Assuncdo et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

® Journal of
the Brazilian Computer Society

a SpringerOpen Journal

RESEARCH Open Access

Evaluating different strategies for integration
testing of aspect-oriented programs

Wesley Klewerton Guez Assuncdo'”, Thelma Elita Colanzi?, Silvia Regina Vergilio' and Aurora Trinidad

Ramirez Pozo'

Abstract

the combined strategy.

complex, PAES seems to be the best MOEA.

Background: The determination of an order for integration and testing of aspects and classes is a difficult
optimization problem. This order should be associated to a minimal possible stubbing cost. To determine such order,
different approaches exist. For example, traditional approaches are based on Tarjan’s algorithm; search-based
approaches are based on metaheuristics, usually genetic algorithms (GA). In addition to such approaches, in the
literature, there are different strategies to integrate aspect-oriented software. Some works suggest the integration of
aspects and classes in a combined way. Other ones adopt an incremental strategy. Studies evaluating the approaches
show that the multi-objective one presents better solutions. However, these studies were conducted applying only

Methods: In this paper, we present experimental results comparing both strategies with three different approaches:
the traditional one, a simple GA-based, and a multi-objective one.

Results: The results show better performance of the multi-objective approach independently of the strategy
adopted. A comparison of both strategies points out that the incremental strategy reaches a lower cost in most cases,
considering a number of attributes and operations to be emulated in the stub.

Conclusion: It seems that with Incremental+, the best choice is the multi-objective approach. If the system is very

Keywords: Aspect-oriented software; Integration testing strategies; Evolutionary algorithms

Background
The test of aspect-oriented (AO) programs is an impor-
tant activity, which constitutes an active research topic,
investigated by many authors. The goal is to extend the
knowledge acquired in the object-oriented (OO) context
and to introduce specific test criteria for the AO software
[1-4]. Similarly to the OO software, the AO testing should
be conducted in different phases [1]. In the integration test
phase, the focus is on the interaction between the mod-
ules. In the AO context, a module can be either a class or
an aspect, and new kinds of faults appear, as well as, some
new difficulties.

The main difficulty is to make sure that dependencies
between aspects and classes are tested adequately [5]. To

*Correspondence: wesleyk@inf.ufpr.or

1Computer Science Department, Federal University of Parana (UFPR), Parang,
Brazil

Full list of author information is available at the end of the article

@ Springer

test such dependencies different strategies are found in
the literature. Some authors suggest incremental strate-
gies that first test the classes [4,6]. Aspects are integrated
in a second step, in an interactive way. The main moti-
vation for this strategy is to reduce the complexity of the
testing process. Other strategies generate sequences to
test the interactions among classes and aspects in a com-
bined strategy [7]. This seems to be a more practical strat-
egy, since some related modules are generally developed
together. However, in the application of both strategies,
a problem exists, known as the integration and testing
order problem. This problem refers to the determination
of an integration order that minimizes the cost associ-
ated to stubs construction. Stubs simulate the resources
that are needed for the modules being tested. Their pur-
pose is to provide canned answers to calls made during the
test, allowing the integration and test of modules, which
are dependent on other non-available modules. In the

© 2014 Assuncéo et al,; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

mailto: wesleyk@inf.ufpr.br
http://creativecommons.org/licenses/by/2.0

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

AO context, this problem is called the class and aspects
integration and test order (CAITO) problem.

To solve the CAITO problem, most proposed solutions
use a graph to represent the dependencies between the
modules. The graph, named the object relation diagram
(ORD), was extended from the OO context to repre-
sent aspects and other kinds of dependencies [7,8]. In
most systems, there is a dependency relation between
two modules. When dependency cycles exist, it is neces-
sary to break the dependency and to construct a stub to
emulate the behavior of the required module. The study
reported in [9] shows that it is very common to find
complex dependency cycles in Java programs. In the AO
context, it is common to find crosscutting concerns that
are dependent on other crosscutting concerns, implying
dependency between aspects, and between classes and
aspects [7]. Hence, to reduce stubbing costs, it is impor-
tant to determine the best sequence for integration and
testing of classes and aspects. Determining such sequence
is not a trivial task, because different factors influence
on the stub creation, such as the number of attributes to
be emulated, number of operations, number of types of
return, and so on.

To break the cycles and establish the test order, different
algorithms have been used. The traditional approaches are
based on Tarjan’s algorithm [7,8]. Most recent approaches
are search based and use metaheuristics such as genetic
algorithms (GA) [10]. The approaches based on multi-
objective and evolutionary optimization algorithms have
presented promising results [11-13]. Such approaches
allow the generation of more adequate solutions consider-
ing real constraints and diverse factors that may influence
the integration and testing order problem. However, the
search-based approaches have not been evaluated with
different integration strategies proposed in the literature.
In the works [11-13], the aspects and classes are integrated
in a combined way. Ré et al. [7] evaluated four strategies:
Combined, Incremental+, Reverse and Random, using
only the approach based on Tarjan’s algorithm. In their
evaluation, the strategies Combined and Incremental+
obtained better results than the others.

Methods

Motivated by these facts and to better evaluate the inte-
gration strategies, in a previous work [14], we present
results from the strategies application with traditional and
evolutionary search-based approaches. Three algorithms
were used: Tarjan’s algorithm, a simple GA, and the multi-
objective algorithm NSGA-II [15]. The strategies were
compared according to the number of stubs generated,
of attributes, and of operations necessary to emulate the
stub behavior. Following up on our research, this paper
extends our previous work by revisiting the results pre-
sented in [14] and by adding in the comparison of two

Page 2 of 17

other multi-objective algorithms: SPEA2 [16] and PAES
[17]. Since the multi-objective approach presents better
results, this extension allows the evaluation of different
multi-objective algorithms to solve the problem consider-
ing both strategies. Moreover, to know which algorithm
is more suitable to solve a particular problem is a ques-
tion that needs to be answered by means of experimental
results. Those chosen are well-known GA-based algo-
rithms that implement different evolution mechanisms to
be compared. In this way, the main research questions
addressed in this paper are:

e RQI: How are the results of the Incremental+ and
Combined strategies? It is important to know, in a
general case, what strategy presents lower costs
related to the number of stubs, and global stubbing
costs, related for example to the number of attributes
and operations to be emulated. In addition to the
general case, it is also important to investigate the
performance of each strategy considering particular
cases, i.e., system characteristics and used algorithms
(or approaches).

e RQ2: How is the performance of each algorithm (or
approach) considering both strategies? This aims at
investigating the performance of each algorithm used
with both strategies. In the case of the Combined
strategy, the multi-objective algorithms presented the
best results [11,12]. Whether such result is also valid
for the Incremental+ strategy, how are the impacts of
both strategies in the performance of the three
evaluated multi-objective evolutionary algorithms
(MOEAs)?

The paper is organized as follows: Section ‘Integration
testing of classes and aspects’ reviews approaches and
strategies for the integration of aspects and classes, as well
as, related work. Section ‘Multi-objective evolutionary
algorithms’ describes main concepts about GAs and
the multi-objective algorithms used in the evaluation.
Section ‘Evaluation description’ describes the evalua-
tion conducted: systems, strategies, and algorithms used.
Section ‘Results and discussion’ presents the results,
which are analyzed to answer the research questions
posed above and discusses some threats to validity of our
work. Section ‘Conclusions’ concludes the paper with our
final remarks.

Integration testing of classes and aspects

As mentioned before, most approaches to solve the
CAITO problem are graph based, as it happens in the
OO context, where the most used graph is named ORD
[18,19]. In such graph, the vertices represent the classes,
and their relations are represented by the edges. Examples
of relations between classes are association (As), aggre-
gation (Ag), and inheritance (I). In the AO context, the

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

ORD was extended to represent AO characteristics [8].
An example of extended ORD is presented in Figure 1,
extracted from [7]. In the left side of the figure are the
vertices representing only class and their relations; the
extended part is on the right, representing the aspects
and the new dependency relations introduced by Ré and
Masiero [7]. The following new relationships are possible:

e Crosscutting association (C) represents the
association generated by a pointcut with a class
method or other advice. In Figure 1, it is illustrated
between the aspect Bi1lling and class Call;

e Dependency (U) is generated by a relation between
advices and pointcuts, and between pointcuts;

e Association dependency (As) occurs between objects
involved in pointcuts. This is shown in Figure 1 by
the relationship between Timing and Customer;

e Inter-type declaration dependency (It) occurs when
there are inter-type relationships between aspects
and the base class. For example, an aspect Aa declares
that class A extends B. In the example, there is this
kind of dependency between Billing and Local;
and among MyPersistentEntities,
PersistentRoot and Connection;

e Inheritance dependency (I) represents inheritance
relationships between aspects or among classes and
aspects, as it is observed by the aspects
PersistentEntities and MyPersistent
Entities in Figure 1.

