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EGFR phosphorylates and inhibits lung tumor
suppressor GPRC5A in lung cancer
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Abstract

Background: GPRC5A is a retinoic acid inducible gene that is preferentially expressed in lung tissue. Gprc5a— knockout
mice develop spontaneous lung cancer, indicating Gprc5a is a lung tumor suppressor gene. GPRC5A expression

is frequently suppressed in majority of non-small cell lung cancers (NSCLCs), however, elevated GPRC5A is still
observed in a small portion of NSCLC cell lines and tumors, suggesting that the tumor suppressive function of
GPRC5A is inhibited in these tumors by an unknown mechanism.

Methods: In this study, we examined EGF receptor (EGFR)-mediated interaction and tyrosine phosphorylation of
GPRC5A by immunoprecipitation (IP)-Westernblot. Tyrosine phosphorylation of GPRC5A by EGFR was systematically
identified by site-directed mutagenesis. Cell proliferation, migration, and anchorage-independent growth of NSCLC
cell lines stably transfected with wild-type GPRC5A and mutants defective in tyrosine phosphorylation were assayed.
Immunohistochemical (IHC) staining analysis with specific antibodies was performed to measure the total and
phosphorylated GPRC5A in both normal lung and lung tumor tissues.

Result: We found that EGFR interacted with GPRC5A and phosphorylated it in two conserved double-tyrosine motifs,
Y317/Y320 and Y347/ Y350, at the C-terminal tail of GPRC5A. EGF induced phosphorylation of GPRC5A, which disrupted
GPRC5A-mediated suppression on anchorage-independent growth of NSCLC cells. On contrary, GPRC5A-4 F, in which
the four tyrosine residues have been replaced with phenylalanine, was resistant to EGF-induced phosphorylation and
maintained tumor suppressive activities. Importantly, IHC analysis with anti-Y317/Y320-P sites showed that GPRC5A was
non-phosphorylated in normal lung tissue whereas it was highly tyrosine-phosphorylated in NSCLC tissues.

Conclusion: GPRC5A can be inactivated by receptor tyrosine kinase via tyrosine phosphorylation. Thus, targeting EGFR
can restore the tumor suppressive functions of GPRC5A in lung cancer.
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Background

The retinoic acid inducible G protein-coupled receptor
family C group 5 member A (GPRC5A) is expressed pre-
dominantly in normal lung tissue [1]. Several lines of
evidences suggest that it function as a lung-specific
tumor suppressor: a) Gprc5a”~ mice develop spontaneous
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lung tumors [2]; b) loss of heterozygosity of chromosome
12p, where GPRC5A gene (12p12.3-p13) resides, is
common in NSCLCs [3,4]; and ¢), GPRC5A expression
is suppressed in many lung cancer cell lines and tumor
tissues compared to adjacent normal lung tissues [2,5].
In addition, we showed previously that lung tissues
from Gprcsa”” mouse have increased NE-kB activation
compared with that of wild-type mice [6]. This suggests
that Gprc5a negatively regulates a subset of genes involved
in inflammation, proliferation, and survival. However,
there are several controversy reports showing that
elevated GPRC5A expression was found in some tumor cell
lines and tumor samples and this expression correlated
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with increased cell growth and colony formation [7-9]. One
possible explanation for these opposite observations is
that the tumor-suppressive function of GPRC5A can be
inactivated under certain conditions. Understanding the
underlying mechanisms of GPRC5A functions will yield
new insights into lung tumorigenesis and permit devel-
opment of novel therapeutic invention for restoring the
tumor suppressive functions of GPRC5A in lung cancer.
G protein-coupled receptors (GPCRs) can be modified
by glycosylation, phosphorylation and palmitoylation,
which alter protein conformation, protein association,
subcellular localization, and/or biological functions [10,11].
For example, GPCRs are desensitized via phosphorylation
following agonist stimulation. This phosphorylation is
directed to serine/threonine residues in the cytoplasmic
tail and third cytoplasmic loop but rarely on tyrosine
residues. The Ser/Thr phosphorylation by GPCR kinases
(GRKs) leads to the internalization of GPCRs [10,11] and
hampers GPCR signaling [12]. GPCRs can also undergo
Tyr-phosphorylation on residues located in the cyto-
plasmic domain [13]. It has been suggested that tyrosine
phosphorylation of GPCR is required for Src recruitment
and subsequent Ser/Thr phosphorylation by GRK. In
some GPCRs, a tyrosine containing motif in the cytoplas-
mic tail has been linked to the internalization of GPCRs.
For example, cytokine-induced tyrosine phosphorylation
of CXCR4, which reduces the level of functional CXCR4
on cell surface, contributes to GRK3 and p-arrestin2-
mediated sequestration of this receptor in the cytoplasm
[14]. It remains elusive whether GPRC5A is subjected to
phosphorylation, leading to altered activities in lung cells.
EGEFR and its family members are the major groups of
receptor tyrosine kinases that are aberrantly activated in
many NSCLCs [15]. EGFR is over-expressed in more
than 60% of NSCLC cases [16]. In addition, oncogenically-
activated mutant forms of EGFR and HER2 have been
found in lung cancer [17], and contribute to the devel-
opment of this disease [18]. Moreover, EGF and TGF-a,
ligands of EGFR, are frequently expressed in NSCLCs,
which provides an autocrine mechanism to sustain the
hyper-activation of these receptor tyrosine kinases (RTKs)
[19]. In an un-biased whole cell phospho-peptide analysis,
GPRC5A was identified as one of the tyrosine phosphory-
lated protein in HER2-overexpressing HMEC cells after
EGF or heregulin (HRG) treatment [20,21]. This suggests
a potential cross-regulation between EGFR and GPRC5A.
In this study, we showed that EGFR interacts with and
phosphorylates GPRC5A in two highly conserved double-
tyrosine modules (Y317/Y320 and Y347/Y350) at the C-
terminal domain of GPRC5A. EGF treatment inhibited
GPRC5A-mediated repression of anchorage-independent
growth via phosphorylation of these tyrsoine sites since
the same treatment failed to do so on GPRC5A-4 F
mutant, in which tyrosine residues were replaced with
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phenylalanine (F). IHC analysis with specific antibody to
Y317/Y320-P site showed that GPRC5A in NSCLC tissues
is mostly phosphorylated, whereas GPRC5A in adjacent
tumor tissues is mostly non-phosphorylated. Thus, EGFR-
mediated tyrosine phosphorylation represents a newly
identified mechanism by which the tumor suppressive
function of GPRC5A is inactivated in lung cancer.

