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Abstract
Background: Although the association between exposure to particulate matter and health is well
established, there remains uncertainty as to whether certain chemical components are more
harmful than others. We explored whether the association between cause-specific hospital
admissions and PM2.5 was modified by PM2.5 chemical composition.

Methods: We estimated the association between daily PM2.5 and emergency hospital admissions
for cardiac causes (CVD), myocardial infarction (MI), congestive heart failure (CHF), respiratory
disease, and diabetes in 26 US communities, for the years 2000-2003. Using meta-regression, we
examined how this association was modified by season- and community-specific PM2.5 composition,
controlling for seasonal temperature as a surrogate for ventilation.

Results: For a 10 μg/m3 increase in 2-day averaged PM2.5 concentration we found an increase of
1.89% (95% CI: 1.34- 2.45) in CVD, 2.25% (95% CI: 1.10- 3.42) in MI, 1.85% (95% CI: 1.19- 2.51) in
CHF, 2.74% (95% CI: 1.30- 4.2) in diabetes, and 2.07% (95% CI: 1.20- 2.95) in respiratory
admissions. The association between PM2.5 and CVD admissions was significantly modified when
the mass was high in Br, Cr, Ni, and Na+, while mass high in As, Cr, Mn, OC, Ni, and Na+ modified
MI, and mass high in As, OC, and SO4

2- modified diabetes admissions. For these species, an
interquartile range increase in their relative proportion was associated with a 1-2% additional
increase in daily admissions per 10 μg/m3 increase in mass.

Conclusions: We found that PM2.5 mass higher in Ni, As, and Cr, as well as Br and OC significantly
increased its effect on hospital admissions. This result suggests that particles from industrial
combustion sources and traffic may, on average, have greater toxicity.

Background
Many studies have shown that ambient particulate air pol-
lution (PM), generally measured as particles with aerody-

namic diameter less then 10 micrometers (PM10), is
associated with increased risk of hospital admissions for
broadly defined cardiovascular or respiratory causes [1-6].

Published: 21 December 2009

Environmental Health 2009, 8:58 doi:10.1186/1476-069X-8-58

Received: 6 July 2009
Accepted: 21 December 2009

This article is available from: http://www.ehjournal.net/content/8/1/58

© 2009 Zanobetti et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 12
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20025755
http://www.ehjournal.net/content/8/1/58
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Environmental Health 2009, 8:58 http://www.ehjournal.net/content/8/1/58
Similar relationships have been reported in locations
reflecting a wide range of particle composition, and con-
centrations of gaseous co-pollutants [7-11].

Diabetics are more susceptible to particles and previous
panel studies and time series analyses have shown this
[12-14].

While previous studies have primarily used ambient PM10
as an exposure metric, PM2.5 (particles with aerodynamic
diameter less then 2.5 micrometers) have become a
greater health and regulatory concern due to epidemio-
logic studies suggesting that PM2.5 might have greater tox-
icity than larger particles [15,16].

Nevertheless, as the US Environmental Protection Agency
(US EPA) did not begin monitoring PM2.5 concentrations
until 1999, the literature on the association between
PM2.5 and mortality [16-21] is relatively sparse. There
have been even fewer studies examining the association of
PM2.5 with hospital admissions [22-25].

Fine particles consist of a large number of compounds
and their composition varies spatially and temporally. Its
components can be associated with specific sources, such
as elemental carbon with traffic, nickel with oil burning
and selenium with coal burning power plants. While the
evidence for the health effects of fine particles has been
growing, there is uncertainty as to which components of
these particles are most harmful. Moreover, a better
understanding of the relative toxicity of particles with dif-
fering chemical composition will in turn lead to more tar-
geted emission control strategies and regulations.

One main limitation in examining PM2.5 components is
the irregularity of the PM2.5 speciation data available from
the EPA Speciation Trends Network (STN) monitoring
sites. The STN was established in 2000 and monitors only
report data for every third or sixth day, thus limiting the
statistical power necessary to detect associations between
individual species and health events. The lack of daily
sampling also prevents the examination of time lags and
effect of multi-day exposures.

Consequently, there have been few studies to date exam-
ining the health effects associated with PM2.5 compo-
nents. One study [26] examined the associations between
19 PM2.5 components and daily mortality in six California
counties, and found that PM2.5 mass and several constitu-
ents (EC, OC, NO3

-, Fe, K, Ti) were associated especially
with cardiovascular deaths at various lags. Another study
[27] used the elemental composition of PM2.5 to investi-
gate the effect of traffic, residual oil and power plant emis-
sions on daily mortality in six US cities. Their results
indicate that combustion particles in the fine particles

from mobile and coal combustion sources were associ-
ated with increased mortality.

