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Muscle wasting associated with pathologic
change is a risk factor for the exacerbation of
joint swelling in collagen-induced arthritis in
cynomolgus monkeys
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Abstract

Background: Not only joint destruction but also muscle wasting due to rheumatoid cachexia has been problem in
terms of quality of life of patients with rheumatoid arthritis (RA). In the present study, we performed
histopathological examination and assessed relationships between characteristic parameters relating to muscle and
joint swelling in a collagen-induced arthritis (CIA) model using cynomolgus monkeys (CMs).

Methods: Female CMs were used and CIA was induced by twice immunizations using bovine type II collagen with
Freund’s complete adjuvant. Arthritis level was evaluated from the degree of swelling at the peripheral joints of the
fore and hind limbs. Food consumption, body weight, and serum biochemical parameters were measured
sequentially. Five or 6 animals per time point were sacrificed at 2, 3, 5 and 9 weeks after the first immunization to
obtain quadriceps femoris specimens for histopathology. Pimonidazole hydrochloride was intravenously
administered to determine tissue hypoxia in skeletal muscle.

Results: Gradual joint swelling was observed and the maximum arthritis score was noted at Week 5. In
histopathology, necrosis of muscle fiber in the quadriceps femoris was observed only at Week 2 and the most
significant findings such as degeneration, atrophy, and regeneration of muscle fiber were mainly observed at Week
5. Food consumption was decreased up to Week 4 but recovered thereafter. Body weight decreased up to Week 5
and did not completely recover thereafter. A biphasic increase in serum cortisol was also observed at Weeks 2 and
5. Histopathology showed that muscle lesions were mainly composed of degeneration and atrophy of the muscle
fibers, and ATPase staining revealed that the changes were more pronounced in type II muscle fiber than type I
muscle fiber. In the pimonidazole experiment, mosaic pattern in skeletal muscle was demonstrated in the intact
animal, but not the CIA animal. Increased arthritis score was accompanied by a decrease in serum creatinine, a
marker that reflects muscle mass.

Conclusions: Muscle wasting might exacerbate joint swelling in a collagen-induced arthritis model of cynomolgus
monkeys.

Keywords: Collagen-induced arthritis, Rheumatoid arthritis, Cynomolgus monkey, Muscle wasting, Hypoxia, Steroid,
Histopathology, Muscle
* Correspondence: horai-naoto@snbl.co.jp
1Department of Pharmacology, Kagoshima University Graduate School of
Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544,
Japan
2Shin Nippon Biomedical Laboratories, Ltd. Drug Safety Research
Laboratories (SNBL DSR), 2438 Miyanoura, Kagoshima 891-1394, Japan
Full list of author information is available at the end of the article

© 2013 Horai et al.; licensee BioMed Central L
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
td. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:horai-naoto@snbl.co.jp
http://creativecommons.org/licenses/by/2.0


Horai et al. BMC Musculoskeletal Disorders 2013, 14:205 Page 2 of 10
http://www.biomedcentral.com/1471-2474/14/205
Background
We have already established a collagen-induced arthritis
(CIA) model using female cynomolgus monkeys (CMs)
and have assessed therapeutic and preventive effects of
new drugs for rheumatoid arthritis (RA) in this model
[1-3]. A treatment with biological agents targeting tumor
necrosis factor-α (TNF-α) showed therapeutic effects in
RA patients who were resistant to disease-modifying an-
tirheumatic drugs (DMARDs) [4,5]. Employing primate
models is considered to have many advantages for the
prediction of drug effects with clinical application because
of the similarities in drug metabolism between humans
and CMs [6-8].
Rats and mice arthritis models induced by treatment

