alternative - a simpler but more dedicated
sensing engine.
In summary, to achieve an advanced wireless system,

we need sensing engines with relatively low cost and that
are capable of continuous sensing and recording. To this
end, this paper presents a solution that is built upon a
commercial software-defined radio (SDR) [7]. The solu-
tion is further extended on multiple SDR devices for
cooperative and distributed spectrum sensing. While the
developed solution has less functionality than spectrum
analyzers, it is also much cheaper and dedicated for chan-
nel assessment. Above all, in contrast to most spectrum
analyzers, our solution is capable of continuous sampling
and recording.
The remaining part of the paper is organized as follows:

first, we present an overview of the most common sens-
ing devices today; next, we describe how we arrive at our
solution and its advantages; and finally, the detailed soft-
ware structure and configurations of the sensing software
are presented. The proposed solution is verified experi-
mentally, with real-life wireless signals, such as Wi-Fi and
Bluetooth.

2 Analysis of existing platforms
This section presents some of the most representative
sensing solutions, starting from powerful but expensive
spectrum analyzers to simple off-the-shelf sensor devices.
The processing mechanism of high-end spectrum analyz-
ers is discussed in depth, as it is needed for the further
sections.

2.1 Spectrum analyzers
In today’s market, most spectrum analyzers have two basic
modes: swept mode and fast Fourier transform (FFT)
mode [8]. The swept mode is the traditional spectrum
sensing method, where the radio-frequency (RF) center
frequency is incremented by a small step very rapidly,
hence the name ‘swept analyzer’. The signal obtained at
each step is passed through a resolution bandwidth RBW
filter, and the amplitude is then calculated by a detector.
The range of the sweep defines the frequency span. The
time needed for the front-end to scan the entire frequency
span is called the sweep time. The major disadvantage of a
swept analyzer is that the spectrum can only be measured
at one frequency point at a time. Therefore, it is possible to
miss short signal events during the sweeping, as illustrated
in Figure 1.
FFT-based spectrum analyzers do not need the sweep-

ing of RF front-end. The transformation from time
domain to frequency domain is achieved by FFT instead.
First, a batch of samples are stored inmemory, and then by
applying FFT, the time domain samples are translated into



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 3 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

Figure 1 Swept mode of a spectrum analyzer. The center
frequency of the spectrum analyzer is continuously incremented
(‘swept’), leading to potentially missed signals. The figure is adapted
from [8].

spectrum information. The frequency span of the FFT-
based analyzer depends on the sample rate. Although no
sweeping is actually performed, we inherit the term ‘sweep
time’ to describe the time between two consecutive FFT
results.
Some spectrum analyzers combine the swept mode and

the FFT mode. The result of one sweep is then a combi-
nation of several FFT shots obtained at different center
frequencies. This is termed as the swept FFT mode.
The advantage of the FFT-based analyzer is that it is

possible to look at a broader range of the spectrum with
one operation. However, FFT requires first the acquisition
of a batch of samples and then followed by a processing
step. What happens in between subsequent acquisition
phases is missed by the analyzer, as illustrated in the upper
part of Figure 2.
To solve this problem, the analyzer needs to meet the

following conditions:

• The processing speed should be faster than the
acquisition speed.

• The sample acquisition and sample processing should
happen in parallel.

The above requirements are also described in the lower
part of Figure 2. Spectrum analyzers that are capable of
seamless measurements are referred to as real-time spec-
trum analyzers [8]. The exact features of real-time analyz-
ers depend on the type of the device. To illustrate this, two

specific spectrum analyzers are described in more detail
in the following section: the FSVR series of ROHDE &
SCHWARZ and the RSA series of Tektronix. Although
modern spectrum analyzers also include the swept mode
to increase the frequency range, here we only focus on the
FFT mode. The discussion below does not include imple-
mentation details but instead emphasizes the underlying
processing mechanism and the amount of flexibility for
the end users.

2.1.1 ROHDE & SCHWARZ FSVR
The FSVR is a popular series from R&S. The machine per-
forms 250,000 times 1,024-point FFT per second, result-
ing in one FFT shot every 4 μs. When users configure the
frequency span (sample rate), the amount of overlapping
between adjacent FFT frames is automatically adjusted, as
illustrated in Equation 1, where Fs is the sample rate and X
is the amount of overlapping of samples between adjacent
FFT frames in percentage:

1, 024/Fs × (1 − X) = 4 μs (1)

The obtained FFT shot cannot be displayed directly
because the number of FFT bins is generally greater than
the available pixels on the screen. Various detectors are
used to combine multiple FFT bins into one bin for visu-
alization. Apart from the pixel limitation, most screens
can only refresh 60 times per second; hence, FSVR com-
bines multiple FFT shots into one for display purposes,
and this is referred to as the trace detector. In the spectro-
grammode, the number of combined FFT shots is defined
by the parameter sweep time. To a certain extent, users
can lower the sweep time to increase the time resolution.
The resolution bandwidth however is dependent on the
frequency span, due to the fixed FFT size.

2.1.2 Tektronix RSA6000
Unlike FSVR, the RSA spectrum analyzer from Tektronix
exposes more parameters to the end user. For instance,
there is a parameter to specify the length of the time
interval during which samples are collected and analyzed
seamlessly. Both FFT size and sample rate can be config-
ured independently. This decouples the resolution band-
width from the frequency span. Similar to FSVR, the final
result is trimmed by various detectors for displaying on
the screen.
RSA provides highly flexible processing features, based

on post-processing of raw samples in the memory.
For instance, in the spectrogram mode, users can zoom

in or zoom out on the time scale by adapting the amount
of overlapping between FFT frames. However, when doing
so, the machine needs to recalculate the spectrogram, and
this may take a considerable amount of time depending on
the quantity of samples. Between each block of continuous



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 4 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

Figure 2 FFT-based spectrum analyzer. In the upper part, the FFT processing time is longer than the sampling time, resulting in discontinuous
sampling and missed transient signal; in the lower part, the analyzer is capable of detecting the transient signal, thanks to increased processing
speed and continuous capturing. The figure is adapted from [8].

samples, a black line is used to indicate the discontinuity
of the spectrogram.

