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Abstract
Background: Brain magnetic resonance imaging (MRI) and cognitive tests can identify heritable endophenotypes
associated with an increased risk of developing stroke, dementia and Alzheimer's disease (AD). We conducted a genome-
wide association (GWA) and linkage analysis exploring the genetic basis of these endophenotypes in a community-based
sample.

Methods: A total of 705 stroke- and dementia-free Framingham participants (age 62 +9 yrs, 50% male) who underwent
volumetric brain MRI and cognitive testing (1999–2002) were genotyped. We used linear models adjusting for first
degree relationships via generalized estimating equations (GEE) and family based association tests (FBAT) in additive
models to relate qualifying single nucleotide polymorphisms (SNPs, 70,987 autosomal on Affymetrix 100K Human Gene
Chip with minor allele frequency ≥ 0.10, genotypic call rate ≥ 0.80, and Hardy-Weinberg equilibrium p-value ≥ 0.001) to
multivariable-adjusted residuals of 9 MRI measures including total cerebral brain (TCBV), lobar, ventricular and white
matter hyperintensity (WMH) volumes, and 6 cognitive factors/tests assessing verbal and visuospatial memory, visual
scanning and motor speed, reading, abstract reasoning and naming. We determined multipoint identity-by-descent
utilizing 10,592 informative SNPs and 613 short tandem repeats and used variance component analyses to compute LOD
scores.

Results: The strongest gene-phenotype association in FBAT analyses was between SORL1 (rs1131497; p = 3.2 × 10-6)
and abstract reasoning, and in GEE analyses between CDH4 (rs1970546; p = 3.7 × 10-8) and TCBV. SORL1 plays a role in
amyloid precursor protein processing and has been associated with the risk of AD. Among the 50 strongest associations
(25 each by GEE and FBAT) were other biologically interesting genes. Polymorphisms within 28 of 163 candidate genes
for stroke, AD and memory impairment were associated with the endophenotypes studied at p < 0.001. We confirmed
our previously reported linkage of WMH on chromosome 4 and describe linkage of reading performance to a marker
on chromosome 18 (GATA11A06), previously linked to dyslexia (LOD scores = 2.2 and 5.1).
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Conclusion: Our results suggest that genes associated with clinical neurological disease also have detectable effects on
subclinical phenotypes. These hypothesis generating data illustrate the use of an unbiased approach to discover novel
pathways that may be involved in brain aging, and could be used to replicate observations made in other studies.

Background
Age-related neurological diseases such as stroke and
dementia represent a substantial population burden, and
one in three persons will develop either stroke or demen-
tia in their lifetime [1]. Twin studies suggest that 37–78%
of the variance in the age of onset of Alzheimer's disease
(AD), the most common cause of dementia in the elderly,
can be attributed to additive genetic effects [2,3]. Con-
versely, cognitively healthy aging also has a substantial
genetic basis [4]. Finally ischemic stroke [5-7] and vascu-
lar cognitive impairment are also heritable [8]. However,
surprisingly few genes have been identified that determine
the risk of developing stroke (PDE4D, ALOX5AP) [9-11]
or Alzheimer's disease (APOE4) [12], in the community as
a whole, that is for persons not from autosomal domi-
nant, early-onset families. One reason may be that studies
to date have been underpowered to detect small effects.
Two additional challenges to a more complete under-
standing of the genetic basis of these aging related brain
diseases have been the late phenotypic manifestation of
these conditions and their complex, polygenic mode of
inheritance. Multiple genes interacting with each other
and with environmental factors likely create a complex
gradient of susceptibility to disease. We hypothesized that
studying the genetic basis for the gradient of susceptibility
underlying AD and stroke, using endophenotypes, would
provide insights into the genetics of these late-onset neu-
rological diseases. Endophenotypes (or intermediate phe-
notypes) are heritable traits that reveal the actions of
genes predisposing an individual to develop a disease but
they often manifest years before clinical and pathological
diagnostic criteria for the disease are met.

Volumetric brain MRI and comprehensive cognitive test-
ing have been used to define heritable, reproducible,
quantitative endophenotypes which in turn relate to the
risk of developing dementia or stroke [13-19]. Twin stud-
ies have demonstrated substantial heritability of these
endophenotypes [20]. The recent availability of high-
throughput platforms permits genome-wide association
studies (GWAS) that incorporate a more comprehensive
and unbiased approach to detect genes with modest phe-
notypic effects. We present the results of a GWAS of struc-
tural and functional phenotypes previously associated
with cellular and vascular brain aging.

Methods
Study sample
The study design, selection criteria and participant demo-
graphics of the Framingham Original and Offspring
cohorts have been detailed in prior publications [21,22].
A total of 1345 persons, who were members of the 330
largest families across these two cohorts, underwent gen-
otyping using the Affymetrix GeneChip Human Mapping
100K single nucleotide polymorphism (SNP) set. The
Overview provides details of this sample [23]. The study
sample for the current analyses comprised of 705 stroke-
and dementia-free Framingham Study participants who
were genotyped and had undergone volumetric brain MRI
and/or cognitive testing between 1999 and 2002. Among
the 1345 eligible persons who were genotyped, 508 per-
sons were excluded since they died prior to their 7th Off-
spring examination, did not attend this examination,
declined or were unable to complete MRI or cognitive test-
ing, 12 persons were excluded for prevalent stroke (n =
12) at the time of MRI and cognitive testing and 11 per-
sons with neurological diseases such as multiple sclerosis
or brain tumor that could impact study phenotypes were
also excluded; all participants were screened, but none
required exclusion for dementia at the time of MRI. Nine
individuals were excluded because covariate information
was not available. This study was approved by the Institu-
tional Review Board of Boston University Medical Center;
all participants provided written informed consent
including consent for genetic studies.