We can see in the picture the existence of dependency
cycles, for instance, between Timing and Billing. This

Page3of 17

is a situation where one of the dependencies must be
broken to allow the integration testing. For the broken
dependency, a stub? is required.

To clarify the notion of stub, we present below an exam-
ple extracted from [20]. We need to integrate and test
the aspect TimerLog whose implementation is shown
in Listing 1. TimerLog depends on the aspect Timing
and the class Timer (Figure 1). However, in the test
order, Timing and Timer are not available yet. So, stubs
for both are required to perform the test. TimerLog
depends on Timing because it crosscuts two advices that
call the methods start () and stop () from Timer.
TimerLog depends on Timer because the class is
affected by the pointcuts, and the aspect accesses the
attributes from the class.

Listing 1 Aspect TimerLog

1 public aspect TimerLog

2 after (Timer t) returning ():
target (t) && call (=
Timer.start ())

3 System.out.println("Timer

started: " + t.startTime) ;

4}

5 after (Timer t) returning ():
target (t) && call («
Timer.stop()) {

6 System.out.println("Timerstopped:

" + t.stopTime) ;

7 }

8 }

1
2

SIS

NeRNe TN o)}

10

12
13
14
15

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

The stub for the aspect Timing is presented in
Listing 2. It emulates two advices and one inter-type dec-
laration of an attribute. Listing 3 shows the stub for the
class Timer, emulating two attributes and three methods.

Listing 2 Stub for the Aspect Timing

public aspect Timing {

after (Connection c¢) returning()
Billing.initBilling(c) {
getTimer (c) .start () ;

}

after (Connection c¢) returning()
Billing.endBilling(c) {
Customer cl1 , c2 ;
getTimer (c) .stop () ;
cl = c.getCaller();
cl.totalConnectTime +=

getTimer (c) .getTime () ;
c2 = c.getReceiver() ;
c2.totalConnectTime +=
getTimer (c) .getTime () ;

cl.save () ;
c2.save () ;

}

public Timer Connection.timer =
new Timer () ;

Listing 3 Stub for the Class Timer

1 public class Timer {

2 public long startTime;

3 public long stopTime;

4 public void start() {

5 startTime =
System.currentTimeMillis () ;

6 }

7 public void stop()

8 stopTime =
System.currentTimeMillis () ;

o

10 public long getTime() {

11 return stopTime - startTime;

12 }

13 }

Aiming at reducing the number of required stubs, dif-
ferent approaches have been used to break the cycles
and to establish the test order. These approaches are
presented in the next subsections. They are divided in
two groups: (1) approaches that use graph algorithms
and (2) approaches that use search-based algorithm. Fur-
thermore, subsection ‘Integration strategies’ presents the
integration strategies for the AO context.

Page 4 of 17

Traditional approaches

Traditional approaches [7,8] are based on Tarjan’s algo-
rithm [21]. The algorithm is recursively applied in the
graph for identifying the cycles. The weight of each edge
in the cycle is computed based on the number of incom-
ing and outgoing dependencies. The cycle is broken by
removing the edge with the greatest weight. When no
more cycles remain in the graph, a reverse topological
order is performed to determine the test order.

These approaches usually produce solutions found in a
local optimal since they do not analyze the consequences
of breaking a dependency. In some cases, a minimum
number of cycles does not imply a lower cost. Another
disadvantage is that they need some extension to be used
with other factors related to the stubbing process, such as
number of attributes of a class, number of calls or distinct
operations invoked, constraints related to organizational
reasons, etc. A global cost is required.

Search-based approaches

To overcome the local optimal limitations of traditional
approaches, similar to what happens in the OO context
[22], a strategy based on GA was proposed [10]. GAs allow
the use of different factors to establish the test orders by
using a fitness function based on an aggregation of objec-
tives to be minimized, for instance, a weighted average of
number of operations and number of attributes. However,
this fitness function requires the tester to adjust the weight
of each objective, and the choice of the most adequate
weights for the GA is a labor-intensive task for complex
cases. To reduce these efforts and make the evolutionary
strategy more practical for real systems, multi-objective opti-
mization algorithms were applied in the AO context [12,13].

In the multi-objective optimization, the objectives to be
optimized are usually in conflict, and the goal is to find a
good trade-off of solutions representing a possible com-
promise among them. In this way, a set of good solutions
is possible. This set forms the approximation to the Pareto
front (PFapprox), composed by different non-dominated
solutions. Given a set of possible solutions, the solution A
dominates B, if the value of at least one objective in A is
better than the corresponding objective value in B and the
values of the remaining objectives in A are at least equal
to the corresponding values in B. A is non-dominated if it
is not dominated by any other solution.

The multi-objective approach presents promising
results when compared with a simple GA [11]. The multi-
objective algorithms generate more adequate solutions
considering real constraints and diverse factors that may
influence the stubbing process.

Integration strategies
The abovementioned approaches use distinct algorithms
to break cycles and different measures to the stubbing

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

costs. However, these approaches can be applied with dif-
ferent integration strategies. The most used integration
testing strategy for AO programs is called incremental
[2,5]. This strategy tests the base program first, and then
with its aspects. The incremental strategy presents some
advantages. It is easier to implement and may also allow
easy fault localization. Another strategy suggests the inte-
gration in a combined way [7,8]. This strategy seems to
be more practical since classes and aspects probably are
tested together if both are under development.

Both strategies present points in favor and against.
However, these strategies have not been compared consid-
ering different algorithms for breaking cycles. The work
that has the similar objective to ours is the study described
in [7] and more detailed in [20]. In such study, four
strategies were evaluated:

1. Combined: combines the integration of aspects and
classes;

2. Incremental+: first integrates only classes and after,
considers only aspects;

3. Reverse: applies the reverse combined order; and

4. Random: applies a random selected order.

The main results of the evaluation conducted are the
following: (1) the Incremental+ and Combined strategies
presented similar behavior, and the obtained results do
not point out a best one; (2) the Reverse strategy produces
many stubs, mainly stubs of classes. The authors conclude
that it is not a good idea starting the integration from the
aspects; (3) the Random strategy performed worse than
Incremental+ and Combined strategies, and it was used
only as a reference.

When comparing Incremental+ with Combined, Ré [20]
states that the Combined strategy has lower integration
cost than the Incremental+ strategy. Furthermore, in his
study, the Combined strategy minimized the number of
stubs for the three evaluated systems. Another finding of
Ré is the trend of balancing between the numbers of stubs
for classes and aspects when Combined is used. With
regards to Incremental+, there is a trend to generate a
greater number of stubs for aspects than the number of
stubs for classes.

These results give us some idea of the performance of
strategies. But in the evaluation of Ré and Masiero, the
strategies were only applied with the traditional approach
based on the Briand et al’s approach [23] and Tarjan’s algo-
rithm. The evolutionary approaches have been compared
with traditional approaches and present better results
[11], but the strategy used in the evaluations was the Com-
bined one, considering as fitness functions the number
of attributes and methods to be minimized. The existing
works do not help us to answer our research questions.
Section ‘Evaluation description’ describes a better com-
parison of both strategies and approaches, which is the

Page 5of 17

goal of the present paper. First of all, next section con-
tains a brief description of GAs and the multi-objective
algorithms employed in the conducted evaluation.

Multi-objective evolutionary algorithms
Multi-objective evolutionary algorithms have been widely
applied in several areas, such as Search-based software
engineering [24], to solve problems with many interde-
pendent interests (objectives) that must be optimized
simultaneously. Variants of GA adapted to multi-objective
problems were proposed. A GA is a heuristic inspired by
the theory of natural selection and genetic evolution [25].
From an initial population, basic operators are applied
consisting of selection, crossover, and mutation. These
operators evolve the population, generation by genera-
tion. Through the selection operator, more copies of those
individuals with the best values of the objective function
are selected to be parents. So the best individuals (can-
didate solutions) will survive in the next population. The
crossover operator combines parts of two parent solutions
to create a new one. The mutation operator randomly
modifies a solution. The descendant population created
from the selection, crossover, and mutation replaces the
parent population.

Three representative MOEAs that are variants of tradi-
tional GAs are non-dominated sorting genetic algorithm
(NSGA-II) [15], strength Pareto evolutionary algorithm
(SPEA2) [16], and Pareto archived evolution strategy
(PAES) [17]. Each algorithm adopts different evolu-
tion and diversification strategies [26]. They are briefly
described below.