2.1.3 Summary
Regardless the difference in processing style, the two ana-
lyzers do have one thing in common - the output is
produced in a way that is best suited for displaying on the
screen. Also, in contrast with the fancy display features,
the recording features of spectrum analyzers are rela-
tively basic. Both FSVR and RSA are capable of recording
raw samples and some amount of spectrogram, depend-
ing on the waveform memory depth. Take the FSVR as
an example, the waveform memory allows the user to
store maximum 200 million in-phase and quadrature-
phase (IQ) samples. This means a recording of 8 s with
25 mega samples per second (Msps) of sample rate, which
is just wide enough to cover one Wi-Fi channel. Apart
from the time limitation, further processing on the raw IQ
samples is still required to obtain the energy in specific
channels.
In summary, spectrum analyzers are made for fast visu-

alization of various signals and performing sophisticated
off-line analysis. The capability of spectrum analyzers are
far beyond FFT or storing raw samples; however, they
lack the capabilities of continuous recording and fast
data transfer, hence are not suitable for basic channel
assessment.

2.2 Low-cost USB devices
There are several commercial sensing solutions running
on a regular computer with a USB dongle. The USB dongle

functions as the RF front-end while the host computer
provides the user interface and the visualization function-
ality. Some of the well-known devices are Wi-Spy [9] and
Airmagnet [10].
The radio of Airmagnet has a 20-MHz intermediate

frequency (IF) bandwidth. The Airmagnet spectrum ana-
lyzer makes use of the swept FFT mechanism to cover a
bandwidth that is wider than 20 MHz. For the 2.4-GHz
industrial, scientific, and medical (ISM) band, the entire
frequency span is fixed to 83 MHz with 156-kHz resolu-
tion bandwidth. During each sweep, the radio increases
its center frequency with a step of 20 MHz and dwells on
each center frequency for 30 ms. The sweep time is fixed
to 1 s. The fact that the frequency span is less than five
times the IF bandwidth infers that each measurement of
the 2.4-GHz ISM band contains maximum five blocks of
samples. This means that the time to sample the wireless
medium for each sweep is at maximum 150 ms. Given the
constant sweep time of 1 s, the actual sensing efficiency is
only 15%.
The mechanism of Wi-Spy resembles the pure swept

spectrum analyzer. It uses a narrow-band RF receiver to
scan across the interested band in tiny steps. The step
width depends on the Wi-Spy model and the selected
band of interest, ranging from about 50 to over 600 kHz.
Compared to spectrum analyzers, the front-end of USB
devices is less advanced, resulting in lower sensitivity and
narrower spectrum coverage. Besides the less advanced
RF front-end, USB-based sensing solutions rely on host
machine softwares for processing, which are typically
bound to certain operating systems. This further limits



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 5 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

their usage. The feature of long-term recording is pro-
vided but with very limited efficiency and flexibilities.

2.3 Sensor devices
Another option is to use cheap sensor devices for spec-
trum analysis. Here the sensor devices refer to the battery-
operated, low-power wireless platforms [11,12]. Sensor
chips are originally meant to form sensor networks for
home automation or various monitoring purposes. They
usually consist of integrated sensors, a microcontroller,
and an IEEE 802.15.4 (Zigbee)-compliant radio module.
The radio module provides built-in clear channel assess-
ment (CCA), which can be used to evaluate the energy
of the selected channel. With appropriate firmware, cheap
sensor devices can also be programed into a swept spec-
trum analyzer.
It is evident that the CCA module can only sense one

channel at a time and the frequency resolution is as wide
as the Zigbee channel width. Although there exist solu-
tions for programming front-end to perform fast sweeping
[13] in the 2.4-GHz ISM band, its low resolution band-
width limits the detection accuracy.

2.4 Sensing solution overview
Table 1 gives an overview of the advantages and disadvan-
tages of different sensing solutions. High-cost solutions
such as spectrum analyzers are usually overkill for the tar-
geted applications: many functionalities built in spectrum
analyzers are redundant formerely channel assessment. In
addition, these devices are not capable of long-term and
seamless recording and fast data transfer. On the other
hand, low-cost devices have less bandwidth and limited
processing power and flexibility. To remedy this situation,
we aim to design a low-cost solution that is capable of
seamless recording and offers sufficient flexibility, as listed
as the last entry of Table 1.

3 Our sensing solution
3.1 Design constraints
As discussed in Section 2.1, among the common spectrum
analyzing approaches, the FFT mode is more advanced

Table 1 Overview of existing sensing solutions

Device name Flexibility Seamless Long-term Cost

capturing recording

Spectrum
analyzer

High Yes No High

USB sensing
devices

Medium No Yes Medium

Sensor Low No Yes Low

Our target
solution

High Yes Yes Low

than the swept mode. Therefore, our SDR-based sensing
solution makes use of an FFT-based sensing solution. Our
solution has the following design goals:

• Direct access to the IQ samples. This is a strict
requirement since FFT relies on raw IQ samples
instead of decoded bits or packets.

• Sufficient sample rate. The frequency span is defined
by the sample rate; hence, the higher the sample rate,
the broader the detection range.

• Flexibility. To be useful in a wide range of
technologies, the solution should expose sufficient
flexibility to the end user. It should be possible to
configure the sensing engine to assess different sets of
channels and to change the front-end gain settings or
FFT size.

• Ease of development. The design should be kept
simple and transparent for fast prototyping and
development.

• Platform independence. To overcome any limitations
caused by operating systems, the software should be
platform independent.

These requirements are the main motivation to use a SDR
platform.

3.2 The hardware platform
SDR platforms allow traditional radio functions, such as
decoding or encoding, to be shifted from hardware to
software. SDRs can be divided into two categories based
on the type of processor used for signal processing: the
first category makes use of a general-purpose proces-
sor in a regular computer; the second category relies on
embedded processors onboard.
The Universal Software Radio Peripheral (USRP) for-

mally developed by Ettus Research [14] falls into the first
category. It is a commercial SDR platform that utilizes
a general-purpose processor and has gained widespread
usage. The USRP consists of two parts: a fixed moth-
erboard and a plug-in daughterboard. The motherboard
contains an analog-to-digital converter (ADC) and a
digital-to-analog converter (DAC), a field-programmable
gate array (FPGA) for digital down conversion with pro-
grammable decimation rate, and an interface connected to
the host PC. The daughterboard provides basic RF front-
end functionality. The USRP N210 - the network series
of the second USRP generation - outperforms the origi-
nal series with its more powerful FPGA, faster ADC/DAC,
gigabit Ethernet host connection, and complete remote
configuration features. In addition, USRP has a broad
range of daughterboards that cover frequencies from
nearly DC to almost 6 GHz [15]. A simplified diagram of
the USRP N210 is illustrated in Figure 3. Besides the hard-
ware, Ettus Research also provides the universal hardware