Results

EGFR interacts with and phosphorylates GPRC5A

To examine the relationship between EGFR and GPRC5A,
we first co-expressed EGFR or vector with myc-tagged
GPRC5A in HEK293T cells. Tyrosine phosphorylation
of GPRC5A, identified using the PY99 antibody, was
significantly increased in cells expressing EGFR. This
phosphorylation was detected at 5 minutes after EGF
treatment and reached to maximum levels in 6 hr (left
panel, Figure 1A). However, in the absence of EGFR
expression, no tyrosine-phosphorylation of GPRC5A
was detected even after 6 hr EGF treatment (right
panel, Figure 1A). Thus, the EGF-induced tyrosine
phosphorylation of GPRC5A is mediated through EGFR.
To investigate whether GPRC5A is a direct target of EGFR
tyrosine kinase, we co-expressed EGFR and myc-tagged
GPRC5A in HEK293T cells. After immunoprecipitating
EGFR, we detected the associated GPRC5A in the presence
or absence of EGF (left panel, Figure 1B), and vice versa
(left panel, Figure 1C). In addition, GPRC5A was heavily
tyrosine-phosphorylated when cells were treated with EGF
(right panel, Figure 1B and 1C); however, this effect could
be inhibited by tyrosine kinase inhibitor AG1478. Thus,
our results indicate that: (1) the interaction of EGFR with
GPRC5A is independent of EGF and the kinase activity of
EGEFR (left panel, Figure 1B); (2) activation of EGFR corre-
lates with the level of EGF-mediated tyrosine phosphoryl-
ation on GPRC5A; and (3) EGFR inhibitor suppresses
EGF-mediated GPRC5A phosphorylation.