NSGA-II [15] is based on GA with a strong elitism strat-
egy. For each generation, it sorts the individuals from
parent and offspring populations, considering the non-
dominance relation, creating several fronts. The first front
generated by NSGA-II is composed by all non-dominated
solutions. After removal of solutions belonging to the
first front, the second front is composed with the solu-
tions which become non-dominated. In the same way, the
third front is formed by the solutions that become non-
dominated after the removal of the solutions belonging to
the first and the second fronts, and so on until all solu-
tions are classified. For the solutions of the same front,
another sort is performed using the crowding distance to
maintain the diversity of solutions. The crowding distance
calculates how far away the neighbors of a given solu-
tion are and, after calculation, the solutions are decreas-
ingly sorted. The solutions in the boundary of the search
space are benefited with high values of crowding distance
since the solutions are more diversified but with fewer
neighbors. Both sorting procedures, front and crowding
distance, are used by the selection operator. The binary
tournament selects individuals of lower front. In case of
same fronts, the solution with greater crowding distance

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

is chosen. New populations are generated with crossover
and mutation.

SPEA2 [16] has a specific way to store the non-
dominated solutions found in the evolutionary process. It
maintains an external archive that stores non-dominated
solutions in addition to its regular population. From the
archive, the individuals for the evolutionary process are
selected. For each solution in the archive and in the pop-
ulation, a strength value is calculated. The strength value
of a solution i corresponds to the number j of individuals,
belonging to the archive and to the population, dominated
by i. This strength value is used in the fitness function. The
archive size s is fixed; so, in some moments, the number
of non-dominated solutions found can be lower or big-
ger than s. When the number # of solutions is lower than
s, dominated solutions are used to fill the archive, on the
other hand, if n exceeds s, a clustering algorithm is used to
reduce n [26].

PAES [17] is an evolutionary algorithm that works like
a hill climbing algorithm. It adopts a population concept
different from other evolutionary algorithm strategies,
since only one solution is maintained in each generation.
The strategy to generate new individuals is to use only
the mutation operator, blue which what makes it perform
like a local search. As the algorithm works with only one
solution for generation, there is no possibility to use the
crossover operator. Like in SPEA2, there is an external
archive that is populated with the non-dominated solu-
tions found along the evolutionary process. If the external
archive size is exceeded, a diversity strategy is applied on
the set of solutions in order to remove the similar solu-
tions and to maintain wide the exploitation of the search
space. In the literature, PAES presents promising results
in comparison with NSGA-II and SPEA2 [27].

Evaluation description

This section describes the evaluation conducted to com-
pare strategies and approaches and answer our research
questions. Based on the results described in Section
‘Integration testing of classes and aspects’, we only
selected the best strategies according to the work of Ré
et al.: Combined and Incremental+. Both were applied
with three approaches and different algorithms: (1) TA,
the traditional one based on Briand et al’s approach [23]

Table 1 Systems evaluated

Page 6 of 17

and Tarjan’s algorithm; (2) SBA, the search-based one,
implemented with a simple GA and using three configu-
rations of weights for the fitness function; and (3) MSBA,
the multi-objective search-based approach, implemented
with the algorithms NSGA-II, PAES, and SPEA?2 and uses
Pareto’s dominance concepts.

Our goals are to evaluate (1) each strategy according
to stubbing costs, considering a general case, character-
istics of the systems, and used algorithm; and (2) the
impact of using both strategies in the performance of the
approaches and different algorithms.

Next, we describe the experimental setting: systems
evaluated, evaluation measures, how the algorithms were
implemented and configured, and the quality indicators
used to compare the algorithms used in MSBA.

Systems evaluated

In contrast to the related work [7], in our evaluation, we
used four real Aspect] systemsP, also used in our previous
works [11-13]. We can see in Table 1 that two of them con-
tain more than one thousand dependencies. AJHotDraw
is an AO refactoring of the JHotDraw two-dimensional
graphics framework. AJSHQLDB is also an AO refactor-
ing of HSQLDB, which is a database manager developed
in Java. The Health Watcher collects and manages pub-
lic health related to complaints and notifications. The Toll
System Demonstrator is a concept proof for automatic
charging of toll on roads and streets.

Coupling measures

The search-based algorithms are guided by a fitness func-
tion that measures the quality of the produced solutions.
As we desire solutions (orders) with low cost, we use
in this work two coupling measures given by the num-
ber of attributes and operations to be emulated in the
stub. These measures were also adopted in related works
[7,12,13,22].

Considering that (1) m; and m; are two coupled mod-
ules (m; depends on), (2) modules are either classes
or aspects, and (3) the ‘operation’ term represents class
methods, aspect methods, and aspect advices, we define

Number of attributes (A) = The number of attributes
locally declared in #; when references or pointers to

Number of Number of Number of dependencies
System LOC
classes aspects I u As It PC Ad Total
AJHotDraw 18,586 290 31 234 1177 140 40 0 1 1,592
AJHSQLDB 68,550 276 15 107 960 271 0 0 0 1,338
Health Watcher 5479 95 22 64 290 34 3 1 7 399
Toll System 2,496 53 24 24 109 46 4 0 5 188

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

instances of m1; appear in the argument list of some
operations in m1;, as the type of their return value, in
the list of attributes (data members) of #1;, or as local
parameters of operations of m; (adapted from [22]).
This complexity measure counts the (maximum)
number of attributes to be handled in the stub if the
dependency were broken.

Number of operations (O) = The number of operations
(including constructors) locally declared in 71;, which
are invoked by operations of m; (adapted from [22]).
This complexity measure counts the number of
operations to be emulated in the stub if the
dependency were broken.

The stubbing complexity of an order ¢ is based on its
attribute and operation coupling. Two complexities are
then calculated in the following way:

e Attribute complexity (A(t)) - The attribute
complexity counts the maximum number of
attributes that would have to be handled in the stub if
the dependency were broken (attribute coupling
measure). This information is an input for the
algorithms and is represented by a matrix AM(i, j),
where rows and columns are modules and i depends
on j. Then, for a given test order t and a set of d
dependencies to be broken, the attribute complexity
A is calculated according to Equation 1, where n is
the total number of modules and k is any module
included before the module j, in test order t.

A =) AMG,jsj #k (1)

i=1 j=1

e Operation complexity (O(t)) - The operation
complexity counts the number of operations that
would have to be emulated in the stub if the
dependency were broken (operation coupling
measure). This information is an input for the
algorithms and is represented by a matrix OM(, /),
where rows and columns are modules and i depends
on j. Then, for a given test order t and a set of d
dependencies to be broken, the operation complexity
O is computed as defined by Equation 2.

O(t) =YY OMG,j)ij #k (2)

i=1 j=1

To illustrate the use of both measures, consider the
order ¢ = [..., TimerLog, Timing, Timer, ...] for
the example presented in Section ‘Integration testing of
classes and aspects’. This order requires stubs for the
aspect Timing and the class Timer (Listings 2 and 3).
It is possible to determine the values for the measures A
and O for this fragment of order. For A(t), the cost value

Page 7 of 17

is three, composed by one attribute implemented for an
inter-type declaration in the stub for the aspect Timing
and two attributes implemented in the stub for the class
Timer. For this same fragment, the value of O(¢) is five,
composed by two advices in the stub for Timing and
three methods in the stub for Timer. Hence, the cost of
the fragment of ¢ is (A = 3,0 = 5).

Based on the measures presented above, the problem is
the search for an order that minimizes the objectives A
and O.

A reverse engineering was performed to identify the
existing dependencies between modules from program
codes using the same parser adopted in our previous
works [11,13]. A parser based on AJATO (Aspect] and
Java Assessment Tool; http://homepages.dcc.ufmg.br/~
figueiredo/ajato/) was developed to do this. It uses the
Java/Aspect] code as entry and returns the syntactic tree
code. From this tree, the associations, uses, inheritances,
advices, point-cuts, and inter-type declaration dependen-
cies were identified. At the end, the parser generated
as output three matrices (dependency, attributes, and
operations complexities) that were used as input to the
algorithms. We consider that inheritance and inter-type
declaration dependencies cannot be broken, similar to
related works [7,12,13,22].

Implemented algorithms

As mentioned before, our goal is to evaluate existing
approaches, TA, SBA, and MSBA, with both integration
strategies, Incremental+ and Combined. In this section,
we describe how the algorithms of each approach were
implemented. In the TA, Tarjan’s algorithm was imple-
mented according to [7], using the ANNAS framework
[28]. In the SBA, the implemented GAs are provided
by the Bigus [29]. They were adapted to compute the
fitness based on the aggregation of both coupling mea-
sures. Regarding the MSBA, the multi-objective algo-
rithms NSGA-II, SPEA2, and PAES were implemented by
using the framework jMetal [30]. Such algorithms were
chosen due to two main reasons. First of all, evolutionary
algorithms, such as NSGA-II, have presented the best per-
formance in the OO context, when compared with other
bio-inspired algorithms, such as PACO and MTabu [31].
The second one is that they implement different evolution
mechanisms, and this helps us to investigate the influence
of the strategies in the search space.