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 6 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

Figure 3 USRP block diagram.

driver (UHD) for communicating between USRP and host
PC [16]. It is entirely open source and available for all
major operating systems and can be built with many pop-
ular compilers such as the GNUCompiler Collection [17].
Users are able to use the UHD driver stand-alone or with
third-party platforms such as GNU Radio [18].
The Wireless Open-Access Research Platform (WARP)

is an example SDR platform that falls into the second
category. It has a powerPC [19] processor and a large
amount of programmable hardware resources [20]. Com-
pared to USRP, WARP provides higher onboard process-
ing capacity but is also much more expensive. The WARP
programming environment relies on the Xilinx FPGA
software, which is not free for use. The embedded pro-
cessing power and rich FPGA resource make it possible
to build a stand-alone sensing system; however, due to the
hardware programming and embedded environment, it is
also more difficult to design and debug. In addition, there
are less RF boards available in the WARP repository than
in the USRP.
Because of the aforementioned reasons, the USRP was

selected to design our SDR sensing platform. The lack
of processing power on the USRP can be compensated
by connecting it to a powerful host machine. Though
there is an option to use GNU Radio like third-party plat-
forms, our software is implemented directly above the
UHD driver. This reduces the overhead of function calls,
hence gives better performance and sensing efficiency.
Apart from the UHD library, the Boost [21] and FFTW
[22] libraries are also required. All of the required libraries
work on major operating systems, including UNIX and
Windows variants, thus making our solution platform
independent.
The sensing engine software is currently compiled and

tested on six identical hexa-core Linux servers. The choice

of using a hexa-core server does not strictly comply to the
initial low cost requirement; however, it is necessary to
achieve sufficient amount of parallel processing, as further
explained in Section 3.3. The architecture of the software
can easily be ported to an FPGA platform. Note that the
price of one USRP and one server is still significantly lower
than the price of one spectrum analyzer; therefore, even
the current approach is already an improvement in terms
of overall financial cost.
The servers are physically located within a large-scale

wireless testbed: the w-iLab.t testbed [23]. Currently, six
USRPs are deployed in the testbed, each connected to one
of the hexa-core servers. The w-iLab.t uses OMF (cOn-
trol Management Framework) as its testbed control and
management framework [24]. OMF allows experimenters
to configure multiple devices simultaneously, providing
easy data logging services. Therefore, the multiple USRPs
can easily be set up as a distributed cooperative sensing
system. This configuration will be used for the Bluetooth
detection experiment in Section 4.3.

3.3 The software architecture
As stated in Section 2, it is important that the processing
time is shorter than the sample acquisition time in order
to achieve continuous spectrum sensing.
When no parallelism is present, the sample acquisition

alternates with the processing phase, and as such, the
blind time of the sensing engine is equal to the processing
time (as illustrated in plot (a) of Figure 4).
When pipelining between sample acquisition and pro-

cessing is introduced, after the first batch of samples
arrived, sampling and processing the samples obtained in
the previous time frame are happening in parallel. This
is the first level of parallelism. The blind time is equal to
the original processing time minus the sampling time, as



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 7 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

Figure 4 Parallel processing for seamless spectrum sensing. (a) No parallel processing. (b) The first level of parallelism. (c) The second level of
parallelism and continuous spectrum sensing.

shown in plot (b) of Figure 4. However, this is not suffi-
cient to achieve seamless sampling if the processing time
is longer than the sampling time. To further reduce the
processing time, we seek to add parallel processing within
the processing phase itself. The processing phase con-
sists of splitting samples into small frames, applying FFT
operation on all frames sequentially, and combining all
the FFT result in one way or another. As FFT is a highly
computational demanding operation, instead of having
one single FFT core working sequentially, we utilize mul-
tiple FFT cores to work simultaneously: the incoming
samples are divided among themultiple FFT cores for pro-
cessing. Once the samples have been received, the FFT
cores work independently from each other, hence ideal for
parallelism. This is where the second-level parallelism is
introduced. We illustrate the case of two FFT cores work-
ing in parallel in plot (c) of Figure 4. More FFT cores could
be added if it is necessary to achieve continuous spectrum
sensing.
The sensing engine software relies on multi-threading

to achieve parallel processing. There are two main threads
running at any moment: one thread is responsible for col-
lecting samples from the USRP (referred to as the sample-
collecting thread), and the other thread is responsible
for processing the samples (referred to as the sample-
processing thread). The sample-processing process again
generates several sub-threads to process the incoming
samples in parallel. The sample processing in our solu-
tion calculates the FFT-based power spectrum density
(PSD) and the energy for specified channels. Once all

sub-threads finish processing, they terminate and the
original sample-processing thread outputs the result to
either a local file or the standard output. To simplify the
collection of measurements in the w-iLab.t testbed, the
measurements are first printed to the standard output
and then piped to a predefined database using an OMF
wrapper. The general structure is illustrated in Figure 5.
To achieve true parallel pipelining, two buffers are used

to collect samples from the USRP. At any given moment,
when one sample-collecting thread is writing to one
buffer, the sample-processing thread will be reading from
the other buffer. Therefore, once the first batch of samples
has arrived, the twomain threads work fully in parallel. To
ensure that the two main threads do not read and write to
the same buffer at the same time, the sample-processing
thread needs to work faster than the sample-collecting
thread. Hence, within the sample-processing thread, sev-
eral sub-threads are created to accelerate the processing.
The number of threads that should be used to achieve the
best efficiency depends on how many samples the buffer
contains and the FFT size. During our experiments, eight
processing threads are sufficient to support a sample-
collecting thread at the highest sample rate of the USRP
(25 Msps). However, for configurations in which only a
small amount of samples is collected, the overhead of cre-
ating multiple threads outweighs its processing benefit;
hence, the sample-processing thread can no longer fol-
low the sample-collecting thread. When this happens, the
software detects the overflow of samples and return an
error message.



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 8 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

Figure 5 High-level description of the software for seamless spectrum sensing.

3.4 Configurations and important features
The sensing engine software can be configured using var-
ious options, which are described in detail in this section.