Phenotype definition
The list of study phenotypes is shown in Column 1 of
Table 1.

Volumetric brain MRI
Details of brain MRI acquisition parameters, blinded
image analysis, definition of brain volumes (indexed for
cranial cavity size) and the mean and standard deviation
(SD) values for these measures in the larger sample of all
Framingham subjects (n = 2259) who underwent brain
MRI, have been published previously [14,15,24-27].
Mean and SD values and heritability estimates for each of
these parameters in the current study sample are available
online at http://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?id=phs000007. Digital information from
the MRI scans was transferred to a central laboratory
directed by one of the authors (C.D.) for processing and
analysis. Analysis was done blind to the subjects' geno-
type, demographic and vascular risk factor data. Analyses
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were done using semi-automated measurements of pixel
distributions based on mathematical modeling of MRI
pixel intensity histograms for cerebrospinal fluid and
brain matter (white matter and gray matter) to determine
the optimal pixel intensity threshold that distinguished
cerebrospinal fluid (CSF) from brain matter. Brain vol-
ume was determined in coronal sections by manually out-
lining the intracranial vault above the tentorium to
determine the total cranial volume (TCV). Next, the skull
and other non-brain tissues were removed from the
image, followed by mathematical modeling to determine
total brain volume (TBV). TBV included the supratentorial
gray and white matter and excluded the CSF. We used the
ratio of TBV to TCV (Total Cerebral Brain Volume, TCBV)
as a measure of brain volume to correct for differences in

head size. Regional brain volumes were measured as the
sum of the segmented right and left lobar volumes for that
region indexed to the intracranial volume; frontal (FBV),
parietal (PBV), occipital (OBV) and temporal (TBV) lobar
brain volumes and the regional brain volume of the hip-
pocampus (based on hand-drawn outlines) were assessed.
Two measures of ventricular volume were used: the lateral
ventricular volume, and the temporal horn volume each
of which was measured as the sum of the volumes for two
sides, log-normalized and indexed over TCV. Finally the
white matter hyperintensity volume was measured as a z-
score within 10-year age- and sex-specific categories of the
logarithmically transformed continuous variable (WMH).
All analyses were performed using a custom-designed
image analysis package, QUANTA 6.2, operating on a Sun

Table 1: Structural (Volumetric MRI) and Functional (Cognitive Testing) Brain Aging Phenotypes

Exam cycle

Phenotypic Trait (Abbreviated 
Variable Name)

Number of traits N Original Cohort (Exam 26) Offspring Cohort (Exam 7) Covariates Used to Create 
Multivariable-Adjusted 
Residuals

Volumetric Brain MRI*

Total Cerebral Brain Volume (ATCBV) 1 705 Original Cohort & Offspring data are pooled Age, age-squared, sex, current 
smoking status, diabetes, systolic 
blood pressure, anti-hypertensive 
drugs, atrial fibrillation, EKG-LVH 
at Offspring examination 7 and 
Original cohort 26; data from 
sex-specific regressions pooled.

Frontal Brain volume (AFBV) 1 705
Parietal Brain Volume (APBV) 1 705
Occipital Brain Volume (AOBV) 1 705
Temporal Brain volume (ATBV) 1 705
Hippocampal Volume (AHPV) 1 327
Lateral Ventricular Volume (ALVV)† 1 705
Temporal Horn Volume (LTHBV)† 1 705
White Matter Hyperintensity Volume 
(BMRIZLWMHVMV) [Age-, sex-
specific Z-score of log-normalized 
white matter hyperintensity volume]

1 705 Current smoking status, diabetes, 
systolic blood pressure, anti-
hypertensive drugs, atrial 
fibrillation, EKG-LVH at Offspring 
examination 7 and Original 
cohort 26; data from sex-specific 
regressions pooled.

Cognitive Test Performance

Factor 1:Verbal Memory (F1) 1 694 Original cohort and Offspring data are pooled Birth cohort by decade, 
education, Framingham Stroke 
Risk Profile score, plasma 
homocysteine concentrations (at 
the 20th Original cohort and the 
6th Offspring examinations), 
apolipoprotein E genotype (ε4 
+ve/-ve); data from sex-specific 
regressions were pooled.

Factor 2:Visual Memory and 
Organization (F2)

1 694

Factor 3: Measure of attention and 
executive function-Trails A and B (F3)

1 694

Boston Naming Test (Nam) 1 694
Similarities (Sim) 1 694
Wide-Range Achievement Test 
(WRAT)

1 694

*All MRI volumes were expressed as a ratio of total intracranial volume (TCV), trait names used in this table correspond to trait names posted at the website; an 'A' preceding 
the trait name refers to the multivariable adjusted residual.
† Log-normalized values of these traits were used. Website http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007.
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Microsystems (Santa Clara, CA) Ultra 5 workstation. The
inter-rater reliabilities ranged between 0.90 and 0.94 for
TCV, TCB, regional brain and ventricular volumes and
white matter hyperintensities, and intra-rater reliabilities
average 0.98 across all measures.