Y317 and Y320 at the C-terminal tail of GPRC5A are
phosphorylated by EGFR

GPRC5A contains seven transmembrane regions and a
C-terminal cytoplasmic tail. When the primary sequences
of GPRC5A from difference species were aligned, we
found that there are two potential double-tyrosine
modules, including Y317/Y320 and Y347/Y350, located at
the C-terminal tail of GPRC5A. These two double-
tyrosine modules are highly conserved among all species
(Figure 2A). To determine whether the predicted four
tyrosine residues are responsible for EGF-induced tyrosine
phosphorylation of GPRC5A, we constructed a GPRC5A-
4 F mutant, in which four tyrosine residues (Y317, Y320,
Y347 and Y350 site) were replaced by phenylalanine (F),
that is unable to be phosphorylated (Figure 2B). When
EGFR was co-expressed with GPRC5A-WT (wild type),
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Figure 1 (See legend on next page.)
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Figure 1 EGFR complexes with and tyrosine phosphorylates GPRC5A. A, HEK293T cells were transfected with the plasmids encoding
myc-tagged GPRC5A plus either EGFR or empty vector. Cells were treated with EGF (100 ng/ml) for different time periods as indicated. Cell lysates
were harvest for Western blot using antibody PY99 (anti-pan-phospho-tyrosine), or anti-EGFR, or anti-myc-tag. B-C, Cells were co-transfected
and treated as indicated. Treatment groups include: C- Control; E- EGF (100 ng/ml, 5 min); E+ A- EGF + AG1478. Cell lysates were harvest for
immuno- precipitation (IP)-Western blot analysis with antibodies as indicated.

K~
A C &
EGFR+GPRCSAWT  CFcg O
The C-terminal tail of GPRC5A : &
317 320 347 350 EGF: 0 5 10 60 3h 6h

Human: DTLYAPYSTHF lSPYKDYD:VK

i
Bos: ST:LYAPYSTHF ,SPYSDYE}GR 50 = . o

1 . — ’
Dog: GWJLYAPYSTHF ,SP!NDYE:GR 37 - !

] .

Rabbit: DqLYAPYSTHF ISPYNDYE):GR

S I FrTLrE

]
Elephant: NT:LYAPYSTHF ISPYNDYE:GR
]

,\X
Echinops: D\}LYAPYSTHF SPYNDYEfGR D 05?5‘\\
EGFR+GPRCSA4F g%
Mouse: D’I:LYAPYSTHF 'SPYNDYE}GR _— o
EGF_0 5 10 60 3h 6h <
Rat: DﬂLYAPYSTHF SP!NDYEGR =
Opossum: SﬂLYAPYSTHF .'SPYDDYQGR 50
GPRC5A
Chicken: E’IJLYAPYSAHF ,SPYHDYT‘GG 37 Y-P
Armadillo: DrLYAPyssHF 'SPYNGYE: R
s SEsmss
B 317 320 347 350
GPRCS5A: DTIEYAPY$THF...SP.'YKDY:EVK E EGFR
' ; i GPRC5A-
( 4F: .. IF. &
| & & 3
1 i Q O
¥317/320F 'F : © & W®
: JEE !, _— N D
2 [ v K S CRC A
] - - - =~ = 7
—g Y347/350F: i ¥ : EGE. -+ -+ v -+ -+ +
i i
< Y317F: "F:, R EGFR-Y-P L I = R
9 ' : ' ! (PY99)
. ! ! 3
E Y320F: 4 F:, ....... :: EGFR 1707 ->..-—-.-—-----|
o i ] ! i
Y347F: I B S A 5571 =
! ! { i GPRCBA-Y-P Bl —
\ Y350F: o odei b FL L (PY99) 407 bl | n
Lomoe R 357]
GPRCSA40| . s g == W o
G EGFR (myc) 35— ....
GPRCS5A.
&
Ry @ N \(5‘7, ~lrbb( *(56 R
EGF: - + - + - + - + - + - + - + F V + GPRC5A-
K &
(PY99) N o O
& g K TR
EGFR 170 *= e . . e e . EGE: - + T -+ P
s ™ EGFR-Y-P =]
GPRC5A-Y-P = - B (PY99)
(PY99) 40— i
—
35_L= GPRC5A-Y-P .
GPRC5A 407 “a .6---— (PY99)
CELLLLL

Figure 2 EGFR mainly phosphorylates the tyrosine residue Y317/Y320 of GPRC5A. A, Sequence alignment of the C-terminal tails of GPRC5A
from different species. B, The constructs of GPRC5A mutants used in this study. C,D,EF, HEK293T cells were co-transfected with plasmids encoding
EGFR or vector plus either GPRC5A-wild type (WT) or Y317/320 F or Y347/350 F or 4 F mutants as indicated. Cells were treated with or without
EGF as indicated. Cell lysates were harvested for Western blots using the antibodies as indicated. G, HEK293T cells were co-transfected with the
plasmids containing EGFR plus GPRC5A-WT or a series of GPRC5A mutants as indicated. Cellular proteins were analyzed by Western blot using
antibodies as indicated.
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we found that EGF induced tyrosine-phosphorylation of
GPRC5A-WT (Figure 2C). However, when EGFR was
co-expressed with 4 F mutant, no tyrosine- phosphoryl-
ation was induced by EGFR in GPRC5A-4 F (Figure 2D).
Thus, it is likely that Y317, Y320, Y347 and Y350 are
the major residues involved in the phosphorylation of
GPRC5A mediated by EGFR.