The most recent study [28] examined the differential
effects of PM2.5 species on mortality in 25 U.S. communi-
ties. This study differs from the two previous studies, in
that rather than directly using the observed particle com-
ponent concentrations in their main model, they over-
came the issue of limited statistical power and inability to
examine more than one day exposure due to poor tempo-
ral coverage of data reported from the STN sites by using
a hierarchical approach. The authors first determined the
association between PM2.5 mass and mortality, and then
in a second stage of the analysis, a meta-regression was
used to examine how the pooled association was modi-
fied by community and season particle composition. They
found evidence that Ni (predominantly from oil combus-
tion) as well as Sulfate and As (from coal burning power
plants) increased the mortality risk associated with PM2.5.

In this study we applied the method of Franklin and co-
authors to examine the association between cause-specific
hospital admissions and PM2.5 in 26 U.S. communities,
and explore whether PM2.5 chemical composition played
a role in its toxicity.

Methods
Air Pollution and Meteorological Data
The PM2.5 mass and species concentration data were
obtained online from the EPA Technology Transfer Net-
work Air Quality System [29].

We selected the same cities studied by Franklin et al [30],
but also included Chicago, IL, as we had MEDICARE and
sufficient speciation data between 2000 and 2003. These
cities were originally chosen due to availability of daily
PM2.5 data. For most of these cities, the metropolitan
county encompassed the city and much of its suburbs, but
we used multiple counties for Boston (Suffolk, Norfolk,
and Middlesex), and Minneapolis-St. Paul (Ramsey and
Hennepin). Henceforth we refer to the analyzed geo-
graphical areas as communities.

The STN monitors operate on a 24 hour schedule and col-
lect particles on Teflon, nylon or quartz filters which are
analyzed for trace elements using X-ray fluorescence, for
ions using ion chromatography and for organic and ele-
mental carbon using thermal-optical analysis.

The EPA maintains multiple PM2.5 mass sites, but typically
only one PM2.5 speciation site within a county. In order to
use all the available PM2.5 monitoring sites, the 24-hour
integrated mass concentrations were averaged over the
county using a method previously described [31]. Briefly,
we computed local daily mean concentrations using an
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algorithm that accounts for the different monitor-specific
means and variances. However, before averaging, any
monitor that was not well correlated with the others (r <
0.8 for two or more monitor pairs within a community)
was excluded as it likely measured a local pollution source
and would not represent the general population exposure
over the entire county. The number of monitors across the
counties varied between 1 and 4.

Based on results from previous epidemiological studies
[26-33] we focused on the species with different sources
and toxicological background. In particular we focus on
the paper of Franklin et al [30] who also screened the STN
data for inconsistencies based on the percentage of data
below the minimum detection limit and with quality con-
trol flags. We therefore examined the following species:
Arsenic (As), Aluminium (Al), Bromine (Br), Chromium
(Cr), Iron (Fe), Lead (Pb), Manganese (Mn), Nickel (Ni),
Potassium (K), Silicon (Si), Vanadium (V), Zinc (Zn),
ions nitrate (NO3

-), Sulfate (SO4
2-), ammonium (NH4

+),
sodium (Na+), elemental carbon (EC) and organic carbon
(OC).

For all available observations we computed the ratio
between each species and PM2.5 mass and then took aver-
ages by season across all years to obtain season- and com-
munity-specific long-term mean seasonal concentration
ratios.

Meteorological data including daily mean temperature
and dew point temperature from the predominant
weather station in each community were acquired from
the National Climatic Data Center [34].

Health Data
We extracted data on emergency hospital admissions from
the Health Care Financing Administration (MEDICARE)
billing records for the years 2000-2003. The MEDICARE
system provides hospital coverage for all US citizens aged
65 and over.

Based on evidence from previous studies we chose to
examine causes of admissions which have been associated
with particulate matter and added diabetes as it is related
to CVD complications. We defined cases as persons
admitted from the emergency room with a primary dis-
charge diagnosis of: myocardial infarction (MI, Interna-
tional Classification of Disease ninth revision (ICD-9):
410), diabetes (ICD-9: 250), congestive heart failure
(CHF, ICD-9:428), cardiac disease (CVD, ICD-9:390-
429), and all respiratory disease (RESP, ICD-9:460-519).

Statistical Methods
We applied a time series analysis using Poisson regression
to examine the association between daily counts of cause-
specific admissions and daily PM2.5 mass concentrations

in each community. In each community, the analysis was
stratified by season, since the composition of particles var-
ies seasonally, due in part to different source contribu-
tions at different times of the year. In each community, we
controlled for season and long term trend with a natural
cubic regression spline with 1.5 degrees of freedom (d.f.)
for each season and year (corresponding to six d.f. per
year); day of the week using indicator variables; and three-
day averaged temperature and dew point temperature
with a natural cubic spline with three d.f..

The effect estimates were expressed as a percent increase in
hospital admission with a 10 μg/m3 increase in PM2.5
mass concentration averaged over the day before and the
day of admission.