with collagen (CIA) or adjuvant (AIA) are well known as
animal models for chronic inflammation and RA [9-13].
However, it is difficult to assess toxicological and pharma-
cological aspects of biologics for humans with these rodent
models, because rodent arthritis is not chronic, and swell-
ing including soft tissue at peripheral part from wrist and
ankle rather than joint structure itself is often assessed
[14,15]. Additionally, humanized antibody drugs are easily
rendered ineffective by rapidly produced neutralizing
antibodies in rodents [16]. On the other hand, joint swelling
in the CM CIA model is chronic, and the production of
neutralizing antibodies for antibody drugs is negligible in
CM in comparison with that in rodents [17,18].
Some epidemiological studies revealed a higher risk of

cardiovascular disease [19,20] and muscle wasting [21,22]
in RA patients compared with the general population. As
well as the characteristic joint disorders, muscle dysfunc-
tion is a common and clinically intractable complication
which also negatively affects prognosis and/or quality of life
in RA [23,24]. The CIA model in CMs is also characterized
by a body weight loss and cachexia associated with a loss of
skeletal muscle.
RA is characterized by an inflammatory joint disease with

chronic hypoxia and inflammatory cytokine production.
Previous studies revealed hypoxia in the inflammatory
tissues around the synovial membrane during RA develop-
ment [25,26]. Although the linkage between hypoxia and
inflammation is not clear, the possibility that tissue hypoxia
and its resultant extracellular high mobility group box 1
(HMGB1) play an important role in arthritis development
has been indicated [27].
Glucocorticoids regulate muscle metabolism and a

number of steroids are used for patients with diverse
diseases including RA [28,29]. However, it is known
that cortisol, a representative intrinsic glucocorticoid
in humans and monkeys, is induced by inflammation,
and that muscle wasting due to the increases in the steroids
is a critical clinical issue [30].
We hypothesized that body weight/muscle loss ac-

companied by inflammatory changes may have a role
in the development of joint swelling as a representative
pathosis in CIA. In the present study, we examined joints
and skeletal muscle histopathologically to characterize
the “arthritis-associated myopathy” and investigated
the relation between muscle wasting and joint swelling,
a major symptom of CIA.

Methods
Animals
Twenty-seven female cynomolgus monkeys (CMs)
(Macaca fascicularis) with ages of 3 to 5 years were
obtained from Guangdong Scientific Instruments &
Materials Import/Export Corporation (Guangzhou, China),
Wing freight agent Co., Ltd. (Beijing, China), China National
Scientific Instruments & Materials Import/Export Corpor-
ation (Beijing, China), and Gaoyao Kangda Laboratory Ani-
mals Science & Technology Co., Ltd. (Guangdong, China).
Twenty-two CMs were used for sequential histopathology
and a part of the quadriceps femoris was collected for
special staining (NADH-TR and ATPase staining) from 3
of the animals that were necropsied at Week 5 after the
first immunization. Additionally, arthritis was induced in 1
animal, which was then allocated for a pimonidazole dosing
study. One intact animal was used for the pimonidazole
dosing study as a control animal. The 22 CMs to be
used for histopathology were weighed using an electronic
balance (HP-40 K, A & D Co., Ltd.) once a week through-
out the experiment. Approximately 108 g of solid food
(Teklad Global Certified 25% Protein Primate Diet, Harlan
Sprague Dawley Inc.) was provided to each animal
daily. Food consumption was calculated daily from the
amounts of food supplied and remaining, and averaged
daily food consumption was calculated for each week.
Water was available ad libitum from an automatic supply
(Edstrom Industries, Inc.).

Animal welfare
All procedures for animals were approved by the Intuitional
Animal Care and Use Committee of SNBL and were
performed in accordance with standards published by the
National Research Council (Guide for the Care and Use of
Laboratory Animals, NIH OACU) of the National Institutes
of Health Policy on Human Care and Use of Laboratory
Animals. Additionally, the animals used in this model
received special treatments to moderate emaciation. In
accordance with these standards, every effort was made to
ensure that the subjects were free of pain and discomfort.