To further determine which double-tyrosine modules
were the major residues responsible for GPRC5A phos-
phorylation, we generated two additional GPRC5A
mutants, Y317/320 F, and Y347/350 F (Figure 2B). When
these two mutants were co-expressed with EGFR in
HEK293T cells, we found that both Y317/320 F and
Y347/Y350F were tyrosine-phosphorylated. However, the
tyrosine-phosphorylation of Y317F/Y320F mutant is re-
duced more than that of Y347/350 F mutant (Figure 2E).
The tyrosine phosphorylation was specifically mediated by
EGEFR since no tyrosine-phosphorylation was induced in
absence of EGFR (Figure 2 F). These results suggest that
Y317/Y320 are the preferred residues responsible for
EGFR-mediated phosphorylation. In addition, we generated
four individual tyrosine mutants (Y317F, Y320F, Y347F and
Y350F) of GPRC5A (Figure 2B) and co-expressed them
with EGFR in HEK293T cells. We found that Y317F and
Y320F mutants exhibited lower tyrosine phosphorylation
than that of Y347F and Y350F mutants (Figure 2G). This
result is consistent with the observation that the Y317F/
Y320F mutant had lower phosphorylation than that of
the Y347F/Y350F (Figure 2E). Taken together, these results
indicate that Y317 and Y320 are the preferred residues
responsible for EGFR-mediated GPRC5A phosphorylation.

Endogenous EGFR phosphorylates endogenous GPRC5A
in NSCLCs
Next, we investigated whether endogenous EGFR can
phosphorylate endogenous GPRC5A in NSCLC cell lines.
We examined 11 NSCLC cell lines for expression of
GPRC5A, EGFR and HER2, and found that 4 out of 11
NSCLC cell lines (H292G, Calu-1, H322, and H226b)
expressed elevated levels of GPRC5A (Figure 3A). Not-
ably, all of these four cell lines also have relatively high
levels of EGFR. This suggests that the endogenous RTKs
of EGFR family members are available in these cells for
providing potential tyrosine-phosphorylation on GPRC5A.
After serum starvation for 24 hours, we treated H292G
cells with EGF (100 ng/ml) in serum-free medium, then
immunoprecipitated endogenous GPRC5A for immuno-
bloting. The IP-Western assay showed that GPRC5A
was indeed tyrosine-phosphorylated after EGF exposure
(Figure 3B), indicating that endogenous EGER can interact
and phosphorylate GPRC5A.

To expand the characterization of the tyrosine-phosphor-
ylation of GPRC5A, we developed GPRC5A-WT (5A) and
GPRC5A-4 F (4 F) stable transfectants in H1792. NSCLC
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cell line H1792 was selected for two reasons: 1) H1792 cells
express a low level of endogenous GPRC5A (Figure 3A),
thus expression of exogenous GPRC5A-WT and GPRC5A-
4 F could be detected and evaluated; and 2) this cell line
expresses endogenous EGFR (Figure 3A), thus EGFR
activity can be induced by EGF. To determine the effects
of endogenous EGFR on GPRC5A phosphorylation, we
treated GPRC5A-WT stable H1792 transfectants (H1792-
GPRC5A) with medium (C), EGF (E), or EGF plus pretreat-
ment with EGFR inhibitor AG1478 (30 ng/ml for 6 hours)
(E+ A). We found that, GPRC5A was tyrosine-phosphory-
lated after EGF treatment, and this phosphorylation was
blocked when cells were treated with AG1478 (Figure 3C).

Next, we determined whether endogenous EGEFR-
mediated tyrosine phosphorylation occurs at the four
identified tyrosine residues in GPRC5A. Using the H1792
stably-expressing cell lines (V, 5A, and 4 F) in the presence
or absence of EGF (100 ng/ml, 5 minute treatment), we
found that the tyrosine phosphorylation of GPRC5A-WT
(5A) was significantly induced by EGF in H1792-GPRC5A
(5A) cells (Figure 3D). However, no tyrosine phosphoryl-
ation was found in H1792 cells expressing vector (V) or
GPRC5A-4 F (4F). The lack of phosphorylation in
H1792-4 F cells was not due to the lack of GPRC5A-4 F
expression, as similar levels of GPRC5A were immu-
noprecipitated from H1792-5A and H1792-4 F cells.
Together, these results indicate that endogenous EGFR
can phosphorylate GPRC5A at four identified tyrosine
residues (Y317, Y320, Y347 and Y350) in response to
EGF stimulation in the lung cancer H1792 cells.