In the second stage of the analysis, we combined the Pois-
son regression effect estimates using random effects meta-
analysis [35] to obtain an overall effect across all the com-
munities. The season and community specific long-term
mean seasonal concentration ratios, which reflect particle
composition and thus the relative contribution of differ-
ent sources to the PM2.5 mass, were then used in a meta-
regression to quantify to what extent the association
between PM2.5 mass and admissions was modified by par-
ticle composition. This involved regressing the commu-
nity and season-specific Poisson estimates (four for each
community for a total of 104 coefficients) against the
community and season-specific mean concentration
ratios; we first included one element at the time and then
we included those species that were significant effect mod-
ifiers in that first stage in a multivariate model. In the
meta-regression, the variance was composed of the sum of
estimated variance from the first stage, and a random var-
iance-covariance matrix component reflecting heteroge-
neity over and above what can be explained by the
modifier variables, as previously described by Franklin et
al [28] and Zanobetti et al [36].

Franklin et al [30] also found that the association between
PM2.5 mass and mortality was modified by the seasonal
average temperature and used it as a surrogate to explain
ventilation of ambient air to the indoor environment
[37]. They showed an inverted U-shape relationship with
the PM2.5 - mortality effect estimates and temperature
indicating that at extremes of temperature, when windows
and doors are closed resulting in reduced ventilation, the
effect of ambient PM2.5 on mortality was smaller than at
moderate temperatures. We assumed that this phenome-
non held true for hospital admissions and thus the meta-
regression for each outcome included a linear and quad-
ratic term to control for mean temperature.

We used the I2 statistic to assess the proportion of total
variation in effect estimates that was due to between-com-
munity heterogeneity [38]. The I2 statistic, I2 = [Q/(k - 1)]
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- 1/[Q/(k - 1)] where k is the number of communities, is a
generalization of the Χ2 or Q test for heterogeneity and
expresses the proportion of variance explained. When Q/
(k - 1) is below 1 there is no heterogeneous variability in
the estimates.

Finally, as there is evidence that socioeconomic status
(SES) plays a role in the health effects of particles (Finkel-
stein 2003; Levy 2000), we examined community-specific
parameters including: median household income, percent
of population below poverty line, percent of adult popu-
lation having graduated high school, and percent of all
households having the head of the household 65 years of
age or older and below poverty level in 1999, obtained
from the US Census Bureau [39]. The community-specific
prevalence of central air conditioning (AC), obtained
from the American Housing Survey [40], was also exam-
ined to address the potential for any residual heterogene-
ity associated with ventilation/particle penetration not
sufficiently accounted for with the quadratic term for sea-
sonally averaged temperature. Each parameter was
included separately in the meta-regression along with
temperature and each species proportion. Although SES

parameters and central AC prevalence did not vary season-
ally, both were included in the seasonal meta-regression.

We used SAS 9.1 [41] for data management, and R 2.7.2
[42] for regression modelling.

Results
Table 1 shows the mean number and standard deviation
of daily hospital admissions in each community by cause,
together with the distribution of the 2-day moving aver-
age of PM2.5. Over all 26 communities we examined
685,716 CVD, 121,652 MI, 238,587 CHF, 46,192 diabe-
tes, and 261,449 respiratory related admissions.

When looking across all seasons (Table 1), El Paso, TX,
Minneapolis, MN, and Seattle, WA, had the lowest PM2.5
concentrations, while Riverside, Bakersfield, and Los
Angeles, CA had the highest concentrations. The lowest
mean concentration of PM2.5 mass, when looking by sea-
son (not shown), was observed in Sacramento in spring
(6.1 μg/m3), well below the National Ambient Air Quality
Standard (NAAQS) of 15 μg/m3, while the highest spring-
time concentration was in Riverside (24 μg/m3). The high-

Table 1: Community specific mean and standard deviation for the analyzed causes of hospital admissions for citizen 65 years and older 
during the years 2000-2003, and for PM2.5 averaged over two days.