Arthritis induction
Bovine type II collagen (CII) (4 mg/mL, Collagen Research
Center, Tokyo, Japan) was used. The CII solution and
Freund's complete adjuvant (FCA) (Becton Dickinson,
Grayson, GA, USA) were mixed in equal proportions using
a syringe. Each CM was anaesthetized by intramuscular
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injection of 10 mg/kg ketamine and intracutaneously
injected 2 mL of the emulsion on the back. The second
immunization with CII and FCA was conducted 3 weeks
after the first immunization, in the same manner [1,2].

Observation of swelling at the joints
Arthritis level was evaluated by monitoring the degree
of swelling at the metacarpophalangeal, proximal
interphalangeal, and distal interphalangeal joints, and the
wrist, ankle, elbow, and knee (total 64 joints) at Weeks 2, 3,
4, 5, 7 and 9 after the first immunization. Each joint was
assessed in accordance with the evaluation criteria shown
as follows: Score 0, No abnormality; Score 1, Swelling not
visible but can be determined by touch; Score 2, Swelling
slightly visible and can be confirmed by touch; Score 3,
Swelling clearly visible; Score 4, Rigidity of the joints. The
arthritis score for each animal was designated as the total
score of individual joints.

Blood chemistry
Blood was drawn from the femoral vein at Weeks 2, 3, 4,
5, 7 and 9 after the first immunization, and serum was
obtained by centrifugation (room temperature, 1710 g for
15 minutes). Creatine phosphokinase (CPK), creatinine and
C-reactive protein (CRP) were determined by an automatic
analyzer (JCA-BM8, JEOL Co., Ltd., Tokyo, Japan).

Measurement of serum cytokines and cortisol
Serum interleukin-6 (IL-6), IL-2, IL-4, IL-5, TNF, and IFN-γ
at Weeks 2, 3, 4, 5, 7 and 9 after the first immunization were
determined with nonhuman primate Th1/Th2 Cytokine
CBA kit (BD Biosciences, San Diego, CA, USA). Cortisol
concentrations in serum obtained in the morning on
each day were measured by radioimmunoassay with
DPC-Cortisol kit (Siemens Healthcare Diagnostics, Los
Angeles, CA, USA).

Histopathology
At Weeks 2, 3, 5 or 9 after the first immunization, 5 or
6 animals/time point were euthanized by exsanguination
under anesthesia by an intravenous injection of a solu-
tion of sodium pentobarbital (Tokyo Chemical Industry
Co., Ltd., 64.8 mg/mL, 0.4 mL/kg) and necropsied. The
quadriceps femoris muscle from the center of lateral
vastus on the left side was collected from each animal,
and a half of the collected tissue was fixed in 10 v/v%
neutral buffered formalin and the remainder was quickly
frozen in liquid nitrogen. The formalin-fixed tissue samples
were embedded in paraffin, sectioned and stained with
hematoxylin-eosin (HE). For electron microscopy, small
pieces of the formalin-fixed muscle from 1 CIA animal
with marked histopathological lesions were re-fixed with
3% glutaraldehyde and followed by a double fixation with
1% osmium tetroxide. Ultra-thin sections were prepared
and double-stained with uranyl acetate and lead citrate,
and examined with a transmission electron microscope
(JEM-1200EX, JEOL Co., Ltd.). NADH-TR and ATPase
staining was performed with cryosections of muscle
collected at Week 5.

Detection of hypoxia in the skeletal muscle with
pimonidazole
Hypoxic changes in the left quadriceps femoris were visual-
ized using a hydroxyprobe-1 kit (Chemicon International,
Temecula, CA, USA) as follows. Pimonidazole hydrochlor-
ide, a novel hypoxic marker agent, was dissolved in sterile
physiological saline and 2 monkeys (one was a CIA model
animal and the other an intact control animal) were
administered intravenously with the pimonidazole solution
at a dose of 0.5 g/m2 at Week 5. At 18 hours after dosing,
the animals were euthanized by exsanguination under
anesthesia by an intravenous injection of the solution
of sodium pentobarbital (0.4 mL/kg). A piece of the
quadriceps femoris muscle was collected from each
animal, fixed in 10 v/v% neutral buffered formalin, and
embedded in paraffin. A hydroxyprobe-1 monoclonal
antibody was used to stain pimonidazole adducts in the
thin-sectioned tissues in accordance with the recommenda-
tions of the manufacturer.