Cognitive measures
Subjects were administered a neuropsychological test bat-
tery using standard administration protocols and trained
examiners. Details of the tests administered and norma-
tive values for the Framingham Original and Offspring
cohorts have been previously published [13,28]. Since
individual cognitive tests are scored measured on different
scales and since scores are known to be associated with
age and sex, we transformed the variables, separately by
sex, to obtain variables that are comparable across tests.
First, natural logarithmic transformations were applied to
normalize raw scores that had a skewed distribution.
Next, each variable was regressed on age and residuals
from these regressions were standardized using a z-score
transformation. The resulting standardized cognitive test
scores were then either summed to create 3 factors, each
characterizing a specific cognitive domain: verbal memory
(Factor 1, F1), visuospatial memory and organization
(Factor 2, F2) and attention and executive function (Fac-
tor 3, F3), or were used individually (Similarities [Sim],
Boston Naming Test [BNT] and Wide Range Achievement
Tests [WRAT]). Details of test source and parameters used
to define each individual test and factor are outlined in
Additional data file 1, table 1.

Genotyping
The Overview [23] describes the Affymetrix 100K SNP
GeneChip genotyping http://gmed.bu.edu/about/geno
typing.html and the Marshfield short-tandem repeat gen-
otyping performed by the Mammalian Genotyping
Service http://research.marshfieldclinic.org/genetics.
Only the SNP data were used for GWA studies whereas
both SNP and STR data were combined for linkage analy-
ses.

Statistical analysis
As detailed in the Overview [23], we used linear models
adjusting for first degree relationships via generalized esti-
mating equations (GEE) and family based association
tests (FBAT). All tests were performed using additive
genetic models to relate qualifying SNPs to multivariable-
adjusted residuals of the 9 MRI measures and the 6 cogni-
tive factors/tests described earlier. Qualifying SNPs (n =
70,897) were defined as autosomal SNPs with genotypic
call rate ≥80%, minor allele frequency ≥10% and in
Hardy-Weinberg equilibrium with p ≥ 0.001. Addition-
ally, for FBAT analyses ≥10 informative families were
required. For the linkage analyses, we used Merlin soft-
ware to compute multipoint identity-by-descent utilizing

10,592 informative SNPs and 613 short tandem repeats
selected to minimize LD [29,30]; we then used maximum
variance component analyses in SOLAR to compute LOD
scores as a measure of linkage [31].

Multivariable-adjusted trait residuals for the phenotypic
traits listed in Table 1 were computed using linear regres-
sion and the full set of all Framingham Study participants
in whom the phenotype of interest was available. For the
MRI analyses, residuals were derived from multivariable
linear regressions in SAS [32], adjusting for the variables
that we had previously found were related to MRI meas-
ures: age and if appropriate age-squared, current smoking
status, systolic blood pressure in mm Hg, use of anti-
hypertensive drugs and presence or absence of diabetes
mellitus, atrial fibrillation and electrocardiographic left
ventricular hypertrophy. Similarly, residuals were derived
for each cognitive measure from multiple linear regres-
sions and adjusting for the following covariates: birth
cohort by decade, education (high school, high school
graduate, some college or college graduate), Framingham
Stroke Risk Profile score, plasma homocysteine concentra-
tions (at the 20th Original cohort and the 6th Offspring
examinations) and apolipoprotein E genotype (ε4 +ve/
-ve). Unless otherwise specified, covariate data for all 15
phenotypic measures were drawn from the 26th Original
cohort and the 7th Offspring examinations. Data from sex-
specific regressions were pooled for the SNP-phenotype
association and linkage analyses. Winsorized residuals
(truncating extreme values at ± 3.5 standard deviations)
were used for linkage analysis of phenotypes with depar-
tures from normality as assessed by skewness and kurtosis
(TBV, temporal horn volume, F1, F2, F3, Sim, BNT and
WRAT).

Presentation of results
We used several strategies to explore the resulting pheno-
type-SNP association and linkage results. First, we used an
unbiased approach and collated the 50 strongest pheno-
type-SNP associations (those with the smallest p-value)
including 25 phenotype-SNP associations each for GEE
and FBAT analyses, and all linkage results with a LOD
score > 2.0. All SNPs were annotated using the UCSC
genome browser tables http://genome.ucsc.edu/ [33,34]
to examine if the SNP was within a gene and to identify
this gene.

Next, we examined the data for genes with pleiotropic
effects. We assessed if genes that were associated with
TCBV or WMH at p < 0.001 (as primary structural indica-
tors of cellular and vascular brain damage) were also asso-
ciated with at least two of the other brain MRI measures
(p < 0.01). We also evaluated if genes that were associated
with lower scores on either F1 or F3 at p < 0.001 (as pri-
mary indicators of amnestic, Alzheimer-type and vascular
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cognitive impairment) seemed associated with other cog-
nitive test measures.

Finally, we investigated SNP associations in candidate
genes. There are few candidate genes that have been
directly linked in prior studies to the endophenotypes
described in these analyses. Hence, we investigated genes
previously reported to be associated with stroke, Alzhe-
imer's disease, brain aging and vascular dementia in estab-
lished databases including the NCBI Gene, PubMed and
OMIM databases [35], the Alzforum Alzgene database
http://www.alzforum.org/res/com/gen/alzgene [36], and
the Science of Aging Knowledge Environment genes/inter-
vention database http://sageke.sciencemag.org/cgi/
genesdb [37]. All SNPs within 60 kb of the candidate
genes (listed in Additional data file 1, Additional table 2)
were examined for association with the 15 phenotypic
traits described in this paper. Only phenotype-SNP associ-
ations with a p-value < 0.001 are described in Table 4.