CHF CVD MI Diabetes Respiratory PM2.5

City mean std mean std mean std mean std mean std mean std

Akron, OH 4.0 2.2 11.4 3.9 1.9 1.4 0.6 0.7 8.2 3.6 16.2 7.5
Bakersfield, CA 1.1 1.0 3.0 1.7 0.6 0.8 0.2 0.5 1.2 1.1 21.0 17.1
Boston, MA 13.2 4.1 36.3 7.5 6.2 2.6 2.1 1.5 13.9 4.6 13.4 5.9
Chicago, IL 29.2 7.0 81.2 14.0 13.7 3.9 6.0 2.7 27.6 7.1 16.1 7.4
Cleveland, OH 10.0 3.6 27.6 6.5 4.4 2.1 1.6 1.3 9.9 3.8 16.9 8.0
Columbus, OH 4.4 2.3 12.1 3.9 1.9 1.4 0.6 0.8 4.6 2.4 16.6 7.5
Dallas, TX 6.0 2.7 17.1 4.9 3.2 1.8 1.2 1.1 6.5 3.0 12.8 5.6
Dayton, OH 3.1 1.8 8.6 3.1 1.4 1.2 0.5 0.7 4.0 2.2 16.2 7.5
Detroit, MI 14.2 4.3 42.4 8.1 7.4 2.8 3.0 1.7 13.8 4.4 16.2 8.1
El Paso, TX 2.7 1.8 8.7 3.4 1.3 1.2 1.3 1.2 6.5 3.5 10.2 4.8
Erie, PA 1.3 1.2 4.0 2.1 0.7 0.9 0.2 0.4 1.2 1.1 13.3 7.2
Fresno, CA 2.3 1.6 7.0 2.8 1.5 1.2 0.5 0.7 2.1 1.6 20.0 15.6
Harrisburg, PA 1.2 1.2 3.7 2.0 0.8 0.9 0.2 0.4 1.0 1.0 15.6 8.3
Houston, TX 8.8 3.4 23.9 6.3 3.9 2.1 1.9 1.5 9.0 3.7 12.8 5.2
Kansas City, MO 2.2 1.5 6.5 2.8 1.2 1.1 0.3 0.6 2.5 1.7 12.7 5.7
Los Angeles, CA 12.5 4.2 40.5 8.0 7.6 2.9 3.0 1.8 16.2 4.8 20.7 11.2
Minneapolis, MN 3.8 2.0 13.2 3.9 2.8 1.7 0.7 0.8 4.7 2.3 10.6 5.9
Philadelphia, PA 10.1 3.6 24.7 6.4 3.3 1.9 2.1 1.4 9.6 3.6 15.0 8.0
Pittsburgh, PA 9.3 3.4 24.0 6.2 3.9 2.1 1.4 1.2 9.5 3.6 15.5 7.8
Port Arthutr, TX 1.4 1.2 4.2 2.1 0.7 0.8 0.3 0.6 1.5 1.3 11.4 5.5
Riverside, CA 1.6 1.2 5.5 2.4 1.2 1.1 0.3 0.6 1.9 1.4 27.4 15.5
Sacramento, CA 1.1 1.1 3.7 2.0 0.9 0.9 0.2 0.5 1.5 1.3 12.5 10.2
San Diego, CA 3.0 1.8 10.0 3.5 2.3 1.6 0.6 0.8 3.8 2.1 15.2 8.4
Seattle, WA 3.0 1.8 9.8 3.2 2.2 1.5 0.4 0.6 4.3 2.3 10.0 5.6
St. Louis, MO 6.6 2.6 18.8 4.6 3.9 2.0 1.1 1.1 7.3 3.1 15.0 6.8
Toledo, OH 2.4 1.5 6.7 2.7 1.3 1.2 0.4 0.6 2.5 1.7 14.9 7.3

Overall 6.1 2.5 17.5 4.5 3.1 1.7 1.2 1.0 6.7 2.8 15.3 8.2
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est winter values were observed in Bakersfield and Fresno,
CA, which were 29.5 and 29.9 μg/m3, respectively.

Species to PM2.5 mass proportions averaged over all com-
munities are presented in Table 2, while community and
season-specific proportions of six selected species are
illustrated in Figure 1. Notably, organic carbon was higher
in all Californian communities in all seasons compared to
other communities; while Ni was higher in Sacramento,
Philadelphia, Minneapolis, and Boston in winter and in
Harrisburg and Fresno in spring.

The meta-analysis results are shown in Table 3. Across all
the seasons, for a 10 μg/m3 increase in two-day averaged
PM2.5 concentration we found a 1.89% increase (95% CI:
1.34-2.45) in CVD admissions, a 2.25% increase (95% CI:
1.10-3.42) in MI admissions, a 1.85% increase (95% CI:
1.19-2.51) in CHF admissions, a 2.74% increase (95% CI:
1.30-4.2) in diabetes admissions, and a 2.07% increase
(95% CI: 1.20-2.95) in respiratory admissions. Season-
ally, the percent increase in each cause of admission was
found to be highest in the spring, while it was generally

Community and season-specific proportions of species to PM2.5 mass for 6 selected species: Arsenic, Bromine, Chromium, Organic Carbon, Sodium, and NickelFigure 1
Community and season-specific proportions of species to PM2.5 mass for 6 selected species: Arsenic, Bromine, 
Chromium, Organic Carbon, Sodium, and Nickel. The seasons are: "black triangle" = winter; "black square" = spring; 
"star" = summer; "black circle" = autumn.
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lower in summer and autumn, except for diabetes which
was high in autumn as well.

We found significant though moderate heterogeneity
among the community-specific effect estimates across all
seasons (I2-statistic p < 0.05) for CVD and MI admissions,
where 33% (CVD) and 24% (MI) of the total variability,
as reported by the I2 statistic, was attributable to between-
community differences (as opposed to stochastic varia-
tion). For CHF, diabetes and respiratory admissions no
significant heterogeneity among the community-specific
effect estimates was found. We report the effect modifica-
tion for all the causes analyzed even though cardiac effects
were the only ones that displayed significant heterogene-
ity.