We use the same representation and genetic opera-
tors to implement all evolutionary algorithms, approaches
SBA and MSBA. The chromosome, solution in the popu-
lation, is represented by a vector whose positions assume
an integer that represents the modules. The size of this
vector is equal to the number of modules, and a module
must not appear twice in a test order. For both strategies,
the crossover operator follows the technique of two-point

http://homepages.dcc.ufmg.br/~figueiredo/ajato/
http://homepages.dcc.ufmg.br/~figueiredo/ajato/

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

crossover. In this technique, two points are selected ran-
domly, and the genes inside them are swapped in the
children. The remaining genes are used to complete the
solution, from left to right. Figure 2a shows an example of
the two-point crossover operator using an individual with
five genes. For the mutation operator, we used the tech-
nique of swap mutation. In this technique, two genes are
randomly selected and are swapped in the child. Figure 2b
shows an example of swap mutation operator, using an
individual with five genes. In the Incremental+ strategy
if the randomly selected gene is a class, the gene to be
swapped must be another class. In the other hand, if the
gene is an aspect, it must be swapped by another aspect,
in order to maintain the boundary between classes and
aspects in the chromosome.

The use of crossover and mutation operators can gen-
erate test orders that break the precedence constraints
between the modules (dependencies I, Ag, and It). This
means that base modules must precede child modules in
any test order £. The strategy adopted to deal with these
constraints consists to check the test order, and if an
invalid solution is generated, the module that breaks the
constraint is placed at the end of the order according to
the module type. For instance, in the Incremental+ strat-
egy, if the module is a class, it must be placed at the end of
the classes space; and analogously for aspects. The fitness
function (objectives) is calculated from three matrices,
inputs to the algorithms, associated to (1) dependencies
between modules; (2) measure A; and (3) measure O
(described in the last section).

Algorithms parameters

Tarjan’s algorithm does not have parameters to be
adjusted. The parameters of the GAs and MOEAs were
adjusted following our previous works [11,12], where an
empirical parameter tuning was done [32]. To configure
the algorithms of approach SBA, besides the parameters
related to the evolution process, it was also necessary to
set the weights of the measures: attribute and operation

Page 8 of 17
Table 2 MOEA and GA parameters
Parameter GAA GAO GA NSGA-ll SPEA2 PAES
Number of fitness 60,000 60,000 60,000 60,000 60,000 60,000
evaluation
Population size 300 300 300 300 300 300
Mutation rate 0.2 0.2 0.2 0.02 0.02 0.02
Crossover rate 0.9 0.9 09 0.95 0.95 -
Archive size - - - - 250 250
Attribute weight 1 0 0.5 - - -
Operation weight 0 1 0.5 - - -

coupling to compose the aggregated fitness function. We
evaluated three combinations of weights. To verify the
empirical influence of each measure in the stub con-
struction we used a configuration to minimize only the
attribute coupling (identified here as the configuration GA
with attributes (GAA)). In this configuration, the weight
of the measure operation coupling was set to zero. The
other configuration minimizes only the operation cou-
pling (identified here as the configuration GA with Oper-
ations (GAQ)). In this configuration, the weight of the
measure attribute coupling was set to zero. In the third
configuration (configuration GA), equal importance was
given to both measures.

Table 2 shows the parameter values adopted. Each evo-
lutionary algorithm was executed 30 times for each sys-
tem. All the algorithms executed the same number of
fitness evaluations, used as stopping criteria in order to
analyze whether they can produce similar solutions when
they are restricted to the same resources. Furthermore,
they were executed in the same computer. At the end, the
set of non-dominated solutions considering all runs was
obtained for each algorithm.

Quality indicators
To compare the results presented by the MOEAs with
both strategies, we used some quality indicators from

| |
P1 2 1 4 3 I 1 5

Parents 1 1
P2 1 l 2 5 I 4 3

1 I

I |

| I
Ca 4 2 5 3 9

I 1

Children j i
C2 bt 4 3 2 5

1 I

. .

Parent 2 4 3 1 5
Child 2 5 3 1 &4

(a)

Figure 2 Evolutionary operators. (a) Example of the two-point crossover, (b) Example of the swap mutation.

(b)

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

the literature [33]: coverage (C), hypervolume (HV), and
Euclidean distance from an ideal solution (ED).

To calculate such indicators, some sets were obtained
from the execution of the algorithms. In each run, each
MOEA found an approximation set of solutions named
PFapprox. Furthermore, for each MOEA, it is obtained in a
set called PFypown, formed by all non-dominated solutions
achieved in all runs. Considering that PFtrue is unknown,
in order to calculate the indicators, we generate PFtrue for
each system through the union of all solutions achieved by
all algorithms, removing dominated and equal solutions,
as recommended in the literature [33].

The coverage C [17] calculates the proportion of solu-
tions in the Pareto front, PF4, which are dominated by PFa.
The function C(PFa, PF») maps the ordered pair of (PFa

Page9of 17

and PF») into the range [0,1] according to the proportion
of solutions in PF5 that are dominated by PFa. Similarly, we
compare C(PF», PFa) to obtain the proportion of solutions
in PFa that are dominated by PFs. Figure 3a presents an
example of C indicator for a minimization problem with
two objectives. For instance, C(Pa, Pb) corresponds to 0.5
because the Pb set has two of its four elements dominated
by Pa set. Value 0 for C indicates that the solutions of the
former set do not dominate any element of the latter set;
on the other hand, value 1 indicates that all elements of
the latter set are dominated by elements of the former set.

The HV [34] indicator is considered the best met-
ric to performance assessment of algorithms for multi-
objective optimization problems. It measures the volume
of the dominated portion of the objective space and is

-

True

pﬁmown

¥

Reference

(b)

min(f1.£2)

Y1

Figure 3 Quality indicators. (a) C, (b) HV, (c) ED.

(c)

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

of exceptional interest as it possesses the highly desir-
able feature of strict Pareto compliance, i.e., whenever one
approximation completely dominates another approxima-
tion, the hypervolume of the former will be greater than
the hypervolume of the latter. Figure 3b presents an exam-
ple of HV indicator.

The determination of a solution that minimizes all
objectives is difficult in multi-objective optimization
problems, and decision makers usually prefer the solution
that is nearest to the ideal solution. An ideal solution has
the minimum value of each objective of PFtrue, consider-
ing a minimization problem. Figure 3c depicts an example
of ED for a minimization problem with two objectives.
Therefore, here, the Euclidean distance from an ideal solu-
tion (ED) is used to find the closest solutions to the best
objectives [35].

Results and discussion

In this section, the results are presented and analyzed aim-
ing at answering our research questions in the following
subsections.

RQ1: strategies evaluation

RQ1 investigates the performance of each strategy accord-
ing to the stubbing costs, characteristics of the systems
and used approach. The goal is to help the tester in the
selection of a strategy.

To conduct the analysis, we use Tables 3 and 4. Table 3
presents the global cost of the solutions found by each
algorithm. The global cost refers to the measures A and O,
which represent how many attributes and operations need
to be emulated in stubs. The solutions in italics are non-
dominated considering all solutions of the algorithms.

In addition to the global cost, we estimate the number of
stubs required for aspects and classes to show the impact
of each strategy on the results. For each obtained solu-
tion, that is a test order, we analyze how many stubs are
required for classes and for aspects taking into account the
matrix of dependencies of each system. Table 4 presents
the mean number of stubs for classes (C) and for aspects
(A) generated by each strategy and algorithm.

We can observe that a lower number of stubs does not
imply a lower global cost. One stub can be more complex
to be written due to the number of dependencies to be
emulated inside it. For example, despite Tarjan’s algorithm
having the lowest number of required stubs, the solutions
achieved by it have higher global costs.

To help in the evaluation, we also use the indicator cov-
erage, whose results are presented in Table 5. In this table,
the value C(Comb,Inc+), between 0 and 1, represents
how much the solutions of the Incremental+ strategy are
dominated by solutions of the Combined strategy. Sim-
ilarly, C(Inc+,Comb) represents how much the solutions

Page 10 0f 17

of Combined are dominated by solutions of Incremental+.
Only bold values, near or greater than 0.5, are significant.

Regarding the global costs (given by the coupling mea-
sures), we can see in Tables 3 and 5 that the solutions
obtained with Incremental+ strategy present lower costs
(9 cases out of 28), considering all systems and algo-
rithms. In two cases, the Combined strategy is better. In
the remaining 17 cases, they are similar, the majority of
them (16) being associated to the less complex systems,
Health Watcher and Toll System.