Statistical analysis
Values are presented as the mean ± SE. Differences be-
tween post- and pre-dosing values as presented in Figure 1
were statistically examined using a repeated measures
ANOVA model. Statistical differences were evaluated at
5%. The number of animals at each time point were as
follows; N = 22 at pre-immunization and Weeks 1 and 2,
N = 17 at Week 3, N = 12 at Weeks 4 and 5, and N = 6 at
Weeks 6 to 9. Pearson’s correlation coefficients were cal-
culated for parameters (arthritis score, serum creatinine,
serum CPK, and body weight) as shown in Figure 2.

Results
Arthritis induction and its characters
Joint swelling was observed mainly at the fingers of right
and left hands and feet after CII immunization. There
were individual differences in the time of onset and severity
of the swelling. The mean arthritis score increased from
Week 3 and was elevated sequentially with a peak value of
68.9 at Week 7, and the score was maintained around the
peak value until Week 9 (Figure 1A). X-ray findings such as
joint space narrowing, bone atrophy, and architectural joint
destruction were aggravated time-dependently until Week
9 (data not shown).

Body weight and food consumption
Accompanying the occurrence of arthritis, body weights
decreased markedly at Week 4 and remained lower than
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Figure 1 Sequential changes of the parameters in the process of arthritis induction. Changes in arthritis score (A), body weight (B), food
consumption (C), serum cortisol concentration (D), creatine phosphokinase (E), creatinine (F), C-reactive protein (G), and interleukin-6 (H). Values
are expressed as the mean ± SEM. Differences between post- and pre-dosing values were statistically examined using a repeated measures
ANOVA model. Statistical differences were evaluated at 5%. N = 22 at pre-immunization and Weeks 1 and 2, N = 17 at Week 3, N = 12 at Weeks 4
and 5, and N = 6 at Weeks 6 to 9. Change in body weight (%) was calculated as the percentage of weight relative to the weight
at pre-immunization.
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the value at pre-immunization until Week 9 (Figure 1B).
Food consumption decreased time-dependently from the
early phase of the induction period, and the most significant
decrease in body weight was noted at Week 4, but food
consumption recovered from the decrease to within the
range of pre-immunization period by Week 7 (Figure 1C).
The timing of recovery of food consumption was slightly
sooner than that of body weight, and the time of transition
was not consistent between these two parameters in the
later phase of the induction period. These results support
the previous observations that demonstrated that cachexia
is not the result of a decrease in caloric intake [21].

Blood chemistry and serum cytokine levels
CPK was increased markedly at Week 2; however, the
increase was transient and was followed by a decrease to
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Figure 2 Correlation analysis. Relationships between serum creatinine level and body weight (A), creatine phosphokinase and arthritis score
(B), change in body weight and arthritis score (C), and serum creatinine level and arthritis score (D). Pearson’s correlation coefficients between
the parameters (arthritis score, serum creatinine, serum CPK, and body weight) were calculated. The concentration of serum creatinine, a marker
to reflect muscle mass, was positively correlated with body weight (A). CPK levels were not well related with arthritis score (B), but arthritis score
showed a weak correlation with body weight change (C). Arthritis score showed a strong correlation with creatinine levels (D).