As we also found a similar inverted U-shaped association
as shown in Franklin [28] between the effect estimates
and season and city mean temperature, we adjusted for
temperature with both a linear and square term in the
meta-regression. Results of effect modification by species-
to-mass proportions, adjusted for temperature, are shown
in Table 4. For each species and cause of admission we
present the P-value for the effect modification, and the
percent increase for an IQR increase in the proportions
with the 95% confidence interval (CI). We only show the
results with a P-value < 0.07.

We found that some species, Fe, NH4
+, NO3

-, Si, Zn, EC,
and Pb did not result in any effect modification of the
association between PM2.5 and hospital admissions.

Table 2: Distribution of the community and season averaged species - to-PM2.5 mass proportions for selected species, across all 
communities.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Winter
As 0.00005 0.00007 0.00009 0.00010 0.00013 0.00017
Br 0.00013 0.00021 0.00025 0.00027 0.00030 0.00057
Cr 0.00005 0.00008 0.00013 0.00017 0.00019 0.00073
EC 0.02800 0.04440 0.05921 0.06179 0.07297 0.11720
Mn 0.00007 0.00012 0.00020 0.00025 0.00029 0.00076
Na+ 0.00428 0.00916 0.01234 0.01326 0.01784 0.02206
Ni 0.00002 0.00007 0.00012 0.00018 0.00020 0.00066
OC 0.15770 0.22330 0.26060 0.28270 0.30940 0.60360
SO4

2- 0.05094 0.08475 0.18840 0.17280 0.23510 0.28830
Spring
As 0.00004 0.00009 0.00011 0.00012 0.00013 0.00020
Br 0.00013 0.00027 0.00030 0.00033 0.00034 0.00110
Cr 0.00004 0.00009 0.00013 0.00015 0.00020 0.00035
EC 0.02337 0.04498 0.05780 0.06021 0.06758 0.14310
Mn 0.00008 0.00016 0.00021 0.00037 0.00035 0.00260
Na+ 0.00471 0.01003 0.01325 0.01783 0.02300 0.05077
Ni 0.00002 0.00007 0.00015 0.00020 0.00019 0.00084
OC 0.09634 0.19490 0.24540 0.27130 0.28280 0.99030
SO4

2- 0.12100 0.20270 0.25690 0.27600 0.30840 0.93540
Summer
As 0.00004 0.00007 0.00010 0.00010 0.00013 0.00022
Br 0.00009 0.00018 0.00020 0.00022 0.00026 0.00043
Cr 0.00003 0.00007 0.00012 0.00012 0.00016 0.00021
EC 0.02345 0.03834 0.04898 0.04779 0.05715 0.08223
Mn 0.00010 0.00014 0.00018 0.00025 0.00029 0.00094
Na+ 0.00315 0.00801 0.00952 0.01502 0.01838 0.04950
Ni 0.00002 0.00006 0.00010 0.00015 0.00017 0.00086
OC 0.13800 0.22310 0.25400 0.26160 0.29090 0.46250
SO4

2- 0.17060 0.23030 0.29560 0.28970 0.33640 0.41870
Autumn
As 0.00005 0.00008 0.00011 0.00012 0.00017 0.00024
Br 0.00017 0.00022 0.00027 0.00027 0.00029 0.00038
Cr 0.00004 0.00008 0.00014 0.00015 0.00019 0.00048
EC 0.03039 0.05546 0.06364 0.06337 0.07394 0.09023
Mn 0.00011 0.00017 0.00024 0.00030 0.00032 0.00088
Na+ 0.00388 0.00727 0.01119 0.01131 0.01398 0.02762
Ni 0.00001 0.00006 0.00009 0.00013 0.00016 0.00043
OC 0.15760 0.24590 0.26240 0.27620 0.29270 0.47500
SO4

2- 0.08987 0.16770 0.24910 0.22490 0.27560 0.33880
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Although single species are markers for more complex
particle chemistry, for clarity of presentation we divided
the species in the following groups to represent the gen-
eral categories for which these elements are markers.
Industrial combustion sources: Ni, V, As, Cr, SO4

2-; Soil
and road dust: Al; Traffic: Br, OC, EC; Sea salt, street salt:
Na+; Soil and industrial sources: Mn; Wood burning and
soil: K.

The association between mass and CVD admissions was
significantly (p = 0.05) modified by Br, Ni, Na+, V and Al.
Specifically, an IQR increase in the proportion of bromine
in PM2.5 mass was associated with an additional 0.81%
increase in CVD admissions (95% CI: 0.2-1.4). Similarly
there was an additional 0.7% (95% CI: 0.01-1.44)
increase for an IQR increase in V, a 0.9% increase (95%
CI: 0.5-1.4) for an interquartile increase in Ni, and a
0.87% increase (95% CI: 0.4-1.4) for an IQR increase in

Na+ (Table 4). The association between PM2.5 and MI was
modified by As, Cr, Mn, OC, Ni, K, and Na+.