Results
The brain aging phenotypic traits available in the Fram-
ingham Study 100K SNP resource with details of the sam-
ple size, statistical transformation and details of the
covariates used for multivariable adjustment of each phe-
notype are provided in Table 1. The mean age of the 705
subjects was 62 ± 12 years, 46% were male, 79 were from
the Original Framingham cohort (enrolled in 1948–50)
while 626 belonged to the Offspring cohort. Table 2 (sec-
tions a and b) provide the top twenty-five phenotype-SNP
associations ranked in order by lowest p-value for the GEE
and FBAT models and Table 2 (section c) presents the phe-
notype-SNP associations with LOD scores ≥ 2.0 and the
corresponding 1.5 – LOD support interval. The strongest
phenotype-SNP association in GEE analyses was between
a SNP on the retinal cadherin gene CDH4 and TCBV
(rs1970546; p = 3.7 × 10-8) and this was the only associa-
tion that achieved genome-wide significance if we applied
a conservative Bonferroni correction as detailed in the
Overview (p < 5 × 10-8); in FBAT analyses the strongest
phenotype-gene association was between a SNP on the
gene SORL1 (rs1131497; p = 3.2 × 10-6) and performance
in Sim, a test of abstract reasoning. Assuming an additive
genetic model, a minor allele frequency of10% and a very
conservative α of 1 × 10-8 we had an 80% power to detect
an effect of 0.52 standard deviations (SD) in a given vari-
able. For TCBV this translates to an effect size of 1.71%
equivalent to8.5 years of brain aging.

We had previously reported high heritability for WMH. In
the current analyses examining associations between indi-
vidual SNPs and WMH there was one association that was
in the top 50 and others that were in the top 100, but
none were within the arbitrarily chosen cut-off for Table 2
which only details the top 25 phenotype-SNP associa-

tions. In FBAT analyses, rs1822285 and rs166085, on
chromosomes 11 and 5 respectively, were associated with
WMH (p = 6.4 × 10-5 and 9.3 × 10-5) but these SNPs are
not within known genes. In GEE analyses, two SNPs on
the biologically plausible gene CLDN10 or claudin 10, an
integral membrane protein that is a component of the
tight junction, were related to WMH (rs10508012 and
rs10508013, p = 3.3 × 10-5 and 4.9 × 10-5). Other extra-
genic SNPs and SNPs on biologically interesting genes
(the glial growth factor NRG1 and the potassium channel
protein KCNMA1) were also associated with WMH with p
values in the 10-5 to 10-4 range. We again observed the
linkage between WMH and a region on chromosome 4
that we had previously reported [38]. Within this linkage
peak (1.5 LOD support interval) were biologically inter-
esting candidate genes such as EVC and EVC1 related to
the Ellis van Creveld syndrome and GRK4, previously
related to salt-sensitive hypertension [39,40].

We observed that performance on the Wide-Range
Achievement Test (WRAT), a test of reading ability, was
linked to a region on chromosome 18p with a maximum
LOD score of 5.1 at rs1846090. The 1.5 LOD support
interval of this linkage peak includes an STR marker,
D18S53, that has been associated with dyslexia in some
prior studies [41] although not in others [42]. In the cur-
rent study the observed LOD score for WRAT at D18S53
(GATA11A06) was 2.5.

Table 3 provides all phenotype-SNP associations with a
GEE or FBAT p < 0.001 for a key phenotype identified a
priori, and a GEE or FBAT p < 0.01 for at least two other
phenotypes within each of two groups of related pheno-
types. These two groups were the brain MRI parameters
(with TCBV and WMH as the key phenotypes) and the
cognitive tests (run once with F1 and once with F3 as the
key phenotype). If adjacent SNPs were in significant link-
age disequilibrium [LD] (r2 > 0.80) results are only pre-
sented for the strongest phenotype-SNP association noted
within the LD block. For the MRI parameters, GEE models
identified 10 SNPs and FBAT models identified 7 SNPs
using TCBV as the index phenotype and none using WMH
as the index phenotype; among these were 4 SNPs on
PDE3A and one each on PDE4B and SCN8. For the cogni-
tive phenotypes GEE models identified 7 phenotype-SNP
associations using F1 as the key phenotype and 4 using F3
as the key phenotype; FBAT models did not identify any
phenotype-SNP associations meeting these prespecified
criteria.

We identified 163 potential candidate genes and looked
for phenotype-SNP associations using all SNPs on the
100K Affymetrix gene chip that were within 60 kb of the
candidate gene. 23 genes had no analyzable SNPs within
the 100K Affymetrix gene chip while 140 genes had 1430
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Table 2: Structural and Functional Brain Aging (MRI and Cognitive Testing) Phenotypes† for FHS 100K Project: Results of Association 
and Linkage Analyses

2, section a: GEE, Top 25 p-values

Phenotype SNP Chromosome Physical location GEE p-value FBAT p-value Gene Region (within 60 kb)