3.4.1 Continuous FFTmode vs. swept FFTmode
First of all, the sensing engine can be used in two modes:
the continuous FFT mode and the swept FFT mode.
For the continuous FFTmode, the USRP front-end stays

at the same frequency and continuously samples the wire-
less medium. Similar to spectrum analyzers, users can
control both the center frequency and the sample rate in
order to define the spectrum range.
For the swept FFT mode, the USRP will always collect

samples at its maximum sample rate of 25Msps. The sam-
ples collected at a specific RF center frequency are called
a block, while the complete measurement across several
RF center frequencies is called one sweep. Between two
adjacent blocks, the center frequency is incremented by a
step of 20 MHz. Users can specify the center frequency
of the beginning block and how many blocks one sweep
should contain. As such, by adding the swept FFT mode,
the frequency span is no longer limited by the sample rate.

3.4.2 Measurement types
The sensing engine can be configured to perform different
types of measurement:

1. The sensing engine can measure the PSD in the
required frequency range and thus calculates the
amount of energy detected in each specified channel.
This is referred to as the PSD measurement. The
PSD measurement has three variants: averaging,
maxhold, and minhold, comparable to the function
of the detector for spectrum analyzers. Typically, the
number of samples per buffer is a lot larger than the
FFT size; hence, each buffer contains many FFT

frames. For the PSD measurements, the software
does either averaging, maxhold, or minhold across
different FFT frames, and the final FFT result is used
for the power integration for the requested channels.
The maxhold mode is useful to detect the signal’s
presence, while the minhold mode can be used for
estimating the noise floor.

2. For the continuous FFT mode, the sensing engine
can also measure how much portion of time the
energy of the specified channels is above a certain
threshold. This is referred to as the duty cycle
measurement. To realize this function, the software
investigates a particular channel and counts how
many times its energy is above a threshold, and then
divides this number by the total number of FFT
frames in the buffer. When the appropriate threshold
is selected (a value that is slightly above the noise
floor), the duty cycle mode can be a powerful tool to
detect transient signals.

3.4.3 Sensing efficiency
Recall that the sensing efficiency is defined as the ratio
of the sampling time and the summation of the sam-
pling time and the additional processing time. In our case,
the processing phase happens entirely in parallel with the
sampling phase. Hence, no additional time is required by
the processing phase. For the continuous FFT mode, the
sensing efficiency is always 100% since the USRP never
stops sampling.
For the swept FFT mode, the sampling phase must be

interrupted for channel switching, which is the only cause
for time loss. Hence, the the sensing efficiency for the
swept FFT mode is defined as

λ = Sampling time
Sampling time + Channel switching time

(2)



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 9 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

Unfortunately, channel switching of the USRP is more
complicated than only tuning the radio front-end’s cen-
ter frequency. The host machine needs to communicate
with the embedded processor on the USRP over the Eth-
ernet interface. The exact handling of channel switching
depends on the firmware on the embedded processor and
the driver of the host machine.
To measure the channel switching time, Wireshark [25]

was used to record the packets between the USRP and
the host machine. All configuration packets have a short
packet length, while the packets containing IQ samples
are typically 1,514 bytes long. By using a packet-length-
based filter, only the configuration packets used for chan-
nel switching and streaming commands can be displayed.
Based on this output, Wireshark can generate an IO
graph, plotting the packet per millisecond vs. the time,
as shown in Figure 6. This graph gives an indication on
how much time is spent on sampling and how much time
is spent on channel configuration. The sampling time is
directly related to the requested number of samples by one
stream command. This is defined by the option ‘– spb’
in the sensing software, standing for sample per buffer.
The packet trace shown in Figure 6 is generated with
524,288 samples per buffer; the sampling time for each
block is 524, 288/25 Msps = 21 ms, this result corre-
sponds with Figure 6. The configuration time for channel
switching cannot be influenced by software options. It
currently requires about 19 ms to switch a channel for
the USRP. The channel switching time is a hardware and
driver issue, and it can be reduced by improving the driver
and firmware. Although this is not the focus of this paper,
it is an interesting direction for future improvements.
Up till now, we have identified the channel switching

time, and the sensing efficiency in the swept FFT mode
can be calculated by Equation 2. Increasing the sampling
time is an effective way to improve the sensing efficiency.
When configuring the sensing engine with ‘spb’ equal to
4,194,304, the sampling time is 4, 194, 304/25, 000 kHz =
168 ms and the sensing efficiency is 168 ms/(168 +
19) ms = 89.8%. With five blocks per sweep, the sensing

engine can cover 100-MHz bandwidth and produce one
sweep per second. Note that this configuration is very
similar to the measurement capabilities of Airmagnet;
however, the sensing efficiency of Airmagnet is only 15%.

3.4.4 Time resolution
In the swept FFT mode, the sensing engine produces one
line of output per sweep. The continuous FFT mode can
be considered as a special case of the swept FFT mode,
where the sweep consists of only one block of samples.
We use the term sweep time to describe the time interval
between two subsequent lines of measurements.
When measuring the PSD, the time resolution depends

on the sweep time. For the continuous FFT mode, the
sweep time is equivalent to the sampling time. For a given
sample rate, the sweep time is proportional to the sample
per buffer - the spb parameter. Reducing the spb param-
eter will reduce the sweep time, making the output more
suitable for resolving short signal events.
For the swept FFT mode, the sweep time is equal to

T = Block per sweep × (Channel switching time
+ Sampling time)

(3)

Although for the swept FFT mode the sweep time
depends on the channel switching time and proportional
to the number of blocks in a sweep, it still heavily relies on
the sampling time. Hence, to a certain extent, we are able
to improve the time resolution by reducing the buffer size.
For the duty cycle measurement in the continuous

FFT mode, the time to resolve an event depends on the
FFT size. This is because the entire buffer of samples is
divided into multiple FFT frames. The length of the FFT
frame serves as the basic unit for the channel occupation
calculation.
Since commercial USB sensing solutions typically have

no or limited sweep time configurations, our solution is
clearly more flexible in this aspect.

Figure 6Wireshark IO graph derived from a packet trace between the USRP and the host machine. Only packets whose length is smaller
than 1,514 are displayed. The y axis is the packet rate and the x axis is the time in millisecond accuracy.