Including a combination of species proportions that were
statistically significant in Table 4 and performing a back-
ward elimination, in multi-species models we found that
for CVD the combination of Br and Ni remained statisti-
cally significant (P <= 0.05), with an additional 0.57%
increase in CVD for an IQR increase in Br and an addi-
tional 0.80% increase for an IQR increase in Ni. When we
examined MI, only Ni remained significant.

Table 3: Estimated percent increase in hospital admissions for a 
10 μg/m3 increase in 2-day averaged PM2.5 by cause of admission 
and season

% 95% CI

Cardiovascular disease
All seasons 1.89 1.34 2.45
Winter 2.60 1.60 3.60
Spring 3.38 2.47 4.30
Summer 0.13 -0.78 1.06
Autumn 1.49 0.49 2.50

Myocardial Infarction
All seasons 2.25 1.10 3.42
Winter 2.10 0.42 3.81
Spring 4.50 1.42 7.68
Summer 2.09 -1.29 5.60
Autumn 0.68 -0.85 2.24

Congestive heart failure
All seasons 1.85 1.19 2.51
Winter 2.90 1.63 4.19
Spring 4.14 2.61 5.68
Summer 0.11 -1.23 1.46
Autumn 0.80 -0.40 2.01

Diabetes
All seasons 2.74 1.30 4.20
Winter -0.52 -3.20 2.24
Spring 5.43 1.97 9.02
Summer 1.85 -1.02 4.80
Autumn 4.78 2.16 7.46

Respiratory disease
All seasons 2.07 1.20 2.95
Winter 1.79 0.47 3.12
Spring 4.34 2.19 6.54
Summer 1.26 -0.60 3.16
Autumn 1.52 -0.06 3.13

Table 4: Modification of the PM2.5 mass association across 26 US 
by PM2.5 composition.

P-value for modifier % 95% CI IQR

Cardiovascular disease
Traffic

Br 0.01 0.81 0.23 1.40 0.00010
Sea salt, street salt

Na+ < 0.01 0.87 0.35 1.39 0.00945
Industrial combustion sources

Ni < 0.01 0.90 0.46 1.35 0.00012
V 0.05 0.73 0.01 1.44 0.00017

Soil and road dust
Al 0.05 0.53 0.00 1.07 0.00193

Myocardial Infarction
Traffic

OC 0.03 1.03 0.13 1.94 0.07060
Industrial combustion sources

Ni 0.04 1.13 0.04 2.22 0.00012
As < 0.01 2.35 0.84 3.85 0.00006
Cr 0.05 1.34 0.00 2.68 0.00010

Sea salt, street salt
Na+ 0.03 1.42 0.16 2.68 0.00945

Soil and industrial sources
Mn 0.03 0.99 0.14 1.85 0.00018

Wood burning and soil
K 0.05 1.61 0.01 3.22 0.00270

Diabetes
Traffic

OC < 0.01 -2.42 -3.79 -1.06 0.07060
EC 0.02 -2.12 -3.84 -0.39 0.02469

Industrial combustion sources
As 0.04 2.16 0.11 4.21 0.00006

SO4
2- 0.01 2.91 0.92 4.89 0.11610

Congestive heart failure
Soil and road dust

Al 0.07 0.77 -0.07 1.61 0.00193
Industrial combustion sources

Ni 0.07 0.64 -0.04 1.32 0.00012
Respiratory disease
Sea salt, street salt

Na+ 0.06 0.94 -0.02 1.91 0.00945
Industrial combustion sources

Ni 0.06 0.75 -0.03 1.53 0.00012

Results are expressed as % increase in cause-specific hospital 
admission per 10 μg/m3 increase in PM2.5 for an IQR increase in the 
Species to PM2.5 mass proportions
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In a sensitivity analysis, changing the weather specifica-
tion in the first stage to linear showed the same results as
using cubic regression splines.

Central air conditioning (AC) and the SES variables were
not statistically significant in the meta-regression and thus
did not explain any residual heterogeneity in the effect
estimates over and above what temperature and the spe-
cies could explain. Moreover, the magnitude of the modi-
fication by the species proportions did not change
drastically with the inclusion of AC or the SES parameters;
they were only slightly increased or reduced.

Because Na+ and Ni were associated with both CVD and
MI admissions, we examined their concentrations more
carefully and found that levels were consistently higher in
California. For Na+, this may be attributable to the contri-
bution of marine aerosol from the Pacific Ocean. To sup-
port this we present the relationship between Na+

concentrations and wind direction for the Los Angeles
site. As shown by the wind rose (Figure 2), higher levels
were observed when air masses passed over the sea (com-
ing from SW). As a comparison, a similar wind rose was
examined for EC, typically associated with local traffic
(Figure 2), but no wind pattern was observed. Interest-
ingly, the wind roses for Ni and V were similar to Na+, sug-
gesting that wind coming over the ocean also carries
elements often associated with ship emissions (not
shown).