ATCBV rs1970546 20 59287333 4.0 × 10-8 0.005 CDH4

F3 rs2179965* 1 88514033 1.1 × 10-6 0.013

Nam rs1155865 4 67562623 1.6 × 10-6 0.554

F3 rs2832077 21 29062892 1.8 × 10-6 0.007

F2 rs2352904 14 48442551 2.1 × 10-6 0.012

F2 rs6914079* 6 14704344 2.2 × 10-6 0.018

F2 rs9325032 5 146395409 2.8 × 10-6 0.008

ALLV rs2847476 11 113696226 3.0 × 10-6 0.001 NNMT

Sim rs3891355 12 105453162 3.2 × 10-6 0.089 POLR3B, RFX4

ATBV rs5028798 11 34562011 3.3 × 10-6 0.394 EHF

Nam rs530965 11 78742749 3.5 × 10-6 0.119

Nam rs9303401 17 54202944 4.9 × 10-6 0.099 PPM1E

AFBV rs952700 11 99090946 5.7 × 10-6 0.003 CNTN5

F3 rs1031381 11 133593892 6.0 × 10-6 0.075 NCAPD3

F2 rs10489896* 1 230890353 6.2 × 10-6 0.109 TARBP1

WRAT rs9300212 12 33592433 8.2 × 10-6 0.002

Nam rs1831521 9 90488911 8.4 × 10-6 0.002 DIRAS2

F3 rs934299 2 137172672 9.0 × 10-6 0.318

ALTHBV rs360929 4 153265305 9.1 × 10-6 0.055

F2 rs2893363 7 29952294 9.6 × 10-6 0.812 C7orf41

WRAT rs10502991 18 50243287 1.0 × 10-5 0.001

APBV rs2769965 9 79048598 1.1 × 10-5 0.012

APBV rs719435 7 31324796 1.1 × 10-5 0.188 CCDC129

F1 rs9292769 5 40433668 1.1 × 10-5 0.163

Nam rs10506718 12 75377929 1.1 × 10-5 0.402

2, section b: FBAT, Top 25 p-values

Trait SNP Chromosome Physical location GEE p-value FBAT p-value Gene Region(s) (within 60 kb)

ALLV rs7124781 11 42513374 0.008 2.0 × 10-7

Sim rs1131497 11 121007955 0.008 3.2 × 10-6 SORL1

WRAT rs10506065 12 30342307 0.050 5.0 × 10-6

AFBV rs3852286 7 140126618 0.145 6.5 × 10-6 BRAF and MRPS33

WRAT rs4529807 10 22358107 0.013 1.1 × 10-5 DNAJC1

F3 rs847342 14 71805791 0.441 1.3 × 10-5 RGS6
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AFBV rs719775 3 64366493 0.001 1.8 × 10-5

Sim rs936111 15 99376659 0.014 2.1 × 10-5 LRRK1

ATBV rs2143881 6 50960846 0.077 2.1 × 10-5 TFAP2B

AHPV rs9293140 5 24643203 0.092 2.1 × 10-5 CDH10

AFBV rs9288446* 2 212907533 0.001 2.3 × 10-5 ERBB4

APBV rs1472962 4 95949555 0.004 3.1 × 10-5 PDLIM5

ATBV rs2793772 13 99029574 0.047 3.3 × 10-5 CLYBL

F2 rs1333583 13 82037151 0.031 3.4 × 10-5

ATBV rs10497352 2 170781278 0.005 3.6 × 10-5 ZNF650

F1 rs497836 13 93605509 0.020 3.8 × 10-5 GPC6

APBV rs6459928 7 158428045 0.271 4.0 × 10-5 VIPR2

AHPV rs1963442 3 75872661 0.046 4.3 × 10-5 ZNF717

APBV rs10503238 8 4027465 0.002 4.4 × 10-5

F2 rs2861215 2 77958447 0.006 4.7 × 10-5

Nam rs9311168 3 37952421 0.067 4.9 × 10-5 CTDSPL

F2 rs2029395 2 1.8 × 10-8 0.027 4.9 × 10-5 TTN, FLJ39502

ATCBV rs10510717 3 41307494 0.005 5.0 × 10-5 CTNNB1

ATBV rs1433527 2 1.8 × 10-8 0.028 5.1 × 10-5 DDX18

2, section c: Linkage Peaks with LOD scores ≥ 2.0.

Trait SNP closest to 
linkage peak

Chromosome Physical location 1.5 – LOD
support interval

start

1.5 – LOD support
interval end

LOD score

WATBV† rs1547275 9 79548023 76128637 86702472 2.81

WF3† rs2975420 8 19534278 12651557 22836499 2.20

WNam† rs2765241 1 62439617 59085658 67006164 2.95

WNam† rs293966 11 26536069 21237681 33363547 2.14

WWRAT† rs10512187 9 87400439 84893406 110115339 2.04

WWRAT† rs1328822 13 93605666 87815515 97536766 2.50

WWRAT† rs1846090 18 14573728 13423610 19583575 5.10

WWRAT† rs10518241 19 3540074 1888178 6189414 2.33

BMRIZLWMH
VMV

rs4426714 4 5052671 105905 9505355 2.20

BMRIZLWMHV
MV

rs236535 17 65788911 59677087 68475624 2.09

Autosomal SNPs with genotypic call rate ≥ 80%, minor allele frequency ≥ 10%, Hardy-Weinberg test p ≥ 0.001, and ≥10 informative families for FBAT. Genes in bold are 
highlighted in discussion
*Indicates a similar result for this trait was observed (but not shown) for a SNP with r2 = 1 to the reported SNP
†Winsorized residuals were analyzed, hence trait names are prefixed with a 'W'; linkage results in bold are highlighted in the discussion

Table 2: Structural and Functional Brain Aging (MRI and Cognitive Testing) Phenotypes† for FHS 100K Project: Results of Association 
and Linkage Analyses (Continued)
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analyzable SNPs within 60 kb of the gene. Table 4 shows
the candidate genes and all phenotype-SNP associations
with a GEE or FBAT p-value < 0.001. In this analysis we
included all SNPs regardless of MAF since in prior studies
significant phenotype-SNP associations had been demon-
strated for some of these genes with SNPs having MAF <
10%.