Tyrosine phosphorylation inhibits the tumor suppressive
activities of GPRC5A
To determine the biological effects of tyrosine phosphor-
ylation on GPRC5A, we examined cell growth, migration,
and anchorage-independent growth in H1792 cells stably
expressing GPRC5A-WT (H1792-5A) or GPRC5A-4 F
(H1792-4 F). We found no significant difference in cell
proliferation among H1792-5A and H1792-4 F cells both
before and after EGF treatment (Figure 4A). Noticeably,
EGF treatment significantly increased the number of
migrated H1792-V cells compared to the untreated cells
(Figure 4B). We found that EGFR-mediated cell migration
was inhibited by overexpression of GPRC5A-WT and 4 F
(Figure 4B). However, the differences between the number
of migratory cells in EGF-treated GPRC5A-WT and -4 F
stable transfectants in H1792 cells were not statistically
significant (P >.005; two-sided z test) (Figure 4B). This
result suggests that EGF-mediated tyrosine phosphoryl-
ation of GPRC5A does not affect the suppressive effect
of GPRC5A on cell migration.

We then examined the anchorage-independent growth
in these cells before or after EGF stimulation. We found
that expression of either GPRC5A-WT or GPRC5A-4 F
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Figure 3 Endogenous EGFR in NSCLC cells induces tyrosine phosphorylation on GPRC5A. A, Western blot of eleven NSCLC cell lines was
performed with anti-GPRC5A, anti-EGFR, anti-HER-2, and anti-actin, as indicated. B, H292G Cells were serum-starved for 24 hours, then treated with
or without EGF (100 ng/ml) for 5 min. Cell lysates were harvested for IP-Western using either anti-GPRC5A or normal IgG. Western blot was performed
using either PY99 antibody or anti-GPRC5A as indicated. C. H1792-GPRC5A, D, H1792-V, H1792-5A, H1792-4 F stable transfectants were serum-starved
for 24 hours and then treated with EGF for 5 minutes or pretreated with AG1478 (30 ng/ml) for 6 hours as indicated. Total cellular proteins were
analyzed by IP-Western using the antibodies as indicated.

inhibited colony formation in H1792 cells compared with
that of vector control in absence of EGF treatment (top
panel, Figure 4C). EGF treatment significantly increased
the colony formation both H1792-V and H1792-5A cells,
however no EGF-effect was found in H1792-4 F cells
(bottom panel, Figure 4C). This indicates that EGF-induced
tyrosine phosphorylation inhibited the suppressive effect
of GPRC5A but not the 4 F mutant on anchorage-
independent growth. Taken together, these results demon-
strate that EGF-induced tyrosine phosphorylation on
GPRC5A inactivates the suppressive activities of GPRC5A
on anchorage-independent growth in H1792 cells.

GPRC5A exists as a non-phosphorylated form in normal
lung tissue and tyrosine-phosphorylated form in NSCLC
tissues

To determine the phosphorylated status of endogenous
GPRC5A in normal lung and lung tumor tissues in vivo, we

developed specific antibody against the double-tyrosine
phosphorylation (Y317/Y320) sites of GPRC5A. Using co-
transfection and immunoblot assay, we found that this
antibody detected EGFR-mediated tyrosine phosphoryl-
ation of GPRC5A and Y347/350-F, but not Y317/320-F
and 4 F (Figure 5A). Thus, the antibody is specifically for
Y317/Y320 phosphorylated sites of GPRC5A (Figure 5A).

Next, we examined, via this antibody, the phosphoryl-
ation status of GPRC5A in H292G and Calu-1 cells which
express endogenous GPRC5A. Immunoblot shows that
EGF treatment (100 ng/ml for 4 hours) increased the
level of the phosphorylated GPRC5A (Figure 5B); Taken
together, these results indicate that EGF treatment also
increased phosphorylation of Y317/Y320 sites in endogen-
ous GPRC5A.