Discussion
In this multi-community study we found a significant
association between PM2.5 mass and both respiratory and
cardiac hospital admissions. These effects were strongest
in spring and were significantly modified by certain chem-
ical components of the mass. The rationale for using spe-
cies-to-mass concentration ratios in the second stage was
that in the first stage the admission risk was estimated per
unit of the total PM2.5 mass, which encompasses all meas-
ured species, and therefore effect modification by the spe-
cies was best expressed on a per unit of PM2.5 mass basis.

One study [24] reported associations between hospital
admissions and PM2.5, but the authors examined different
categories of admissions than us, except for heart failure.
They reported an association of 1.28% (95% CI, 0.78%-
1.78%) increase in risk of heart failure per 10 μg/m3

increase in same-day PM2.5, which is comparable to our
estimate of 1.85% (95% CI: 1.19-2.51) increase in CHF
for the same and previous day average of PM2.5. Similar
results have been found by Peng [43], Metzger [44], and
by Halonen [45]. Bell and co-authors [23] found higher
effects in winter; they used a two-stage Bayesian hierarchi-
cal model which included two interaction terms allowing
both the exposure and the temporal trend to differ by sea-

son. Instead we stratified by season, allowing a more spe-
cific control for season and trend within each community.
Another difference is that the authors included cities with
systematically missing data, which may have several
implications in modelling the time series.

Two recent studies [22] examined the toxicity of PM2.5
chemical composition on hospital admissions. Bell et al
[22] used the method we introduced in Franklin 2008 and
used here; in the second stage however, they didn't take
into account indoor infiltration. We had previously dem-
onstrated [28] that mean seasonal temperature was an
important predictor of the effect of PM2.5 in that city and
season, and since species concentrations can vary with
temperature, an important confounder of assessing the
role of species. We controlled for this in the analyses in
this paper. Bell examined a larger number of communities
and utilized same-day (lag 0) PM2.5 concentrations versus
the mean of lags 0 and 1 in our study. They found associ-
ations with Ni, EC and V while we did not see any effects
for EC. Peng et al [46] used time-series analysis of the
measured (one in three or one in six day) PM2.5 species,
and found significant effects at lag 0 for EC, OC and
ammonium, but not for Ni. Some of these differences may
be due to confounding by ventilation patterns.

Our findings have several important parallels with Frank-
lin and co-authors [28]. For instance, across all admission
types, we found that the elements emitted primarily
through industrial combustion, namely Ni and As, dis-
played the greatest and most consistent effect modifica-
tion. We also found moderate modification by Al, which
was shown to be a strong modifier in the previous study.
The primary differences were that we found that Br and
OC, species often associated with traffic, and Na+, an ion
often associated with marine aerosol, were effect modifi-
ers of several causes of admissions.

We also found a significant effect of PM2.5 on admissions
for diabetes, which, despite the smaller daily counts,
shows the strongest association in all season, spring, and
autumn. As previous studies reported, diabetics might be
particularly susceptible to particles [12-14]. We found that
that SO4

2- and As were significant effect modifiers, associ-
ated with higher rates of diabetes admissions, whereas OC
was associated with lower rates. This finding are consist-
ent with that of O'Neill et al [13], who reported that SO4

2-

and particles were associated with impaired flow medi-
ated dilation in diabetic subjects and suggests a continu-
ing concern for coal-derived particles.

As we found that only cardiac effects displayed significant
heterogeneity in the PM2.5-admission effect estimates, we
focus our discussion on CVD and MI.
Page 8 of 12
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Cardiac diseases
We found that the association between PM2.5 and CVD
was modified by species related to traffic (Br), ship emis-
sions (Ni and V), marine or street salt (Na+), and soil and
road dust (Al).

General population exposure to Ni is likely from smelters
and oil combustion including domestic heating and ship
emissions as it is a constituent of Residual Oil Fly Ash
(ROFA). Toxicological studies of ROFA have suggested
that its ability to produce cell and tissue injury as well as
stimulate inflammatory response is due to its high transi-
tion metal content. Gao et al [47] found that ROFA Ni
content played a very important role in mediating an
inflammatory response in human lung cells and that it
produced significantly greater effects in comparison to
other particle types. ROFA has been associated with
increased oxidative stress [48], increased susceptibility to
bacterial infections [49,50], and altered heart rate, blood
pressure, and electrocardiograms [51].

Lippmann [33] exposed atherosclerotic prone mice to
concentrated air particles over a six month period. During
periods when Ni was especially high, there was a pro-
nounced acute change in heart rate and heart rate variabil-
ity in those animals. The authors also examined
associations between PM components and mortality in
the National Mortality and Morbidity Air Pollution Study
(NMMAPS), and found that daily mortality rates in the 60
cities with recent speciation data were significantly associ-

ated with average Ni and V, but not with other measured
species.

Franklin and coworkers [28] reported that the effect of PM
mass on daily deaths was higher in communities and sea-
sons with particles higher in Ni content, providing addi-
tional support for our findings.