Considering the cost associated to the mean number
of stubs, a lower number of required stubs was achieved
using the strategy Incremental+ (in 12 cases out of 28); see
Table 4. The Combined strategy achieved a lower num-
ber of stubs in eight cases, mainly for MOEAs and more
complex systems (AJHotDraw and AJHSQLDB). Similar
number of stubs were obtained for the other cases, mainly
for Toll Systems.

Stubs for aspects are needed in few cases. In such cases,
the stubs for aspects are required when using the strat-
egy Combined. This not happens in the orders obtained
by Incremental+ because the aspects are in the end of
the orders. In addition, probably there are no dependency
cycles between aspects in the systems evaluated.

Only GAA and GAO find orders that require stubs for
aspects (Table 4). These are situations in which only one of
the measures is considered. Considering a multi-objective
treatment, the number of stubs for aspects tends to be 0.

In short, in a general case, Incremental+ seems to be
a better choice because it requires a lower number of
stubs and has lower costs, with respect to the number of
attributes and operations to be emulated. This strategy
also presented a lower number of stubs for aspects.

As mentioned before, Ré [20] has conducted a similar
study with three systems and the traditional strategy. Our
results are different from the results of his study. In our
study, Combined has achieved neither the lowest num-
ber of stubs nor the lowest stubbing cost. Also, Combined
has not achieved a better balance between the number of
stubs for classes and for aspects than Incremental+.

We observe that the system characteristics influence the
performance of the strategy. As mentioned before, there is
no difference between the strategies for the small systems
considering global costs. The only difference was found
for GAO, where Incremental+ performs better. Consider-
ing the number of stubs and small systems, Incremental+
generated the lowest number in five cases whereas Com-
bined achieved the lowest number in two cases for Health
Watcher. In one of these two cases, Combined required
a greater number of stubs for aspects, despite having
generated the lowest number of stubs.

For the most complex systems, Incremental+ performed
better in most cases. However, it is worth to mention that
Combined presented its best cost results for AJHSQLDB.

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

Table 3 Cost of non-dominated solutions

Page 11 0of 17

System Tarjan GAA GAO GA
Comb Inc+ Comb Inc+ Comb Inc+ Comb Inc+
AJHotDraw (52,23) (52, 23) (43,63) (47,49) (114,19) (115,15) (74,18) (73,21)
(47,62) (83,39) (115,16) (126,13) (76,15) (73,21)
(62,58) (132,14) 17)
(63,52) (84,16)
(67, 36) (88,15)
AJHSQLDB (1,690, 346) (1,660, 345) (1,461, 723) (1,478, 696) (2,708,382) (2,420, 293) (1,688,434) (1,594, 455)
(1,516,718) (1,490, 650) (2,749, 359) (3,112, 288) (1,831,416) (1,821,392)
(1,556, 699) (2,753,308) (1,895,401) (1,854, 384)
(1,591, 697) (3,718,267) (1,917,383)
(1,606, 696) (2,052,370)
(1,618,674)
Health Watcher (14,22) (14,22) 9,12) 9,2) (54,2) (27,2) 9,2) 9,2
Toll System (0,0 (0,0) (0,0) 0,0 (4,0) 0,0 (0,0) (0,0)
System NSGA-II
Comb Inc+
AJHotDraw (42,21) (46,19) (49, 18) (52, 17) (55,16) (90, 15) (39,18) (41,17) (45, 16) (47, 15) (85, 14)
AJHSQLDB (1,322,423) (1,323,419) (1,335, 408) (1,352, 399) (1,342,417) (1,343, 416) (1,346,414) (1,355, 406)
(1,356, 397) (1,373, 394) (1,374,393) (1,390, 384) (1,356, 405) (1,370, 403) (1,375, 402) (1,387, 396)
(1,465, 357) (1,468, 353) (1,474, 351) (1,480, 350) (1,429, 369) (1,436, 368) (1,445, 367) (1,449, 364)
(1,484, 349) (1,490, 346) (1,516, 344) (1,519, 342) (1,452, 363) (1,456, 362) (1,470, 361) (1,471, 360)
(1,532,341) (1,535, 335) (1,545, 332) (1,553, 330) (1,474, 359) (1,476, 356) (1,477,354) (1,478, 353)
(1,563,326) (1,575,321) (1,591,315) (1,615, 314) (1,486, 350) (1,499, 346) (1,513, 345) (1,595, 342)
(1,618,312) (1,650,311) (1,652, 310) (1,717, 307) (1,599, 341) (1,660, 336) (1,697, 335) (1,698, 334)
(1,771,303) (1,774, 302) (1,787, 299) (1,790, 298)
(1,791,297)
Health Watcher 92) 92)
Toll System 0,0 0,0
System PAES
Comb Inc+
AJHotDraw (36,22) (38,21) (39, 20) (41, 19) (49, 18) (35,23) (36,22) (39, 20) (42, 19) (48,17)
(51,16) (69, 15) (64, 16) (68, 15) (70, 14) (86, 13) (89, 12)
AJHSQLDB (1,127,333) (1,131,324) (1,133, 314) (1,143, 307) (1,127,350) (1,131, 343) (1,142, 333) (1,143, 299)
(1,145, 304) (1,150, 300) (1,171,293) (1,176, 289) (1,168, 297) (1,170, 294) (1,176, 289) (1,185, 283)
(1,186, 288) (1,200, 286) (1,210, 278) (1,215, 276) (1,192, 280) (1,201,278) (1,211, 276) (1,212, 273)
(1,229, 272) (1,257,271) (1,258, 269) (1,259, 266) (1,224, 270) (1,228, 269) (1,244, 262) (1,251, 258)
(1,268, 263) (1,275, 261) (1,277, 260) (1,284, 259) (1,267, 256) (1,271,255) (1,280, 252) (1,283, 250)
(1,287,252) (1,301, 251) (1,303, 247) (1,316, 245) (1,292, 244) (1,308, 239) (1,373, 238) (1,379, 230)
(1,321, 241) (1,332, 237) (1,347,226) (1,372, 222) (1,410,223) (1,428, 218) (1,459, 216) (1,481, 215)
(1,386,212) (1,402, 210) (1,426, 208) (1,511, 207) (1,507,214) (1,543, 213) (1,645, 212) (1,872, 209)
(1,562, 203) (1,564, 199) (1,580, 194) (1,682, 193) (1,999, 208) (2,023, 204)
Health Watcher 9,2 9.2)
Toll System 0,0 0,0

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

Table 3 Cost of non-dominated solutions (Continued)

Page 12 0of 17

System SPEA2
Comb Inc+
AJHotDraw (45, 28) (47,27) (48, 26) (50, 25) (52, 22) (46, 21) (47,20) (49, 19) (44, 22) (58, 18)
(54, 19) (57,18) (60, 17) (63, 16) (81, 15) (89,16) (62,17)
AJHSQLDB (1,369,411) (1,384, 404) (1,405, 403) (1,407, 402) (1,383, 403) (1,396, 400) (1,397, 399) (1,398, 398)
(1,408, 400) (1,410, 399) (1,420, 395) (1,426, 392) (1,404, 394) (1,414,393) (1,417,392) (1,419, 387)
(1,436, 380) (1,459, 379) (1,462, 376) (1,476,372) (1,420, 385) (1,433, 381) (1,437, 380) (1,449, 377)
(1,481,369) (1,498, 362) (1,501, 351) (1,550, 350) (1,452,376) (1,453, 375) (1,454,374) (1,512, 370)
(1,553,348) (1,559, 345) (1,562, 338) (1,578, 333) (1,515,369) (1,518, 366) (1,528, 363) (1,531, 362)
(1,596,327) (1,607,326) (1,611, 325) (1,625, 320) (1,532,361) (1,580, 358) (1,584, 356) (1,595, 355)
(1,629,319) (1,641, 315) (1,645, 314) (1,596, 354) (1,601, 353) (1,606, 351) (1,607, 349)
(1,611,347) (1,620, 344) (1,626, 338) (1,635, 337)
(1,636,336) (1,639, 335) (1,650, 332) (1,660, 326)
(1,675,323)
Health Watcher 9.2) 92)
Toll System 0,0 0,0

Such system has the largest number of LOC and their
solutions are more expensive than the AJHotDraw solu-
tions in terms of the number of attributes and operations
and also in the number of stubs.

Another point to be evaluated is the performance of
each strategy considering a given algorithm (or approach).
The strategy which is best for each approach is investi-
gated by analyzing Tables 4 and 5.

Tarjan’s algorithm presents the difference only for AJH-
SQLDB, where the best solution is obtained using the

Table 4 Mean number of stubs for classes and aspects

Incremental+ strategy. Considering SBA, for the algo-
rithm GAA, Incremental+ strategy is better for the system
AJHSQLDB and slightly better for system AJHotDraw.
For GAO, the Incremental+ strategy always finds the best
solutions.