Discussion
This is the first GWA study of volumetric brain MRI and
cognitive phenotypes in a community-based sample of
adults with data drawn from two generations of persons
within the same families. The complete results of the asso-
ciation and linkage analyses are available at our website
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/
study.cgi?id=phs000007. This resource has the potential
to detect novel susceptibility genes for brain aging, to
examine the relevance within humans of promising can-

didate gene associations with these diseases reported in
animal models, and to replicate findings observed in
other cohort studies. We used several strategies to priori-
tize phenotype-SNP associations, but there remain other
unique ways of looking at these data that we and others
will continue to explore.

In our untargeted approach of ranking SNP associations
by the strength of the p-value, we found several pheno-
type-SNP associations within biologically interesting
genes (Table 2). The most exciting was a strong associa-
tion between two SNPs in or adjacent to the gene SORL1
and performance on tests of abstract reasoning
(rs1131497; FBAT p = 3.2 × 10-6 and rs726601; FBAT
p=8.2 X 10-4). SORL1 is an apolipoprotein E receptor,
binds alpha-2-macroglobulin, and is one component of a
large multimeric complex, termed the retromer complex
that is involved in retrograde transport of proteins from

Table 3: SNP Associations with a GEE or FBAT p-value < 0.001 for selected phenotype and p values < 0.01 for at least two other 
phenotypes within selected group of related phenotypes

Selected Phenotype : (p < 
0.001)

SNP Chr Physical Position Gene MRI phenotype showing strongest 
association with SNP

GEE p-value

TCBV rs646860 1 60310322 C1orf87 APBV 6.5 × 10-4

TCBV rs7763081 6 53816274 LRRC1 ATCBV 6.5 × 10-4

TCBV rs1444644 12 20457227 PDE3A ATBV 8.8 × 10-5

TCBV rs10505865 12 20453861 PDE3A AFBV 1.4 × 10-4

TCBV rs1444645 12 20457264 PDE3A ATBV 1.8 × 10-4

TCBV rs1444629 12 20454174 PDE3A ATCBV 2.7 × 10-4

TCBV rs303816 12 50469752 SCN8A ATCBV 6.1 × 10-4

TCBV rs2827980† 21 23524857 ATCBV 5.9 × 10-5

TCBV rs9297594† 8 120287483 AFBV 1.3 × 10-4

TCBV rs10512927† 5 50346833 ATCBV 8.5 × 10-4

Selected Phenotype : (p < 
0.001)

SNP Chr Physical Position Gene Phenotype showing strongest 
association with SNP

FBAT p-value

TCBV rs7740148 6 35063681 ANKS1 AFBV 0.003
TCBV rs6496742 15 89324040 PRC1 ATCBV 6.4 × 10-4

TCBV rs2788646 1 66518974 PDE4B ATCBV 3.3 × 10-4

TCBV rs10500956† 11 23435031 AFBV 0.003
TCBV rs2059943† 8 107140783 ATCBV 1.4 × 10-4

TCBV rs853256† 3 64290504 AFBV 7.5 × 10-4

TCBV rs853260† 3 64289592 AFBV 4.4 × 10-4

Selected Phenotype : (p < 
0.001)

SNP Chr Physical Position Gene Phenotype showing strongest 
association with SNP

GEE p-value

F1 rs4733809 8 1.29E+08 TMEM75 Sim 1.5 × 10-4

F1 rs3923615 11 24638108 LUZP2 F1 1.1 × 10-4

F1 rs10515155 17 53836943 RNF43 F1 3.6 × 10-

F1 rs1204116 6 62462055 KHDRBS2 F1 7.3 × 10-4

F1 rs708891 12 1.18E+08 CCDC60 F1 4.7 × 10-4

F1 rs10515159 17 54157692 RAD51C F1 3.1 × 10-4

F1 rs10506214 12 41397957 F3 5.8 × 10-4

F3 rs608825 1 2.33E+08 EDARADD F3 5.5 × 10-4

F3 rs957603 15 38796960 RAD51 F3 1.5 × 10-4

F3 rs10506214† 12 41397957 F3 5.8 × 10-4

F3 rs2109479 5 56979996 F3 4.2 × 10-4

Table is ordered by primary phenotype (TCBV, F1 or F3; whether significant phenotype-SNP association was based on GEE or FBAT p-value and then alphabetically by gene 
name.
* Genes in bold and highlighted in discussion; † SNPs were not within 60 KB of a known gene.
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endosomes to the trans-Golgi network [43,44]. This retro-
mer complex appears to play a crucial role in the transpor-
tation of transmembrane proteins implicated in
Alzheimer's disease, such as amyloid precursor protein

(APP) and β-site APP cleaving enzyme (BACE1). SORL1
protein is underexpressed in the frontal lobes of persons
with AD compared to controls and the SORL1 gene has
recently been associated with the risk of developing AD in

Table 4: Phenotypic Associations With Candidate Genes Previously Related To Stroke, Dementia And Brain MRI Or Cognitive 
Function Phenotypes: Phenotype-SNP Associations With A GEE Or FBAT P-Value < 0.001