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 10 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

3.4.5 Channel configuration
It is important to let the sensing engine know which chan-
nels to measure. Four configuration options are used to
complete this target:

• numofchannel: specifies the number of channels to
be measured

• firstchannel: the center frequency of the first channel
• channelwidth: the bandwidth of each channel
• channeloffset: the difference between adjacent

channels’ center frequency

At this moment, software only allows to specify chan-
nels that are uniformly spaced and with identical band-
width. This format is flexible enough to describe the
channel specifications of the most popular wireless
standard. As an example, to measure the 13 chan-
nels of Wi-Fi in the 2.4-GHz range, the following
options are used in the input command: ‘–numofchannels
13 –firstchannel 2412000000 –channelwidth 22000000 –
channeloffset 5000000’. The above options tell the sensing
engine to measure 13 channels, with the first channel
starting at 2,412 MHz, each channel 22 MHz wide, and
the center of all the channels 5 MHz apart. This fea-
ture makes it easy to conduct measurements for different
technologies.

3.4.6 Output format
The output of the sensing engine contains the following
components:

• timestamp: a unix timestamp in microsecond
precision

• usrpid: the id of the USRP used to collect samples
• energy or duty cycle array: an array that contains

either the energy (in dBm) or duty cycle (in
percentage) for all channels of interest

In contrast to the raw spectrummeasurements from spec-
trum analyzers and some USB-based devices, the output
format can directly be used for channel assessment.

3.4.7 Resolution bandwidth and FFT size
Usually, the RBW of the FFT-based spectrum analyzer is
calculated as the ratio of sample rate over FFT size. Sim-
ilar to the Tektronix RSA analyzer, users can also directly
specify the FFT size and sample rate independently. The
final frequency resolution that is obtained is defined by
the number of channels and the channel’s bandwidth. So
the RBW does not directly rely on the FFT size. How-
ever, it is still necessary for the underlying RBW of FFT to
be sufficiently smaller than the interested channel band-
width; otherwise, the power integration for the specified
channel will be less accurate.

3.4.8 Performance comparisonwith existing sensing
solutions

Having introduced the various configurations for our
solution, this section compares the performance of our
spectrum analyzing solution with commercially available
devices. A summary is available in Table 2. A few things
need to be kept in mind to understand this table:

• Firstly, we are comparing a broad range of devices.
For a fair comparison, we need to fix one set of
parameters and observe the remaining parameters.
However, due to the fact that some devices are less
flexible than others, it is not feasible to configure all
devices so that they achieve exactly the same settings.
To resolve this issue, a simple rule is applied: the
most flexible devices are configured to have the same
settings as the most inflexible device. For our
comparison, Airmagnet is the most inflexible device
among the presented solutions. Therefore, all other
devices are configured to the same settings as
Airmagnet.

• Secondly, the performance parameters are not
completely independent. We already stated the trade-
off between frequency resolution and time resolution,
which applies to all devices. Another example is
device specific: for the FSVR spectrum analyzer, the
ratio of the span over RBW is predefined, depending
on which FFT window is selected. In Table 2 this ratio
is 400, when the rectangular window is applied [26].
Therefore, we need to decide which parameters are
controlled and which parameters are observed. For
this comparison, sensing efficiency was chosen as the
primary observed parameter. The entire frequency
span is chosen to be the major controllable parameter,
listed as ‘span’ in Table 2. Real-time span refers to
what bandwidth the sensing engine can cover without
performing sweeping; the maximum real-time span
usually depends on the hardware capability of the
platform. It is listed here for completion.

• When a parameter is configurable, it is marked with a
superscripted lowercase letter ‘a’. The settings
presented in Table 2 are just one set of
configurations; readers are encouraged to check the
reference materials for more details.

• The continuous FFT mode and the swept FFT mode
of the USRP sensing engine are listed as two separate
entries: ‘USRPSE(cont)’ and ‘USRPSE(swept)’. This
way, it is possible to fully evaluate the capability of
our solution.

• When certain settings are unavailable for a specific
device, the setting closest to the Airmagnet
configuration is listed in the table. For instance, the
span of the FSVR analyzer is listed as 40 MHz in
Table 2 because this is its maximum real-time span in



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 11 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

Table 2 Performance comparison with existing sensing solutions

Solution Real-time span Span RBW Efficiency Sweep time Record length

FSVR Max 40 MHza 40 MHz 100 kHza 100% 100 μsa 10 s

Airmagnet Fixed 20 MHz 83 MHz 140 kHz 15% 1 s No limit

Wi-Spy Max 600 kHza 95 MHz 328 kHza NA 165 ms No limit

USRP(cont) Max 25 MHza 25 MHz 48 kHza 100% 500 μsa No limit

USRP(swept) Max 25 MHza 100 MHza 48 kHza 89% 1 sa No limit

aConfigurable parameters.

FFT mode. The same reason applies for putting
25 MHz as the span of the USRP sensing engine in
continuous FFT mode.

• When certain parameters are independent of the
sensing efficiency, the optimal performance of that
device is listed. For instance, the sweep time of FSVR
is listed as 100 μs which is the shortest sweep time
the device can achieve, and the same applies to the
sweep time of the USRP in continuous FFT mode.

• The sensing efficiency of the USRP sensing engine
has been discussed in Section 3.4.3. The efficiency of
Airmagnet is derived in Section 2.2. For Wi-Spy, the
concept of sensing efficiency is not applicable
because it operates purely in sweeping mode. The
rest of the values are obtained from the
corresponding reference material [9,10,26].

Table 2 demonstrates the performance advantages of
our solution. The continuous FFTmode of the USRP sens-
ing engine is the only solution which is capable of 100%
sensing efficiency and long-term recording at the same
time. The swept FFT mode offers 89% sensing efficiency
under a configuration similar to that of Airmagnet, which
only provides 15% sensing efficiency. Although the sweep
time of our solution is longer than the best record of the
(more expensive) FSVR spectrum analyzer, it is still much
faster than Airmagnet and Wi-Spy devices.

4 Experiments and results
This section focuses on experimental analysis for the pro-
posed solution. We first describe the experiment platform
in Section 4.1, and then we present two experiments in
depth in Sections 4.2 and 4.3. In both experiments, we
use our sensing engine solution for detecting certain types
of signal and evaluating the performance. The difference
is that the first experiment uses Wi-Fi beacon frames as
target signal, while the second experiment uses regular
Bluetooth traffic. The reason that we choose the Wi-Fi
beacon is that it appears periodically at a fixed frequency
band, so it is a well-defined signal. Bluetooth, on the other
hand, uses random frequency hopping, therefore is one of
the most challenging signals to detect in the ISM bands.
Within each experiment, we first introduce the char-

acteristics of the target signal and then describe what

settings are used on our sensing engine to detect the
target signal, followed by measurements and thorough
analysis.