Table 1 Frequency and percentage of animals with
histopathological findings in muscle fiber

Week 2 Week 3 Week 5 Week 9

(N = 5) (N = 5) (N = 6) (N = 6)

# % # % # % # %

Necrosis 2 40 1 20 0 0 0 0

Degeneration 1 20 3 60 6 100 5 83

Atrophy 0 0 3 60 4 67 4 67

Regeneration 0 0 0 0 3 50 1 17

#: Number of the animals with the histopathological finding.
%: Percentage of the animals with the histopathological finding
As for degeneration, necrosis, or regeneration of muscle fiber, when a few
mass or affected muscle bundles were observed in several scattered areas, the
finding was judged positive. Atrophy was diagnosed when width of the
muscle bundle was smaller than half width of normal bundle. The number of
animals with the above lesions was summarized in Table 1.
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the pre-immunization level (Figure 1E). Creatinine de-
creased gradually from the early phase of induction period
and reached nadir at Week 5, and no marked increase was
noted until Week 9 (Figure 1F). Creatinine is known to be
a marker which reflects muscle mass and to correlate with
body weight. Both CRP and IL-6 increased up to Week 4,
and then decreased time-dependently (Figures 1G, H).
Serum TNF-α level was below the lower limit of quantifica-
tion (20 pg/mL) in all animals at all time points, and no
changes that were considered to be related to onset of arth-
ritis were noted in the other cytokines (data not shown).

Histopathological features
The incidences of histopathological changes in the muscle
fiber of the quadriceps femoris at each time point are sum-
marized in Table 1. Degeneration, necrosis, or regeneration
of muscle fiber was diagnosed, when a few mass or affected
muscle bundles was observed in several scattered areas.
Atrophy was diagnosed when width of the muscle bundle
was smaller than half width of normal bundle. Necrosis and
degeneration of the muscle fiber were seen in 2 and 1 of 5
animals at Week 2, respectively, but the incidences of
degeneration and atrophy increased time-dependently until
Week 5. Regeneration was seen at Week 5 and thereafter
(Figures 3A to E). In NADH-TR staining, there was a
difference in stain ability between the muscle fiber types
(intensely stained: type I muscle fiber, slightly stained: type
II muscle fiber) in a naive animal (Figure 4A-1); however,
the difference in stain ability was lost and irregularity in
the size of muscle fibers was observed in the CIA animal
(Figure 4A-2). ATPase staining showed that atrophy of
type II muscle fiber was predominant when compared to
that of the lesion in type I muscle fiber (Figure 4B-1: naive
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Figure 3 Sequential changes of histopathologic feature of quadriceps femoris in HE staining. A: naive animal, B: necrosis and
degeneration (↑) of muscle fiber and inflammatory cell infiltration at Week 2, C: degeneration and atrophy (↑) of muscle fiber at Week 3, which is
clearer than that at Week2, D: regeneration (↑) of muscle fiber at Week 5, E: regeneration and atrophy (↑) at Week 9 similar to, but a lesser degree
to that at Week 5 (E).
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animal, and Figure 4B-2: CIA animal). In electron
microscopic observation, the number of mitochondria
and vesicle increased with irregular alignment as the
most characteristic change (Figures 5B, C) compared
with a naive animal (Figure 5A).

Detection of hypoxic change in femoral muscle
The pimonidazole staining of the quadriceps femoris from
1 immunized and 1 non-immunized CM demonstrated
a mosaic pattern of skeletal muscle in the naive animal
(Figure 6A), and this was considered to reflect the normal
distribution of type I (aerobic: unstained) and II (anaerobic:
stained) muscle fibers. On the other hand, no mosaic
pattern was observed in the quadriceps femoris of the CIA
animal (Figure 6B), indicating that the normal distribution
of the fibers had been changed in the muscle.
Serum cortisol level
Serum cortisol levels were elevated at Week 2 and dropped
below the baseline at Week 3, and then were elevated again
at Week 5. The biphasic increase was considered attribut-
able to twice immunizations (Weeks 0 and 3) with type II
collagen. Thereafter, levels gradually decreased until Week
9 (Figure 1D).