Gene Phenotype SNP Chr Physical Position GEE_Pvalue FBAT_Pvalue

NGFB AHPV rs10489531 1 115495044 9.7 × 10-4 0.046
PRSS25 ATBV rs363685 2 74726491 2.5 × 10-4

ATCBV rs363685 2 74726491 5.7 × 10-5

GRK4 F1 rs2105380 4 3019934 0.276 5.8 × 10-4

HMGE ATBV rs4689584 4 7179291 0.035 1.0 × 10-4

APBB2 F1 rs10517001 4 41051593 1.4 × 10-4 0.009
SNCA Sim rs3796661 4 91044685 2.6 × 10-4 0.332

AHPV rs2870028 4 91122391 3.2 × 10-4 0.180
AHPV rs7678651 4 91125549 1.3 × 10-4 0.102
AHPV rs10516848 4 91132390 1.6 × 10-4 0.115

PDE4D WRAT rs295973 5 58945866 5.3 × 10-4 0.060
Sim rs10514882 5 59170282 6.4 × 10-5

Sim rs9292216 5 59187886 2.4 × 10-4

DCDC2 F3 rs10484657 6 24224829 0.017 9.5 × 10-4

ATCBV rs10484657 6 24224829 6.0 × 10-4 0.015
THBS2 ATBV rs6937001 6 169382718 6.0 × 10-4 0.021
GATA4 WRAT rs7006733 8 11645399 0.034 3.1 × 10-4

NRG1 ATCBV rs1383893 8 31844190 0.407 8.9 × 10-4

F2 rs10503906 8 32291504 0.187 4.2 × 10-4

AFBV rs10503919 8 32519284 1.9 × 10-4 0.288
BMRIZLWMH rs10503926 8 32660758 8.7 × 10-5 0.009
VMV rs10503927 8 32662772 2.0 × 10-4 0.002

VLDLR ATCBV rs502309 9 2562909 5.4 × 10-6 0.157
Nam rs2168136 9 2584577 1.6 × 10-4 0.006

NTRK2 F1 rs10512152 9 84457363 7.6 × 10-5 0.018
AFBV rs1573219 9 84617176 0.174 5.6 × 10-4

AFBV rs7038866 9 84617461 0.146 3.6 × 10-4

TEK ATBV rs628873 9 27162838 4.9 × 10-4 0.051
BACE1 APBV rs1261791 11 116705848 0.021 3.1 × 10-4

SORL1 Sim rs1131497 11 121007955 0.008 3.2 × 10-6

Sim rs726601 11 120986617 0.046 8.2 × 10-4

VWF ATCBV rs216903 12 5975760 0.149 9.5 × 10-4

A2M F3 rs2889717 12 9178068 9.3 × 10-5

LRRK2 WRAT rs2249017 12 38847487 5.5 × 10-4 0.061
F1 rs7975693 12 38874945 8.1 × 10-5 0.005
AFBV rs10506151 12 38957265 3.7 × 10-4 1.6 × 10-4

ATBV rs10506151 12 38957265 9.7 × 10-4 0.371
CNTN1 ATBV rs10506176 12 39561067 8.8 × 10-4 0.622
LTA4H Sim rs10492226 12 94906457 6.7 × 10-4

IGF1 ALLV rs1980236 12 101270359 0.046 9.3 × 10-4

LTB4R2 APBV rs724165 14 23876069 4.5 × 10-4 0.162
NTRK3 ALLV rs10520671 15 86347520 6.2 × 10-5 0.062
CCL2 WRAT rs1024612 17 29573469 0.231 7.0 × 10-4

PRKCA F1 rs9303511 17 62158093 0.068 7.9 × 10-4

CST3 AOBV rs1158167 20 23526189 6.5 × 10-4 0.032
PRNP APBV rs2326510 20 4649211 0.000718 0.064794
BACE2 F1 rs2007397 21 41438062 0.030 2.2 × 10-4

F1 rs10483073 21 41499167 3.5 × 10-4

Nam rs10483073 21 41499167 1.7 × 10-4

*Genes in bold are highlighted in discussion section.
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6 population samples [45,46]. Only 7 SNPs on or adja-
cent to the SORL1 gene were evaluated in the 100K
Affymetrix gene chip. One of these SNPs on SORL1 that
was associated with abstract reasoning (rs726601, FBAT p
= 8.2 × 10-4, Table 4) was in LD (r2 > 0.8) with SNPs
(rs2282649, rs1010159) strongly associated with AD in
these studies [45,46].

In unbiased analyses, we also identified 3 genes that were
associated with measures of frontal or parietal brain vol-
ume and with tests of executive function and abstract rea-
soning. These 3 genes, ERBB4, PDLIM5 and RFX4, (FBAT
ranks #11 and 12, GEE rank #9) have each been previ-
ously associated with schizophrenia or mood disorders,
conditions known to be associated with smaller frontal
brain volumes and poorer performance on tests of execu-
tive function, even in unaffected family members [47,48].
ERBB4 is a neuregulin (NRG1) receptor involved in fore-
brain development and N-methyl-D-aspartate (NMDA)
receptor function. It has been associated with schizophre-
nia wherein excess of the IVS 12–15C > T has been noted
(odds-ratio 2.98) [49,50]. NRG1 itself has been associated
with schizophrenia in the Icelandic DeCODE population
[51] and in other studies [52-54], with accelerated lobar
atrophy [52], and with bipolar disorders [55,56]. As
shown in Table 4, NRG1, like ERBB4, was associated with
frontal brain volume (FBV) in our sample. PDLIM5 poly-
morphisms have been associated with schizophrenia
(rs2433320 and rs2433322) [52,55] and bipolar disorder
(rs10008257 and rs2433320) [57]. Additionally the
PDLIM5 protein is a homolog of AD7c-NTP, a neural
thread protein associated with Alzheimer's disease, and is
being studied as a possible CSF biomarker of AD [58]. A
final group of 3 genes, CDH4, VIPR2, CTNNB1 (GEE rank
#1 and FBAT ranks #17 and 24) have been shown in ani-
mal studies to play an important role in neural tract and
synaptic development [59-61]. Using linkage analyses, we
were able to replicate a previous report that dyslexia was
linked to a short-tandem repeat marker D18S53 on chro-
mosome 18p11.2.