4.1 The w-iLab.t testbed
The experiments are conducted on the w-iLab.t testbed
[23]. The topology of the testbed is shown in Figure 7,
where the locations of the USRPs are highlighted with yel-
low stars. Apart from USRPs, the majority of the devices
in the w-iLab.t testbed are embedded PCs equipped with
Wi-Fi interfaces, IEEE 802.15.4 sensor nodes, and Blue-
tooth dongles. All devices are reachable over a wired
network interface for management purposes. Each device
can be fully configured by the experimenters. When the
wireless devices are configured via the same embedded
PC, they are said to be attached to one ‘node’. The reg-
ular nodes are indicated with blue dots in Figure 7. The
rich combination of heterogeneous technologies is ideal
for testing the proposed sensing solution. As mentioned
before, two representative wireless signals are used to test
the performance of our sensing engine - the beacon of a
Wi-Fi access point (AP) and regular traffic between a pair
of Bluetooth devices. The locations of the Wi-Fi AP and
the Bluetooth devices used for experiments are indicated
in Figure 7.

4.2 Wi-Fi beacon experiment
TheWi-Fi beacon appears periodically on a fixed channel.
According to the IEEE 802.11 standard, a beacon frame
is 134 bytes long and transmitted at 1 Mbit/s. Hence,
one beacon transmission takes around 134 × 8/1 Mbit =
1.072 ms [27]. The beacons are transmitted on channel
1 and the beacon interval is set to 100 ms. As such, the
channel will be occupied for about 1% of the time. This
well-defined signal is convenient to validate the channel
occupation measurement.

4.2.1 Measurements using continuous FFTmode
In order to resolve beacon frames, the buffer size was set
to 32,768. Given the sample rate of 25 MHz, the sam-
pling time is around 1.3 ms, comparable to the beacon
transmission time. The sensing engine was then config-
ured to sense the Wi-Fi channel with 1-MHz resolution
bandwidth in the continuous FFT mode.



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 12 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

Figure 7 USRP deployment in iMinds w-iLab.t testbed.

A spectrogram is the best way to show the seamless cap-
turing of the Wi-Fi beacons. The recorded spectrogram
is shown in Figure 8. During 400 ms, four beacons are
transmitted and they are all captured with their full sig-
nal strength. This clearly demonstrates the advantage of
seamless capturing. Note that the presented spectrogram
is only 400 ms long; in reality, the period of this recording
can be indefinite.
The above measurement with extremely fine time res-

olution is only needed for visualization purposes, but is
not required for channel assessment. In order to reduce
the output per second while still being able to reflect the
actual usage of a channel, the channel duty cycle was mea-
sured with −70 dBm as the detection threshold. Note
that −70 dBm is slightly above the noise level measured
by the USRP for Wi-Fi channels, which gives the best
probability of detection based on our experience. There
are many theories related to the energy detection thresh-
old in order to improve the probability of detection. In

the context of our experiment, all the nodes are in line-
of-sight topology; hence, the detection threshold is not
critical. The complexity of determining the optimal energy
detection threshold is out of the scope of this paper.
When the spb parameter is set to 16,777,216, the sam-

pling time is around 0.67 s. The sensing engine measures
that the selectedWi-Fi channel is occupied between 0.95%
and 1.05%. This corresponds to the calculated duty cycle.
The reason of the 0.1% fluctuation is because the sam-
pling time is not a multiple of the beacon interval; hence,
the exact number of detected beacons per buffer varies.
This measurement demonstrates that our sensing engine
is capable of seamless capturing and performing accurate
channel occupation assessments.

4.2.2 Measurements in swept FFTmode
For the measurement in the swept FFT mode, all 13Wi-Fi
channels in 2.4 GHz are measured. The spb parameter is
increased by a power of 2, from 131,072 to 4,194,304. The

Frequency (MHz)

tim
e 

(m
s)

2402 2404 2406 2408 2410 2412 2414 2416 2418 2420 2422

0

50

100

150

200

250

300

350

−75

−70

−65

−60

−55

Figure 8 Spectrogram of Wi-Fi beacon signal in continuous FFT mode.



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 13 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

spectrograms of 12 s are shown in Figure 9. Note that at
the time of this experiment, apart from our test beacon on
channel 1, there is another external access point active on
channel 10. This paper focuses only on the analysis of the
beacon signal on channel 1.
First, as expected, when the spb value is small, the sens-

ing engine uses a shorter sweep time, hence the thinner
horizontal lines in the spectrogram. Secondly, beacon sig-
nals are not always detected with full signal strength; the
strongest signal appears to be around −50 dBm, while the
weakest yet still distinguishable signal is around−65 dBm.
This is because when using the swept FFTmode, the sam-
pling is not continuous and sometimes only part of the
beacon packet is captured, leading to inaccurate power
measurement. This observation is illustrated in Figure 10,
where the number of occurrences for the energy above
various thresholds is plotted. In addition, the total num-
ber of sweeps in the recording is drawn as a reference.
We observe that with the growth of spb, the probabil-
ity of detecting a beacon signal with full signal strength
increases. When the sampling time is larger than the
beacon interval, in each buffer of samples, at least one
complete beacon is captured; hence, all beacons that have
been captured are displayed with correct signal strength.
This observation reveals that for the swept FFT mode,
there is a trade-off between the sensing efficiency and
time resolution. It is obvious that decreasing the buffer
size can improve the time resolution; however, at the same

time, the channel switching time becomes more impor-
tant compared to the total sweep time, which results in
worse sensing efficiency.
We conclude that the swept FFT mode can effectively

expand the frequency span, which helps give a global
view of the spectrum. Despite the trade-off with the sens-
ing efficiency, the time resolution can be conveniently
configured using the spb parameter.