Relationships between arthritis score and muscle-related
blood parameters
Relationships between severity of swelling at the joints and
blood parameters related to muscle (i.e. creatinine and CPK)
were investigated. Serum creatinine is considered to
depend on muscle mass, and its concentrations were posi-
tively correlated with body weight (R = 0.599, Figure 2A).
Although CPK levels were not well related with arthritis
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Figure 4 Histopathologic feature of quadriceps femoris in NADH-TR and ATPase staining. NADH-TR and ATPase staining in a naive animal
(A-1 and B-1) and a CIA animal (A-2 and B-2). In NADH-TR stain, a clear difference in stainability between muscle fibers reflecting the
classification into type I and type II muscle fibers was observed in the naive animal; however, a difference in stain ability was not shown and
irregularity in the size of muscle fibers was observed in the CIA animal. ATPase staining in CIA animal showed that the atrophic changes in the
type II muscle fibers were more significant than those in the type I muscle fibers.
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score (R = 0.422, Figure 2B), arthritis score showed a
weak correlation with body weight change [body weight
change was calculated with the following formula: body
weight change (%) = body weight at each week (kg)/
body weight before immunization (kg) × 100] (R = −0.610,
Figure 2C) and a stronger correlation with creatinine
levels (R = −0.799, Figure 2D).

Discussion
In patients with RA, not only pain and dysfunction at
joints but also cachexia are observed frequently [31-33],
A
Figure 5 Electron microscopy in quadriceps femoris in naive and CIA
mitochondria (△) and small vesicles (▲) were observed in the CIA animal
the region enclosed in the square in B. (bar 2 μm).
and rheumatoid cachexia is still remains one of major
issues. Multiple factors such as disuse atrophy due to joint
pain and proinflammatory cytokines such as TNF-α, IL-1β,
and IL-6 are considered attributable to rheumatoid
cachexia; however, there have been few reports regard-
ing histopathology of muscle in RA patients and the
cause of rheumatoid cachexia is not completely understood
yet. In the present study, we sequentially assessed
histopathological muscle lesions in a CIA model using
CMs. In addition, we investigated the relationships
between joint swelling, a major symptom of arthritis,
B C

C

animals. Irregularity of Z-bands (↑) and increases in the number of
(B) in comparison with a naive animal (A). C is high magnification of
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Figure 6 Immunostaining for pimonidazole dosing experiment in quadriceps femoris in naive and CIA animals. Mosaic pattern
attributable to distribution of type I and II muscle fibers was evident in a naive animal (A); conversely, no similar mosaic pattern was observed in
a CIA animal (B).
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body weight, and blood chemistry parameters relating
to muscle.
In histopathology of HE stained specimens of the quadri-

ceps femoris, necrosis of muscle fibers was observed only
in 2 and 1 of 5 animals at Weeks 2 and 3, respectively, and
degeneration and atrophy were observed in almost all
animals from Week 5. Additionally, similar findings were
observed in biceps brachii muscle, longissimus muscle, and
gastrocnemius (data not shown), indicating that atrophic
change in muscle was induced systemically as shown by
the decrease in body weight. Food consumption almost
recovered to the range of the values at pre-immunization
by Week 9, but body weight did not completely recover by
that time, showing that the decrease in body weight
including these histopathological lesions were not consid-
ered to be attributable only to malnutrition. In NADH-TR
staining, a clear difference in stain ability between muscle
fibers reflecting the classification into type I and type II
muscle fibers was observed in a naive animal; however,
the difference in stain ability was not shown in the CIA
animals. Additionally, ATPase staining showed a sig-
nificant atrophic lesion in the type II muscle fibers but
not in the type I muscle fibers. These changes would
be related to the disappearance of normal mosaic pattern
(that would reflect the regular distribution of the type I
and type II muscle fibers) in CIA model which was
confirmed in the pimonidazole dosing experiment, and
indicated that the normal distribution of partial pres-
sure oxygen had been lost in CIA model. In addition,
electron microscopic observation revealed an increase
in the number of mitochondria, and this was considered
to be a compensatory reaction against hypoxia. The histo-
pathological lesions in the muscle observed in the present
study were similar to those of the patients with RA [34].
The study of hypoxia in RA patients showed that hypoxia
and HMGB-1 were associated with development of arth-
ritis [27]. On the other hand, physical activity and aerobic
exercise ameliorate not only the motor function but also
swelling and stiffness of the joints in clinical practice.
These reports showed that hypoxia was associated with
swelling and malfunction of joints, at least in part. More-
over, the results in the present study indicated that muscle
hypoxia was possibly related to the muscle wasting.
It is known that muscle atrophy can be mediated by