To determine the phosphorylation status of GPRC5A
in normal lung and lung tumor tissues, we performed
immunohistochemical (IHC) staining analysis by using
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Figure 4 GPRC5A-mediated inhibition of cell invasion and anchorage-independent growth of NSCLCs was repressed by tyrosine
phosphorylation. A, The proliferation rate of H1792 cells stable transfected with vector, GPRC5A-WT, or -4 F were grown in 96-well plates in
growth medium with 10% FBS with or without 100 ng/ml EGF for 24, 48, 72, 96 and 120 hours. The number of cells in each well was measured
by the MTT assay. B, The migration of H1792 stable transfectants as indicated was assayed. The photomicrographs of cells on the bottom side of
the filter (migrated cells) (left) and the mean (and 95% confidence intervals) number of migrated cells was shown in the bar graph (right). The
differences between the number of cells in EGF-treated GPRC5A-WT and -4 F stable transfectants in H1792 cells were not statistically significant
(P >0.05; two-sided z test). C, anchorage-independent growth was assessed in GPRC5A-WT and -4 F transfected H1792 cells. The cells were resuspended
in agarose/Matrigel and analyzed for colony formation over 2 weeks. The photomicrography of colonies (left), and the number of colonies (bar on right)
were shown. The differences between the number of colonies in EGF-treated GPRC5A-WT and 4 F mutant H1792 cells were statistically significant

(P <0.01; two-sided z test).
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were pretreated with DMEM containing 0% overnight, then treated with or without EGF (50 ng/ml) for 3 hour as indicated. Cell lysates were
harvested for Immunoblot using anti-EGFR-P (Y1068), anti-EGFR, anti-tyrosine-phosphorylated GPRC5A or anti-GPRC5A as indicated. The representative
photomicrographs of IHC staining were shown for normal lung and NSCLC tissues with ant-GPRC5A (n = 129) (C) and anti-tyrosine-phosphorylated
GPRC5A (n= 150) (E). Negative (-), positive (+), (+4), (+++) staining samples, and the IHC score (IS), were as indicated. Dot-plots depicting GPRC5A

(D) and the tyrosine-phosphorylated (F) expression in IHC staining were shown for adjacent normal lung (AN) and NSCLC samples. The differences
between normal lung and NSCLCs were statistically significant as indicated as *(P <0.01; two-sided z test).
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antibodies to either GPRC5A or tyrosine-phosphorylated-
GPRC5A (Y317/Y320-P) in 129 or 150 paired adjacent
normal lung tissues and NSCLC tissues, respectively.
The results of IHC staining show that total GPRC5A
expression was significantly higher in adjacent normal
lung tissues than NSCLC ones (Figure 5C-D), which is
consistent with the previous report ([2,5]), supporting
GPRC5A is a lung tumor suppressor. Interestingly, the
tyrosine-phosphorylated GPRC5A, although the total
level was low, was significantly higher in NSCLC tissues
than normal lung tissues (Figure 5E-F). These results
suggest that, in normal lung tissue, GPRC5A was non-
phosphorylated; whereas in lung tumor tissues, GPRC5A
became highly tyrosine-phosphorylated, supporting that
GPRC5A in lung tumor tissues are the function-defective
ones.

Discussion

In this study, we showed that EGFR interacts with and
phosphorylates GPRC5A, leading to inactivation of the
tumor suppressive function of GPRC5A in lung cancer
cells. In this study, EGFR and GPRC5A were found to
form a complex together. It remains unclear whether
this interaction is directly or indirectly and whether
other adaptor molecules, such as Grb-2, are involved in
the interaction of EGFR-GPRC5A complex. Further
investigation will reveal detailed mechanistic insight for
this interaction.

Using systematic site-directed mutagenesis analysis, we
identified that Y317, Y320, Y347 and Y350 are involved in
the tyrosine phosphorylation of GPRC5A. In a whole-cell
proteomic phospho-peptide analysis, Y317, Y320, Y347
and Y350 of GPRC5A were found to be phosphorylated in
cells overexpressing EGFR and Src by mass Spectrometry
[22,23]. These results support our finding that the two
double-tyrosine modules in GPRC5A are the major
residues responsible for tyrosine phosphorylation. Interest-
ingly, Y317F exhibited much reduced tyrosine phosphoryl-
ation than Y320F. One possible explanation is that Y317 is
a primary/initial site for tyrosine phosphorylation, whereas
Y320 is phosphorylated subsequently. This interesting
phenomenon is analogous to GSK-33-mediated [3-catenin
phosphorylation, in which CK1 induced-phosphorylation
on Ser45 of B-catenin facilitates/primes GSK-33-mediated
sequential phosphorylation on Thr41, Ser37, and Ser33.
This reverse order of phosphorylation results in the
degradation of phosphorylated B-catenin by ubiquitin—
proteasome system [24]. It is likely that phosphorylation
of one residue leads to conformation change of the
protein, which in turn results in exposure of other
target residue for subsequent phosphorylation. In addition,
different phosphorylation motif may have different bio-
chemical or biological changes. For example, we previously
demonstrated that two phosphorylation motifs on Snail
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regulate two different functional properties of Snail, one
controls the subcellular localization whereas the other
controls proteins ubiquitination and degradation of snail
[25]. In this study, we found that the major phosphoryl-
ation sites are in the first double-tyrosine module (Y317
and Y320) in the C-terminal domain of GPRC5A. It is
unclear whether other tyrosine kinases are responsible
for the phosphorylation of the second double-tyrosine
module (Y347 and Y350) of GPRC5A.