4.3 Bluetooth experiment
The Bluetooth technology utilizes frequency hopping
spread spectrum modulation. There are 79 Bluetooth
channels in the 2.4-GHz ISM band, and each channel
has a 1-MHz bandwidth [28]. A Bluetooth device hops
to a different frequency every 625 μs. For the experi-
ment, two nodes were paired with the Bluetooth interface.
An unidirectional UDP traffic with 1-MB/s throughput is
generated from the application layer on top of the Blue-
tooth stack. The Bluetooth activity was measured with
a cooperative spectrum sensing system formed by four
USRPs. Each USRP operates in the continuous FFT mode
and covers 20 Bluetooth channels; as such, in total, a 80-
MHz bandwidth is observed. All the nodes and USRPs
have a line-of-sight connection.
To be able to assemble the spectrum from different

USRPs into one complete spectrum covering all Bluetooth
channels, we need to synchronize the system clock of the
servers connected to the USRPs. This was achieved by

sample per buffer 131072

tim
e(

m
s)

2 4 6 8 10 12

0

5000

10000

sample per buffer 262144

tim
e(

m
s)

2 4 6 8 10 12

0

5000

10000

sample per buffer 524288

tim
e(

m
s)

2 4 6 8 10 12

0

5000

10000

sample per buffer 1048576

tim
e(

m
s)

2 4 6 8 10 12

0

5000

10000

sample per buffer 2097152

tim
e(

m
s)

2 4 6 8 10 12

0

5000

10000

sample per buffer 4194304

tim
e(

m
s)

2 4 6 8 10 12

0

5000

10000

−75

−70

−65

−60

−55

802.11 Channel

802.11 Channel

802.11 Channel 802.11 Channel

802.11 Channel

802.11 Channel

Figure 9 Spectrogram recording of 13Wi-Fi channels over 12 s via the swept FFT mode.With various sample per buffer settings.



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 14 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
6

0

10

20

30

40

50

60

70

80

90

100

Number of samples per buffer

S
w

ee
p 

co
un

t

Total number of entries
detected with threshold −70 dBm
detected entries with threshold −65 dBm
detected entries with threshold −60 dBm
detected entries with threshold −55 dBm

Figure 10 Number of detections with different threshold settings.

using the Precision Time Protocol daemon (PTPd) [29].
PTPd allows computers within a local area network to
keep their clock synchronized to a common clock source,
commonly referred to as the master clock. In our sys-
tem, the clock of server 1 is the master clock. After some
time, the offset from master to slave starts to settle down
to around 30 μs. As each Bluetooth packet occupies a
random Bluetooth channel for 625 μs, the clock drift-
ing is relatively small (5%) compared to the Bluetooth
packet length, hence will allow us to identify the packets
correctly.
The experiment is conducted via the OMF, where a

central script is executed to make sure all USRP sensing
engines start approximately at the same time. The time
resolution is adjusted to 655 μs to better resolve the Blue-
tooth activity. Since all servers are synchronized to server
1, the timestamp from server 1 is used to derive the rel-
ative timestamp. The resulting spectrogram is shown in

Figure 11. It is possible to observe short 1-MHz-wide
Bluetooth activities spread over the spectrum space. Addi-
tionally, it can be seen that there is no Bluetooth activity
between 2,423 and 2,446 MHz. In recent implementa-
tions, Bluetooth does not necessarily use all the channels.
As an example, the adaptive frequency hopping mecha-
nism excludes channels with bad communication quality
from the channel list [30].
In conclusion, this measurement demonstrates the pos-

sibility to form a distributed and cooperative sensing
system with our sensing engine solution. The result can
be used to identify Bluetooth activity in the wireless
spectrum.

5 Conclusions
In this paper we first presented a brief survey of vari-
ous spectrum sensing solutions.We argue that continuous
spectrum sensing is important for channel occupation

Frequency (MHz)

T
im

e 
(m

s)

2410 2420 2430 2440 2450 2460 2470 2480

0

200

400

600

800

1000

1200 −90

−85

−80

−75

−70

−65

−60

−55

−50

−45

−40

Figure 11 Probability of interception sweepmode.



Liu et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:228 Page 15 of 15
http://jwcn.eurasipjournals.com/content/2013/1/228

assessment. However, a sensing engine capable of con-
tinuous sensing with sufficient flexibility is still missing
among today’s sensing solutions.
To close this gap, we developed a new sensing engine

based on a commercial SDR platform. Compared to most
low-cost sensing solutions, our solution provides much
more flexibilities in terms of configuration. The most
important feature is its capability of seamless capturing
and long-term recording. The implementation is based
on several open-source libraries supported on major plat-
forms. This makes our solution transparent and being able
to run on a broad range of operating systems. Additionally,
our solution can easily be extended into cooperative and
distributed sensing systems, as described in Section 4.3.
The solution we proposed relies on a standard PC for

processing. On one hand, this makes it ideal for fast pro-
totyping and development. On the other hand, it makes
the solution less portable and not able to work in a stand-
alone situation. How to migrate the software computa-
tional capability to an embedded platform is one of the
remaining challenges. The basic idea is to shift the pro-
cessing load from software to hardware. In this way, we do
not require extensive processing power on an embedded
system.
The pipelined software architecture and seamless spec-

trum sensing functionalities can be ported to an FPGA
chip with minor effort; because independent hardware
blocks works in parallel intrinsically. There exists a large
amount of tools for translating software functionalities
into hardware [31,32], but attention should be paid to
issues such as processing time, power consumption, etc.
This is one of the ongoing activities for future extension.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
The research leading to these results has received funding from the European
Union’s Seventh Framework Programme FP7/2007-2013 under grant
agreement no. 258301 (CREW project).

Received: 30 April 2013 Accepted: 28 August 2013
Published: 13 September 2013

References
1. iMinds: QoCON project (2012), http://www.iminds.be/en/research/

overview-projects/p/detail/qocon-2. Accessed Sept 2013
2. RWTH Aachen University: Faramir project (2012), http://www.ict-faramir.

eu/. Accessed Sept 2013
3. S Haykin, Cognitive radio: brain-empowered wireless communications.