multiple factors, including glucocorticoids [28-35], and
proinflammatory cytokines such as IL-1β, TNF-α, and
IL-6 [35]. Previous studies showed that the expression
and activity of the transcription factor C/EBPβ and δ were
increased in the skeletal muscle during sepsis in rats [36].
In the same experiments, treatment with the glucocorticoid
receptor antagonist prevented the sepsis-induced activation
of C/EBPβ and δ, suggesting that the transcription factors
are, at least in part, regulated by glucocorticoids. The
expression of these transcription factors, especially that of
C/EBPβ, was confirmed by western-blot analysis in skeletal
muscle obtained from the present study, and it was most
significant at Week 5 (data not shown), and a marked
increase in serum cortisol concentration was noted at the
same time point. These results indicated that cortisol is
involved in an increase in expression of C/EBPβ and might
be related to the muscle wasting in this CIA model.
Although serum TNF-α was not detected at any

time point, significant increases in glucocorticoid and
proinflammatory cytokines such as IL-6 were noted
in this model, and these findings were consistent with
results from clinical practice [37]. Further research is
needed to elucidate the direct relationship between
hypoxia, glucocorticoid, and proinflammatory cytokines
in skeletal muscle since it was not made clear in the
present study.
The prevalence of cardiovascular disease (CVD) in

patients with RA is higher [38], and the risk of mortality
due to CVD is 50% higher [39] than in the general popula-
tion. As chronic systemic inflammation has been reported
to be related to CVD [40,41], the heart was also examined
histopathologically in the present study, but no abnormality
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was observed in this organ in any animal in the present
study (data not shown). These results showed that the
degree of inflammation noted in this CIA model was
not associated with CVD. Generally, the creatinine level in
preserved urine is measured for an indirect assessment of
muscle quantity in clinical practice [31]. In CMs, the
volume of urine depends only on spontaneous urination
and is unstable; therefore, serum creatinine was measured
instead of urine volume in the present study. The results
showed that a positive correlation (R = 0.599) was noted
between body weight and serum creatinine level. The per-
centage of body fat was about 5% in CMs of medium-size,
as quantified with the DXA method (data not shown),
which is not higher than that in humans. Serum creatinine
could be as accurate an indicator of muscle quantity in
CMs as it is in humans.
Arthritis score did not show a clear correlation with

serum CPK (R = 0.422); however, the score showed a nega-
tive correlation with the change in body weight based on
the value at pre-immunization (R = −0.610) and a stronger
negative correlation with serum creatinine, a marker which
reflects muscle mass (R =−0.799). Thus, arthritis score was
increased accompanied by a decrease in serum creatinine, a
marker to reflect muscle mass, and the results were consid-
ered plausible and capable of extrapolation to humans since
aging is thought to be one of the risk factors for RA and
muscle mass generally decreases with aging. Also in the
study using mice CIA model, a similar correlation was
noted between muscle weight and arthritis score [42].

Conclusions
From these results, we concluded that muscle wasting
exacerbates joint swelling, and that therapeutic target
would not only be the arthritic joints but also the skeletal
muscle. The CIA model using CMs has similar characteris-
tics to patients with RA in respect of the changes at the
joints and in muscle, suggesting that the CIA monkey
model in the present study can be useful for the develop-
ment of new drugs for human arthritis therapy.
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