Several reports suggest that GPRC5A could be tyrosine
phosphorylated in the C-terminal domain, and different
stimuli in different cell lines or tissues may induce dif-
ferent tyrosine phosphorylation patterns. For example,
HRG-treated 184A1 HMECs cells, which overexpress
HER-230-fold, showed 332 tyrosine-phosphorylation sites
in 175 proteins. Interestingly, Y347 on GPRC5A (RAI3)
was among these peptides [23]. These discrepancies
between theirs and our studies may be due to different
tissues or experiment conditions. It is also possible that
Y347/Y350 might be preferentially phosphorylated by
other tyrosine kinases in different cellular context.

The biological activities of GPRC5A appeared to be
regulated differently by tyrosine phosphorylation. First,
GPRC5A did not affect cell proliferation, regardless of
tyrosine phosphorylation status. Second, GPRC5A-
mediated inhibition of cell migration is independent of
tyrosine phosphorylation. These results are consistent
with Kumar’s finding, in which tyrosine phosphorylation
of GPRC5A showed no effect on cell proliferation and
migration ability [26]. And third, tyrosine phosphorylation
did decrease or abolish GPRC5A-mediated inhibition
on EGF-enhanced anchorage-independent growth of
H1792 cells. Taken together, these observations strongly
support out hypothesis, that EGFR-mediated tyrosine
phosphorylation of GPRC5A inactivates some of the tumor
suppressor activities of GPRC5A. Thus, targeting EGFR by
RTK inhibitors will restore the tumor suppressor functions
of GPRC5A in lung cancer cells.

Importantly, IHC analysis showed that GPRC5A in
adjacent normal lung tissues is non-tyrosine- phosphor-
ylated, whereas it is tyrosine-phosphorylated in NSCLCs.
This observation strongly supports the model that tyro-
sine phosphorylation inhibited the tumor suppressive
activities of GPRC5A. Because GPRC5A in H292G cells
was tyrosine-phosphorylated either with or without
EGF in vitro, we assume that GPRC5A could be either
tyrosine-phosphorylated by EGFR or other receptor
tyrosine kinases (RTKs). Thus, we proposed that the
tyrosine-phosphorylated GPRC5A could be used as a
prognostic marker for tumor progression. Thus, targeting
receptor tyrosine kinases will be an effective in preventing
and treating lung cancer by restoring the tumor suppres-
sor function of GPRC5A. Our results provide a novel
mechanism in supporting this strategy.
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Materials and methods

Cell culture and reagents

Human NSCLC cell lines (H460, A549, H226, H157, Calu-
1, H226B, H322, H292G, H1792, H358 and Sk-Mes-1)
were obtained from Adi Gazdar and John Minna (UT
Southwestern, Dallas, TX). Cell culture was performed
as described previously [2]. EGF was obtained from
R&D system (Minneapolis, MN, USA). AG1478 was
purchased from Merck Millipore (Billerica, MA, USA).
EGFR mouse mAb (#2256, IP), EGFR Rabbit mAb
(#4267), were from Cell Signaling Technology. Antibody
to P-Tyr (PY99) was from Santa Cruz Biotechnology.
Antibodies against myc and actin were from Sigma-
Aldrich. HRP-conjugated secondary antibodies were from
eBioScience (San Diego, CA). Rabbit polyclonal antibody
to human GPRC5A was as described previously [2]. Mouse
monoclonal antibody (clone 1 L23) to the C-terminus of
GPRC5A (PYKDYEVKKE) was developed and purified
in Abmart (Shanghai, China) [27]. Polyclonal rabbit anti-
GPRC5A-Y317/Y320-P antibody was developed against
DTLYpAPYpSTH from Abmart (Shanghai, China).

Plasmids and transfection assay

HEK293T cells were transfected using Lipofectamine
2000 transfection reagent (Invitrogen, Grand Island, NY).
Transfected plasmids include: pcDNA-EGFR, pcDNA-
GPRC5A-myc, and GPRC5A mutants. Cells were starved
in serum-free medium for 24 hours, then treated with
EGF (100 ng/ml) for various time periods as indicated.