When using GA, the Combined strategy is better for the
system AJHotDraw. And Incremental+ strategy is slightly
better for the system AJHSQLDB. Regarding MSBA, for
the algorithms NSGA-II, Incremental+ strategy is bet-
ter for the system AJHotDraw and Combined strategy is

Health Toll
AJHotDraw AJHSQLDB
. Watcher System
Algorithm Strat.
Number Stubs Number Stubs Number Stubs Number Stubs
sol. C A sol. C A sol. C A sol. C A
) Comb 1 38 0 1 86 0 1 6 0 1 0 0
Tarjan
Inc+ 1 38 0 1 85 0 1 6 0 1 0 0
Comb 5 126 04 6 246.8 6.2 1 16 5 1 0 0
GAA
Inc+ 2 1105 0 2 237.5 0 1 22 0 1 0 0
Comb 3 114 0 4 190.7 0 1 21 5 1 3 0
GAO
Inc+ 2 1125 0 2 179 0 1 16 0 1 0 0
oA Comb 2 110.5 0 5 178.8 0 1 9 0 1 0 0
Inc+ 5 1034 0 3 187.3 0 1 6 0 1 0 0
Comb 6 99.2 0 41 164 0 1 13 0 1 0 0
NSGA-II
Inc+ 5 100.6 0 36 174.9 0 1 12 0 1 0 0
Comb 7 109.1 0 36 1111 0 1 26 0 1 0 0
PAES
Inc+ 10 102.7 0 34 1164 0 1 23 0 1 0 0
Comb 10 96.9 0 27 1741 0 1 8 0 1 0 0
SPEA2
Inc+ 7 104.8 0 52 1787 0 1 6 0 1 0 0

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

Table 5 Coverage between strategies

Health Toll

AJHotDraw AJHSQLDB Watcher System

Algorithm Strategy

. C(Comb,Inc+) 0 0 0 0

Tarjan

C(inc+,Comb) 0 1 0 0

C(Comb,Inc+) 0.5 0 0 0
GAA

C(Inc+,Comb) 0.6 0.833333 0 0

C(Comb,Inc+) 0 0 0 0
GAO

C(Inc+,Comb) 0.666667 0.75 1 1

C(Comb,Inc+) 08 0 0 0
GA

C(Inc+,Comb) 0 04 0 0

C(Comb,Inc+) 0 0.944444 0 0
NSGA-II

C(Inc+,Comb) 1 0.0243902 0 0

C(Comb,Inc+) 0.2 0441176 0 0
PAES

C(lnc+,Comb) 0.285714 0.555556 0 0

C(Comb,Inc+) 0428571 0.37037 0 0
SPEA2

C(Inc+,Comb) 0.6 0.442308 0 0

better for the system AJHSQLDB. For PAES, Incremen-
tal+ is slightly better than Combined for AJHSQLDB and
finally, for SPEA2, the Incremental+ strategy is slightly
better for AJHotDraw.

In summary, in 15 cases, there is no difference between
the strategies. Using the Incremental+ strategy, the best
solutions are obtained in eleven cases; eight of them
give a single objective treatment to the problem (Tarjan,
GAA, and GAO). Using the Combined strategy the best
solutions are obtained in only two cases, where a multi-
objective treatment is given to the problem (GA using
an aggregation function and with the multi-objective
approach).

According to the results, the Incremental+ is the best
strategy to solve the problem when using traditional and
search-based approaches (TA and SBA). When there is
a multi-objective treatment, Combined achieves good
results, too. When applying the multi-objective approach,
both strategies have a similar behavior considering the
context of our work.

Despite both strategies achieving satisfactory results,
if the internal members of each stub are considered in
the stubbing cost, a statement of Ré [20] would be con-
sidered to choose one strategy. He states that if the
aspects of the system under test are small and have few
implemented internal members, it is possible to conjec-
ture that Incremental+ will have better performance than
Combined. It happens because there is a trend of the
number of stubs for aspects greater than the number
of stubs for classes in Incremental+, leading to a lower
number of internal members to be emulated in these
stubs.

Page 13 of 17

RQ2: algorithms evaluation

RQ2 aims at investigating the performance of each algo-
rithm with both strategies. An important answer is to
know the best approach to a given strategy being used
by the tester. For instance, if the tester needs to adopt
the Incremental+ strategy since he/she does not have the
aspects available for the test, which is the most suitable
approach to be used? With respect to this question, we can
also observe if a strategy influences in the performance of
the algorithms, mainly the multi-objective ones.

We can see in Table 3 that MSBA presents the best
cost independent of the strategy used; the solutions of
NSGA-II and PAES represent the best trade-off between
both objectives, with a greater number of non-dominated
(italics) solutions for all systems. Health Watcher and
Toll System have only one optimal cost solution. Some
approaches have not found this solution (Tarjan and
GAO), independent of the strategy used.

Hence, the result obtained in our previous works [11,12]
is also valid for the Incremental+ strategy. We can see in
Table 3 that the solutions achieved by Incremental+ for
AJHotDraw and AJHSQLDB in MSBA have better trade-
off between the objectives than solutions achieved by this
strategy in TA and SBA.

A greater number of non-dominated solutions is
obtained with the Combined strategy: regarding the num-
ber of solutions, we can observe in Table 3 that the
search-based algorithms find a greater number of non-
dominated solutions when using the strategy Combined.
An explanation for this is that the Incremental+ strategy
imposes restrictions to the algorithms and this reduces the
search space, decreasing, as a consequence, the number of
possible solutions. GA for the system AJHotDraw is the
single exception where the Incremental+ strategy found a
greater number of solutions. The other exception involves
the systems with a single solution, cases where there is no
difference.

Since, the multi-objective approach is the best choice
for both strategies; next, we evaluate which is the best
MOEA. To do this, we performed a visual analysis of the
obtained solutions in the search space, and use two qual-
ity indicators to compare the MOEAs and strategies: HV
(Table 6), and ED (Table 7). In both tables, the boldface
is used to emphasize the strategy with best results for the
same algorithm when differences are observed.

To our visual analysis, we depict the solutions on graphs
only for AJHotDraw and AJHSQLDB, since for the other
two systems, a single solution was achieved (see Table 3).
The graphs are presented in Figure 4. For system AJHot-
Draw, the solutions are in the same area of the graph,
but the set of best solutions are achieved by NSGA-II
and PAES, both using the Incremental+ strategy. The
worst MOEA is SPEA?2 independently of the strategy used.
For system AJHSQLDB, the best solutions are clearly

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

Table 6 Mean and standard deviation of HV

Page 14 0f 17

NSGA-II PAES SPEA2
System
Comb Inc+ Comb Inc+ Comb Inc+
10,170.37 10,560.30 10,634.47 10,937.47 9,827.33 9,921.83
AJHotDraw
(1,054.99) (1,280.11) (1,053.59) (1,065.77) (1,084.35) (1,044.56)
1,199,932.10 1,139,892.37 1,686,074.13 1,668,224.73 1,119,720.60 1,066,211.50
AJHSQLDB
(84,475.00) (83,606.29) (47,022.52) (38,898.70) (91,758.20) (108,504.43)
6,466.00 6,466.00 6,437.70 6,412.03 6,454.90 6,466.00
Health Watcher
(0.00) (0.00) (103.69) (140.09) (45.04) (0.00)
260.57 264.00 23140 254.40 262.40 263.60
Toll System
(13.10) (0.00) (40.48) (21.70) (8.76) (2.19)

observed. These solutions are achieved by PAES with
the strategy Incremental+ and PAES with the Combined
strategy. We also observe that NSGA-II with the strategy
Combined is better than the NSGA-II with Incremental+
and SPEA2 with both strategies.

Table 6 presents the mean values of HV considering the
30 runs of each MOEA. The number between parentheses
represents the standard deviation. Due to the stochastic
nature of the algorithms, to perform a statistical compari-
son, the Friedman test was used at a 5% significance level
[36]. This test is applied to raw values, and the post-test of
the Friedman test indicates whether there is any statisti-
cal difference between each analyzed data set; to identify
which data set has the best values, boxplot charts are used.
The boxplot chart gives information about the location,
spread, skewness, and tails of the data.

The Friedman statistical test does not point difference
between the strategies for the same MOEA. The Friedman
test points statistical difference between algorithms only
for systems AJHSQLDB and Toll System. Figure 5 presents
the boxplots for indicator HV for these systems. Regard-
ing the system AJHSQLDB, the results achieved by PAES,
independent of the used strategy, are better than NSGA-
II and SPEA2. Between the other two MOEAs, NSGA-II
with Combined is better than SPEA2 with Incremental+.