IEEE J. Select. Areas Commun. 23, 201–220 (2005)
4. AT Hoang, Y-C Liang, Adaptive scheduling of spectrum sensing periods in

cognitive radio networks, in Proceedings of the IEEE Global
Telecommunications Conference, 2007 (GLOBECOM ’07) (Washington, DC,
26–30 Nov 2007)

5. S-C Chen, C-J Chang, R-H Gao, A two-phase and two-period spectrum
sensing scheme using high-layer information for cognitive radio
networks, in Proceedings of the 2012 Computing, Communications and
Applications Conference (ComComAp) (Hong Kong, 11–13 Jan 2012)

6. S Pollin, An integrated reconfigurable engine for multi-purpose sensing
up to 6 GHz, in Proceedings of the 2011 IEEE Symposium on New Frontiers in
Dynamic Spectrum Access Networks (DySPAN) (Aachen, 3–6 May 2011)

7. E Buracchini, The software radio concept. IEEE Comm. Mag. 38, 138–142
(2000)

8. Tektronix, Fundamentals of Real-Time Spectrum Analysis (Tektronix,
Beaverton, 2009), p. 7

9. MetaGeek, How Wi-Spy works (2011), http://www.metageek.net/blog/
2011/01/how-wi-spy-works/. Accessed Sept 2013

10. Fluck Corporation, AnalyzerAir User Manual (Fluck Corporation, Everett,
2006)

11. Moteiv Corporation, Ultra Low Power IEEE 802.15.4 Compliant Wireless
Sensor Module (Moteiv Corporation, El Cerrito, 2006)

12. Zolertia (2013), www.zolertia.com. Accessed Sept 2013
13. C Heller, S Bouckaert, I Moerman, S Pollin, P Van Wesemael, D Finn, D

Willkomm, J-H Hauer, A performance comparison of different spectrum
sensing techniques, in Proceedings of theWireless Innovation Forum
European Conference on Communications Technologies and Software
Defined Radio (Brussels, 22–24 June 2011)

14. Ettus Research (2013), http://www.ettus.com/. Accessed Sept 2013
15. Ettus Research, USRP RF daughter boards (2013), https://www.ettus.com/

product/category/Daughterboards. Accessed Sept 2013
16. Ettus Research, Universal Hardware Driver software (UHD) (2013),

http://code.ettus.com/redmine/ettus/projects/uhd/wiki.
Accessed Sept 2013

17. FreeSoftware Foundation, Inc., GCC, the GNU Compiler Collection (2013),
http://gcc.gnu.org/. Accessed Sept 2013

18. GNU Radio (2011), http://gnuradio.org/redmine/projects/gnuradio.
Accessed Sept 2013

19. IBM, PowerPC processor (2013), http://www.ibm.com/developerworks/
linux/library/l-powarch/. Accessed Sept 2013

20. WARP (2013), http://warp.rice.edu/. Accessed Sept 2013
21. Boost library (2013), http://www.boost.org/. Accessed Sept 2013
22. FFTw library (2013), http://www.fftw.org/. Accessed Sept 2013
23. S Bouckaert, P Becue, B Vermeulen, B Jooris, I Moerman, P Demeester,

Federating wired and wireless test facilities through Emulab and OMF:
the iLab.t use case, in Proceedings of the TridentCom 2012 (Thessaloniki,
11–13 June 2012)

24. T Rakotoarivelo, M Ott, G Jourjon, I Seskar, OMF: a control and
management framework for networking testbeds. SIGOPS Oper. Syst. 43,
54–59 (2010)

25. Wireshark Foundation, Wireshark packet sniffer (2013), http://www.
wireshark.org/. Accessed Sept 2013

26. R&S, FSVR Real-Time Spectrum Analyzer Specifications (R&S, Munich, 2010)
27. 80211g group I, IEEE 802.11g-2003: Further Higher Data Rate Extension in the

2.4 GHz Band (IEEE, Piscataway, 2003)
28. Bluetooth SIG, Bluetooth standard (2013), https://www.bluetooth.org/

en-us. Accessed Sept 2013
29. Precesion Time Protocol daemon (2012), http://ptpd.sourceforge.net/.

Accessed Sept 2013
30. MH Chek, On adaptive frequency hopping to combat coexistence

interference between Bluetooth and IEEE 802.11b with practical resource
constraints, in Proceedings of the 7th International Symposium on Parallel
Architectures, Algorithms andNetworks, 2004 (Hong Kong, 10–12 May 2004)

31. Berkeley Design Technology Inc., The AutoESL AutoPilot High-Level
Synthesis Tool (Berkeley Design Technology, Inc., Walnut Creek, 2010)

32. Xilinx, Vivado Design Suite User Guide (Xilinx, San Jose, 2013)

doi:10.1186/1687-1499-2013-228
Cite this article as: Liu et al.: Advanced spectrum sensing with parallel
processing based on software-defined radio. EURASIP Journal on Wireless
Communications and Networking 2013 2013:228.

http://www.iminds.be/en/research/overview-projects/p/detail/qocon-2
http://www.iminds.be/en/research/overview-projects/p/detail/qocon-2
http://www.ict-faramir.eu/
http://www.ict-faramir.eu/
http://www.metageek.net/blog/2011/01/how-wi-spy-works/
http://www.metageek.net/blog/2011/01/how-wi-spy-works/
www.zolertia.com
http://www.ettus.com/
https://www.ettus.com/product/category/Daughterboards
https://www.ettus.com/product/category/Daughterboards
http://code.ettus.com/redmine/ettus/projects/uhd/wiki
http://gcc.gnu.org/
http://gnuradio.org/redmine/projects/gnuradio
http://www.ibm.com/developerworks/linux/library/l-powarch/
http://www.ibm.com/developerworks/linux/library/l-powarch/
http://warp.rice.edu/
http://www.boost.org/
http://www.fftw.org/
http://www.wireshark.org/
http://www.wireshark.org/
https://www.bluetooth.org/en-us
http://ptpd.sourceforge.net/

	Abstract
	Introduction
	Analysis of existing platforms
	Spectrum analyzers
	ROHDE & SCHWARZ FSVR
	Tektronix RSA6000
	Summary

	Low-cost USB devices
	Sensor devices
	Sensing solution overview

	Our sensing solution
	Design constraints
	The hardware platform
	The software architecture
	Configurations and important features
	Continuous FFT mode vs. swept FFT mode
	Measurement types
	Sensing efficiency 
	Time resolution
	Channel configuration
	Output format
	Resolution bandwidth and FFT size
	Performance comparison with existing sensing solutions


	Experiments and results
	The w-iLab.t testbed
	Wi-Fi beacon experiment
	Measurements using continuous FFT mode
	Measurements in swept FFT mode

	Bluetooth experiment

	Conclusions
	Competing interests
	Acknowledgements
	References