Not much literature exists on the effects of particles rich in
Br, Cr, Mn, As and Na+. Metzger [44] found that CVD vis-
its in Atlanta were associated with NO2, CO, PM2.5, OC,
EC, and oxygenated hydrocarbons, whereas we did not see
effect modification by EC or OC in this analysis. EC and
OC are often highly correlated with PM2.5 mass, making it
difficult to distinguish an EC or OC effect from a mass
effect.

When looking at mortality outcomes, in a time series
analysis in six California counties, Ostro and co-authors
[26] found that PM2.5 mass and several constituents, OC,
NO3

-, Fe, K, and Ti were associated with cardiovascular
deaths.

Franklin et al [28] found that Al was a strong modifier of
the PM2.5-mortality effect, yet in this study it only had a
moderate modification effect for CVD and CHF. Their
results were presented for non-accidental mortality and
were not specific to cardiovascular causes. Nevertheless,
plausible biological mechanisms of an inflammatory
response have been found. Soil and road dust containing
Al and Si have been linked with cardio-pulmonary
responses in canines [52] and Becker [53] found that a fac-
tor containing particle Al was significantly related to an
inflammatory response in human epithelial cells.

Myocardial infarctions
We found that species related to traffic (OC) and several
industrial combustion sources (Ni, As, Cr) were modifiers
leading to increased MI admissions. As noted above, As is
a good marker for coal combustion.

Several studies have examined particle components and
MI. Two studies found support for the hypothesis that
exposure to traffic-related air pollution increases the risk
of acute MI [54,55]. Similarly, a study on repolarization
changes and variations in markers of inflammation in
association with ambient PM in a panel of male coronary
artery disease patients, found that traffic-related and com-
bustion-generated particles had stronger adverse health
impact with regard to cardiac effects, and that particles
from different sources induce an acute phase response in
these patients [56].

Limitations
As noted above a key limitation of this study, and all oth-
ers using the US EPA's speciation network, is the ability for

Los Angeles: wind rose of the relationship between Na+ concentrations in ng/m3 and wind directionFigure 2
Los Angeles: wind rose of the relationship between 
Na+ concentrations in ng/m3 and wind direction.
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one monitor to adequately represent concentrations of
species which are more highly spatially variable. For
instance, Ito et al [57] found that correlations between
concentrations of As, EC and Ni were moderate to low
between closely located STN monitors in the New York
City area. Thus, in general, for spatially variable species, a
greater amount of measurement error could be present
when using a single monitor to represent exposure over an
entire community. Therefore some components will suf-
fer from greater measurement error due to greater spatial
variability. Similarly, while in most locations PM2.5 is
quite homogeneous over the spatial scale of a community
this is not true everywhere. For example, while in Phila-
delphia the spatial variability in PM2.5 is small [58], there
can be large variations in PM2.5 concentrations in Los
Angeles [59]. Another limitation of this study is the use of
diabetes admissions which are more problematic to inter-
pret because these are usually related to complications of
the disease, or other cardiovascular complications.

While the use of seasonal ratios of elements to PM2.5 as
modifiers of the effect of mass on mortality allows us to
gain power by using the daily PM2.5 mass concentrations,
it has some limitations. First, while some of the variation
in the ratios is across cities, and some across seasons
within cities, other variation is across days within season,
and this source of variation is not captured. We believe
this day to day variation around the mean for the season
and city is mostly Berkson error with respect to predicting
a city and season specific PM2.5 slope, and hence reduces
power more than inducing bias. Second, because the var-
iation in the ratios includes variations across cities, there
is the possibility of cross-sectional confounding. In con-
trast to cohort studies, where the outcome is death, and
the confounders are other predictors of mortality, our
meta-regression is different. The outcome is PM2.5 slope,
and hence factors that are predictive of mortality (socio-
economic status, diet, etc) that vary across location are
unlikely to be confounders. The confounders will be other
things besides elemental composition that might predict
differences in PM2.5 slopes. We believe the most impor-
tant one is infiltration rates, and have used mean temper-
ature by season and city as a surrogate for that. Obviously,
it is not a perfect one. Other potential confounders might
be differences in individual susceptibility. However,
because we have variation within city across season, we
believe this approach problem is partially mitigated.

Conclusions
Our study shows that some chemical species significantly
modify the association between PM2.5 and cause-specific
hospital admissions. This important finding illustrates
that mass alone is not a sufficient metric to use when eval-
uating health effects of PM exposure.

One recommendation for decision-makers is that daily
speciation data is needed. It is difficult to analyze the
effect of the PM2.5 mass composition with the data availa-
ble only one day in three or six. Furthermore, future
research aimed to address the issue of the effects of the ele-
ments on, for example, cardiovascular endpoints, could
focus more on study such as chamber or panel study, and
toxicological animal study.

More work is needed in order to better understand the
biological mechanisms of PM components, and to better
direct regulation of particles and sources producing pollu-
tion high in these chemical species.
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