Table 7 The lowest distances of ED

In all other cases, there is no statistical difference. Now,
observing the results for the Toll System, we note that
NSGA-II with Incremental+ strategy and SPEA2 with
both strategies are better than PAES with Combined strat-
egy, and PAES with Incremental+ is statistically equivalent
to all the algorithms.

Since, MOEAs return a set of solutions, we need to
choose one solution to be used by the tester. Conse-
quently, we use the indicator ED to observe the closest
solutions to the ideal solution. Table 7 presents the results
of indicator ED, the cost of the solution with the lowest ED
is presented between parenthesis. The values in boldface
correspond to the best result of all MOEAs.

For almost all the systems, PAES achieved the best ED
solutions, with the exception of the AJHotDraw system
with Incremental+ where the best was the NSGA II; how-
ever, the difference with PAES solution is not great. More-
over, PAES does not present different results between
strategies.

There is no difference among the MOEAs in the Com-
bined strategy. In the Incremental+ strategy;, it is possible
to note that the strategy influences the results of the
MOEAs leading to a slight difference among them. PAES
achieves better results than the other MOEAs in some
cases considering HV and ED. However, this advantage

Ideal NSGA-II PAES SPEA2
System Strategy
solution lowest ED lowest ED lowest ED
Comb 11401754 (42,21) 8944272 (39, 20) 18.867962 (45, 28)
AJHotDraw (35,12)
Inc+ 7211103 (39, 18) 8.944272 (39, 20) 13.453624 (44, 22)
Comb 299.147121 (1,335, 408) 107.782188 (1,176, 289) 325.711529 (1,369,411)
AJHSQLDB (1,127,193)
Inc+ 310.459337 (1,343,416) 107.070071 (1,185, 283) 304.251541 (1,314, 433)
Comb 0.0(9,2) 00(9,2) 0.0(9,2)
Health Watcher 9, 2)
Inc+ 0.0(9,2) 0.0(9,2) 0.0(9,2)
Comb 0.0(0,0) 0.0(0,0) 0.0(0,0)
Toll System 0, 0)
Inc+ 0.0(0,0) 0.0(0,0) 0.0(0,0)

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

Page 15 0of 17

30 T T T T T 450 T T T T T T T T T
NSGA-Il Comb —— NSGA-Il Comb ——
NSGA-II Inc+ £ NSGA-II Inc+
PAES Comb —— ik X PAES Comb —— |
PAES Inct —o— - PAES Inct —a—
25 SPEA2 Comb 1 4*‘--. SPEA2 Comb
SPEA2 Inc+ R SPEA2 Inc+
a 30 -9 % o
c i c il i, =
<] 2 1
3 i =, S
5 20 1 |@ %oF i
o o
5 S E
250 [geén-‘
— D“KD
15 F mx - -t 4 g
-.3 \s*iﬁﬂ"" e —a— a
i 200 - B T =
10 150 . " . L
30 40 50 60 70 80 90 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100)
Attribute Attribute
(a) (b)

Figure 4 Solution space. (a) AJHotDraw (b) AJHSQLDB.

of PAES in relation to the other algorithms has statistical
difference in only one case.

Threats to validity

In this section, threats to the validity of our work are ana-
lyzed. Regarding the construct validity, in our evaluation,
a possible threat is related to the model used to represent
the dependencies of the AO systems, as well as, the cou-
pling measure used to calculate the stubbing costs. We
know that there are other factors that could be consid-
ered. To mitigate such threat, we used the model ORD,
algorithms, and measures considered in the literature and
similar studies [7,8,10,22]. We intend to conduct other

experiments and study other measures that can influ-
ence the problem. In such experiments, other research
questions should be investigated.

To mitigate reliability threats, we executed the non-
deterministic algorithms 30 times, as recommended in
the literature. The experiments can be repeatable since
the systems are available following the same methodology.
Regarding the internal validity, we also use in our analy-
sis quality indicators, coverage, HV, and ED, and statistical
analysis used in the literature.

The main threat of our work is related to the external
validity. The number of the systems evaluated can influ-
ence the generalization of the obtained results. Although,

=3
S s |
5 - o ~
— o
: k= 5
S g -
©
[1=}
= -
o o o o
2 &
S o
=3 gt (=
= H o -
= ' o .
i —— ' o
o i i : '
S | i : : 2 ; o
: - l |] |
i H H
N , g |
S :] - .
= 1 —_— -
S = — :
= ’ : 2 :
d < :
o I R, -
T T T T T T T T T T T T
NSGA-Il NSGA-Il PAES PAES SPEA2 SPEA2 NSGA-Il NSGA-Il PAES PAES SPEA2 SPEA2
Comb Inc+ Comb Inc+ Comb Inc+ Comb Inc+ Comb Inc+ Comb Inc+

(a)

Figure 5 Boxplots for HV. (a) AJHSQLDB (b) Toll System.

(b)

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

we are using a greater number of systems than related works,
the results cannot be generalized because the number of
systems is still small. So, our findings can be considered as
evidences about the performance of the approaches and
strategies. To reduce this influence, we selected aspect-
oriented systems, with different sizes and complexities,
given by the number of modules and dependencies.

Conclusions

This work described results of an experimental evaluation
of two different strategies, Incremental+ and Combined,
for integration testing of the AO software. The strategies
were evaluated with real systems and three approaches
(and seven algorithms): (1) the traditional one, based on
Tarjan’s algorithm, (2) the GA-based one, implemented
with three different configurations of weights, and (3)
the multi-objective one, implemented with three MOEAs:
NSGA-II, PAES, and SPEA2.

The strategies were evaluated according to the costs,
given by the number of stubs, number of attributes and
operations, characteristics of the programs, and approach
adopted. The performances of the algorithms used with
each strategy were also compared.

In a general case, the Incremental+ strategy presented
lower costs, and it is a good choice independently of the
approach and system characteristics. The Combined strat-
egy presents a greater number of non-dominated solution
options to the tester and good performance with more
complex systems and the multi-objective approach. The
Combined strategy generates a greater number of stubs
for aspects since they are integrated and tested together
with the classes. Despite of not finding the greatest num-
ber of non-dominated solutions, every time in the multi-
objective approach, Incremental+ does not require the
development of stubs for aspects and it achieves solutions
with the lowest ED (preferred by the decision makers).

In the context of our study, the results show that
the multi-objective approach is better than the other
approaches independent of the adopted integration strat-
egy. Given this fact, the three multi-objective algorithms
were compared, considering the most complex systems.
PAES achieved the best results followed by NSGA-IIL.

In short, it seems that the best choice is the multi-
objective approach with Incremental+, since it may be
more interesting for the tester to adopt a strategy that gen-
erates orders with lower global cost. If the system is very
complex, PAES seems to be the best MOEA.

As future work, we intend to use in further experiments
other measures that affect the stubbing costs, especially
of aspects. In addition to coupling measures, other objec-
tives could be used, for instance, to minimize the total
number of stubs, or to minimize the number of stubs for
classes or aspects. New experiments with other systems
should be conducted to better evaluate the influence of the

Page 16 of 17

system characteristics in the performance of the strategies
and approaches. Finally, further studies may include costs
related to the execution of the test orders.

Endnotes

2Some works use mocks instead of stubs to simulate
dependencies in the AO context [37]. Mocks are similar
to stubs, but stubs use state verification, whereas mocks
use behavior verification. The adoption of stubs or mocks
in the integration testing is a decision of the tester, but
independently of the simulating technique used, the
minimization of the required stubs/mocks is necessary.

b AJHotDraw (version 0.4): http://sourceforge.net/
projects/ajhotdraw/; AJHSQLDB (version 18): http://
sourceforge.net/projects/ajhsqldb/files/; Toll System
(version 9): http://people.cs.kuleuven.be/~aram.
hovsepyan/process_study.html; Health Watcher (version
9): http://ptolemy.cs.iastate.edu/design-study/.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

All authors have contributed to the different conceptual and experimental
aspects study presented in this article. All authors read and approved the final
manuscript.

Acknowledgements
We would like to thank CNPg and CAPES for their financial support. This paper
is an extended version of a previous work presented in LAWASP-2012.

Author details

1Compu‘[er Science Department, Federal University of Parana (UFPR), Parang,
Brazil. “Computer Science Department, State University of Maringa (UEM),
Parana, Brazil.