Construction of wild-type and mutant GPRC5A plasmids
Plasmid pcDNA3.1 (+)-GPRC5A-Myc was as described
[2]. GPRC5A mutants were constructed with the following
primers: Primer Y317/320 F-F: (5'-GGT TTT GAA GAG
ACC GGT GAC ACG CTC TTT GCC CCC TTT TCC
ACA CAT TTT C-3") and primer Y317/320 F-R (5'-GAA
AAT GTG TGG AAA AGG GGG CAA AGA GCG TGT
CAC CGG TCT CTT CAA AAC C-3’). Primer Y347/
350 F-F: (5'-CCA CGC TTG GCC GAG CCC TTT TAA
AGA CTT TGA AGT AAA GAA AGA GG-3’) and pri-
mer Y347/350 F-R: (5'-CCT CTT TCT TTA CTT CAA
AGT CTT TAA AAG GGC TCG GCC AAG CGT
GG-3’). 4 F mutant (GPRC5A-Y317/320/347/350 F-myc)
of GPRC5A was generated by ligation of GPRC5A-Y317/
320 F-myc and GPRC5A-Y347/350 F-myc after digestion
with Kpnl and EcoRI separately. All sequences were
verified by DNA sequencing.

Transient and stable transfection of cells

Transfection of H1792 cells with plasmids was performed
by electrophoresis: Briefly, the cells were harvested, and
about 3 x 10° cells were mixed with 100 pl of electro-
poration transfection solution (Solution V, Dharmacon,
Lafayette, CO), plus plasmids, and the mixtures were
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transferred to electroporation cuvettes and subjected to
electroporation (Amaxa Biosystems, Cologne, Germany) ac-
cording to the manufacturer’s pro-grams and instructions.

Immunoprecipitation (IP) and western blotting
IP was performed with 2 pg of antibodies against myc or
EGEFR or normal IgG (N IgG) (as a negative control) in
1.0 mg whole cell lysate. Immunoblot [25,28] and cell
fractionation [29] was performed as described.

Cell migration assay

The trans-well cell migration system consisted of cell
culture inserts with an 8.0 pM pore size in 24-well plate
(BD BioCoat #354578, San Jose, CA). Cells were resus-
pended with fetal bovine serum (FBS)-free DMEM, and
seeded onto the insert (4 x 10* cells). DMEM (10% FBS)
with or without EGF (100 ng/ml) was loaded into the
lower chamber and incubated overnight. Migrated cells,
which attached to the lower side of the filter were fixed
with 96% ethanol for 30 minutes and stained with 1.5%
crystal violet. Migrated cells were counted in five differ-
ent microscopic fields by 10 x magnifications using a
Nikon fluorescence microscope.

Anchorage-independent colony formation in soft

agar assay

Soft-agarose assay was performed as described previously
[2]. Aggregates of 50 or more cells were considered to
be a colony. Colonies were counted in four different
fields under a microscope at 4x magnification and
photographed. The means and 95% confidence intervals
(CIs) of the number of colonies in four microscopic
fields were calculated. Two independent experiments in
triplicates were performed.

Tissue samples

We obtained archival, formalin-fixed and paraffin-
embedded (FFPE) material from surgically resected
lung cancer specimens containing tumor and paired
adjacent non-malignant epithelium tissue from the
Shanghai Chest Hospital from 2008 to 2013 (Shanghai,
CHINA). The adjacent non-malignant epithelia were
collected at sites at least 2 cm away from the edge of
tumor mass, with best efforts of avoiding contamin-
ation by the tumor cells. In total, 150 primary NSCLC
patients without prior radiotherapy or chemotherapy
were enrolled in this study. All NSCLC samples were
confirmed histologically, and tumor samples were
rechecked to ensure that tumor tissue was present in
more than 80% of the specimens.

Immunohistochemistry
The samples of lung tumor and adjacent normal lung
tissues were fixed with formalin buffer and embedded in
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paraffin. Immunohistochemical (IHC) staining was per-
formed on 3-pm sections of paraffin-embedded specimens
with the use of mouse monoclonal antibody (clone
1 L23) to the C-terminus of GPRC5A (PYKDYEVKKE)
or rabbit anti-GPRC5A-Y317/Y320-P. These antibodies
were developed and purified in Abmart (Shanghai, China).
The process of IHC was performed as previously de-
scribed [27].

Statistical analyses

All analyses were performed in triplicates, and the sig-
nificance of differences between groups was calculated
using the Student’s t test. P values <0.05 were considered
to be statistically significant.
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