Received: 9 December 2013 Accepted: 8 January 2014
Published: 20 March 2014

References

1. Alexander RT, Bieman JM, Andrews AA (2004) Towards the systematic
testing of aspect-oriented programs. Colorado State University,
Technical Report

2. Ceccato M, Tonella P, Ricca F (2005) Is AOP code easier or harder to test
than OOP code? In: First Workshop on Testing Aspect-Oriented Program
(WTAOP). Chicago, lllinois. 15 March 2005

3. Lemos OAL, Franchin IG, Masiero PC (2009) Integration testing of
object-oriented and aspect-oriented programs a structural pairwise
approach for java. Sci Comput Program 74(10): 861-878

4. Zhao J (2003) Data-flow-based unit testing of aspect-oriented programs
In: 27th Annual International Conference on Computer Software and
Applications (COMPSAQ). Dallas, TX, USA, 3-6 November 2003

5. Zhou, Ziv H, Richardson DJ (2004) Towards a practical approach to test
aspect-oriented software In: Beydeda S, Gruhn V, Mayer J, Reussner R,
Schweiggert, F (eds) Proceedings of the workshop on testing
component-based systems (TECOS 2004), Erfurt, Germany, September,
2004. Lecture notes in informatics, vol 58. p 1-16. Gl, Konstanz

6. Massicotte P, Badri M, Badri L (2005) Aspects-classes integration testing
strategy: an incremental approach In: 2nd International Workshop on
Rapid Integration of Software Engineering techniques (RISE 2005)
Heraklion, Crete, Greece, 8-9 September 2005. Lectures notes in
computer science, vol 3943. Springer, Heidelberg. pp 158-173

7. RéR, Masiero PC (2007) Integration testing of aspect-oriented programs: a
characterization study to evaluate how to minimize the number of stubs
In: Brazilian Symposium on Software Engineering (SBES), Jodo Pessoa, PB,
Brazil, 15-19 October 2007. pp 411-426

http://sourceforge.net/projects/ajhotdraw/
http://sourceforge.net/projects/ajhotdraw/
http://sourceforge.net/projects/ajhsqldb/files/
http://sourceforge.net/projects/ajhsqldb/files/
http://people.cs.kuleuven.be/~aram.hovsepyan/process_study.html
http://people.cs.kuleuven.be/~aram.hovsepyan/process_study.html
http://ptolemy.cs.iastate.edu/design-study/

Assuncao et al. Journal of the Brazilian Computer Society 2014, 20:9
http://www.journal-bcs.com/content/20/1/9

8. RéR, Lemos OAL, Masiero PC (2007) Minimizing stub creation during
integration test of aspect-oriented programs In: 3rd Workshop on Testing
Aspect-Oriented Program (WTAOP), Vancouver, British Columbia, 13
March 2007. pp 1-6

9. Melton H, Tempero E (2007) An empirical study of cycles among classes
in Java. Empir Softw Eng 12: 389-415

10. Galvan R, Pozo A, Vergilio S (2010) Establishing integration test orders for
aspect-oriented programs with an evolutionary strategy In: 4th Latin
American Workshop on Aspect-Oriented Software Development
(LA-WASP), Salvador, BA, Brazil. 27-28 September 2010

11. Assungéo W, Colanzi T, Vergilio S, Pozo A (2013) Generating integration
test orders for aspect-oriented software with multi-objective algorithms.
Revista de Informatica Tedrica e Aplicada (RITA) 20(2): 301-327

12. Colanzi T, Assuncao W, Vergilio S, Pozo A (2011) Generating integration
test orders for aspect-oriented software with multi-objective algorithms
In: Latin American Workshop on Aspect-Oriented Software Development
(LA-WASP), Sao, Paulo, SP, Brazil, 26 September 2011

13. Colanzi T, Assuncdo WKG, Vergilio SR, Pozo A (2011) Integration test of
classes and aspects with a multi-evolutionary and coupling-based
approach In: Third International Symposium on Search Based Software
Engineering (SSBSE), Szeged, Hungary, 10-12 September 2011.
pp 188-203

14. Assuncao W, Colanzi T, Vergilio S, Pozo A (2012) Evaluating different
strategies for integration testing of aspect-oriented programs In: Latin
American Workshop on Aspect-Oriented Software Development
(LA-WASP), Natal, RN, Brazil, 23 September 2012

15. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):
182-197

16. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength
Pareto evolutionary algorithm. Technical Report 103, Gloriastrasse 35,
CH-8092 Zurich, Switzerland

17. Knowles JD, Corne DW (2000) Approximating the nondominated front
using the Pareto archived evolution strategy. Evol Comput 8: 149-172

18. Kung D, Gao J, Hsia P, Toyoshima Y, Chen C (1995) A test strategy for
object-oriented programs In: 19th Computer Software and Applications
Conference, Dallas, TX, USA, 9-11 August 1995

19. Kung DC, Gao J, Hsia P, Lin J, Toyoshima Y (1995) Class firewall, test order
and regression testing of object-oriented programs. J Object-Oriented
Programming 8(2): 51-65

20. Ré R (2009) A contribution to the minimization of the number of stubs
during integration test of aspect-oriented programs. PhD thesis,
University of Sdo Paulo — Institute of Mathematical and Computer
Sciences (ICMC-USP). In portuguese

21. Tarjan R (1972) Depth firstsearch and linear graph algorithms. SIAM J
Comput 1(2): 146-160

22. Briand LC, Feng J, Labiche Y (2002) Using genetic algorithms and
coupling measures to devise optimal integration test orders In: 14th
International Conference on Software Engineering and Knowledge
Engineering (SEKE) Ischia, Italy, 15-19 July 2002

23. Briand LC, Labiche Y (2003) An investigation of graph-based class
integration test order strategies. IEEE Trans. Softw Eng 29(7): 594-607

24. Harman M (2007) The current state and future of search based software
engineering In: Future of Software Engineering - FOSE, Minneapolis,
Minnesota, 23-25 May 2007. IEEE Computer Society, Washington, DC,
pp 342-357

25. Goldberg DE (1989) Genetic algorithms in search, optimization, and
machine learning. Addison-Wesley, Boston

26. Coello CAC, Lamont GB, Veldhuizen DAV (2006) Evolutionary algorithms
for solving multi-objective problems (Genetic and evolutionary
computation). Springer-Verlag New York, Inc., Secaucus

27. Chicano JF, Luna F, Nebro AJ, Alba E (2011) Using multi-objective
metaheuristics to solve the software project scheduling problem In: 13th
Genetic and Evolutionary Computation Conference (GECCO), Dublin,
Ireland, 12-16 July 2011, pp 1915-1922

28. ANNAS (2011) Graph implementation and algorithm package. Available
at http://code.google.com/p/annas/. Accessed August 2011

29. Bigus JP, Bigus J (2001) Constructing intelligent agents using Java, 2nd
edition. John Wiley & Sons, Inc.,, New York

30. Durillo J, Nebro A, Alba E (2010) The jMetal framework for multi-objective
optimization: design and architecture In: IEEE Congress on Evolutionary

31

32.

33.

34.

35.
36.

37.

Page 17 of 17

Computation (CEQ), Barcelona, Spain. Lecture notes in computer science,
vol 5467 Springer, Berlin/Heidelberg, pp 4138-4325

Vergilio S, Pozo A, Avrias J, Cabral R, Nobre T (2012) Multi-objective
optimization algorithms applied to the class integration and test order
problem. Int J Softw Tools Technol Transf (STTT) 14: 461-475.
doi:10.1007/510009-012-0226-1

Arcuri A, Fraser G (2011) On parameter tuning in search based software
engineering In: Proceedings of the Third International Symposium on
Search Based Software Engineering, SSBSE'11 Szeged, Hungary, 10-12
September2011. Springer-Verlag, Berlin, Heidelberg, pp 33-47

Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003)
Performance assessment of multiobjective optimizers: an analysis and
review. [EEE Trans Evol Comput 7: 117-132

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a
comparative case study and the strength Pareto approach. IEEE Trans
Evol Comput 3(4): 257-271

Cochrane J, Zeleny M (1973) Multiple criteria decision making. Columbia
Garcia S, Molina D, Lozano M, Herrera F (2009) A study on the use of
non-parametric tests for analyzing the evolutionary algorithms’
behaviour: a case study on the CEC'2005 Special Session on Real
Parameter Optimization. J Heuristics 15(6): 617-644

Mortensen M, Ghosh S, Bieman JM (2008) A test driven approach for
aspectualizing legacy software using mock systems. Inf Softw Technol
50(7-8): 621-640

doi:10.1186/1678-4804-20-9

Cite this article as: Assuncdo et al: Evaluating different strategies for
integration testing of aspect-oriented programs. Journal of the Brazilian
Computer Society 2014 20:9.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Methods
	Integration testing of classes and aspects
	Traditional approaches
	Search-based approaches
	Integration strategies

	Multi-objective evolutionary algorithms
	Evaluation description
	Systems evaluated
	Coupling measures
	Implemented algorithms
	Algorithms parameters
	Quality indicators

	Results and discussion
	RQ1: strategies evaluation
	RQ2: algorithms evaluation
	Threats to validity

	Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