We examined pleiotropic effects by identifying SNP asso-
ciations across two sets of related phenotypes. In these
analyses, we uncovered a different set of genes, none of
which have been related to brain volumes, cognitive func-
tion, stroke or dementia in prior population studies.
However, there are biologically interesting genes related
to brain volumes including PDE3A, previously related to
all aspects of thrombosis [62], SCN8A linked to cerebellar
ataxia with mental retardation [63], and PDE4B which has
been associated with schizophrenia [64].

We also evaluated SNPs within some candidate genes pre-
viously reported to be associated with stroke and demen-
tia in animal studies or in population samples, and

observed that several of these SNPs were associated with
MRI and cognitive endophenotypes that increase the risk
of these conditions; this gene list is representative but not
comprehensive. Among these genes are PDE4D and
LTA4H that have been previously related to stroke in sev-
eral population samples [9,10]; NGFB, NTRK2 and
NTRK3 (a neural growth factor and two receptors for neu-
ral growth factors) genes, previously associated with per-
formance on memory tasks in animal studies [65,66];
BACE1, PRNP and A2M, genes associated with AD in case-
control or family-based association studies [36,67,68],
VLDLR, a gene previously associated with an increased
risk of dementia in the presence of vascular risk factors
[69] and LRRK2, a gene associated with an increased risk
of Parkinson's disease in population samples [70], but
also thought to be an enabling gene for tau pathology
[71]. There has been only one prior study that directly
related a gene (KIBRA) to one of the phenotypes (verbal
memory) included in the current analyses. We did not
have any SNPs in significant LD with the SNP
(rs17070145) described in that study [72]. We have cho-
sen not to include details of the correlation between SNPs
from the 100K and the specific SNP(s) studied within can-
didate genes by prior investigators since doing so would
have expanded our Table 4 beyond the size and scope of
this article. For example, prior associations of several of
the candidate genes with related clinical disease pheno-
types (for example, PDE4D with ischemic stroke, SORL1
with AD) have described allelic heterogeneity. In these
studies, multiple SNPs and haplotypes within the gene
were associated with the phenotype, even within Cauca-
sian populations [73-75].

Limitations
Our study had several limitations. A healthy survivor bias
is likely as participants in this sample had to survive
beyond 1990 to provide DNA. Further, persons undergo-
ing MRI had to travel to an MRI center, provide informed
consent, and have no contraindication to the study. We
have previously shown that persons undergoing brain
MRI were significantly healthier than the overall sample
of Framingham participants alive at the time [15].

Our sample of 705 related persons may have a limited
power to uncover associations as compared to the larger
sample that includes unrelated subjects (on whom 100K
genotyping was not obtained). This is especially true for
hippocampal volumes, which were computed based on
hand-drawn hippocampal outlines; the number of per-
sons in our study dataset with available hippocampal vol-
umes was only 327. Further, we currently have only a
single measure of brain MRI and cognitive tests in these
subjects. However, all these participants are being restud-
ied with a second cycle of MRI and cognitive testing. The
genes associated with changes in these measures over time
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may be stronger candidate genes for usual and pathologi-
cal brain aging processes than the genes related in current
analyses to cross-sectional endophenotypes.

The 100K Affymetrix GeneChip provides limited (~30%)
coverage of the genome, with no coverage of several gene
rich areas and key candidate genes such as APOE [76].
However, the forthcoming NHLBI funded 550 K genome-
wide scan on over 9000 Framingham participants (dis-
cussed in the Overview) should permit validation of our
initial 100K SNP associations in a larger sample and will
provide more dense coverage of the genome. Population
stratification is not a major concern in this study sample
due to the high homogeneity of ancestry (European).
However, for the same reason we cannot detect race or
ethnicity-specific variations in these phenotype-SNP asso-
ciations. There are significant issues of multiple-testing
which are addressed in the Overview; when testing for
association with all alleles having a minor allele frequency
>5%, it has been estimated that 1,000,000 tests are con-
ducted across the entire human genome, hence for an α of
0.05, using a conservative Bonferroni correction (0.05 ×
10-6) only tests with a p value < 5 × 10-8) would be consid-
ered significant; however others have argued that this is
too stringent a threshold since it ignores correlation
between individual SNPs [77-79]. We emphasize that the
current study is hypothesis-generating and our findings
need to be replicated in other population samples.

Conclusion
The untargeted genome-wide approach to detect genetic
associations with brain aging identified several biologi-
cally interesting genes (such as genes previously related to
AD and schizophrenia) as possible novel candidates
related to brain structure and function in middle-aged to
elderly populations. Our data also suggest that genes pre-
viously associated with clinical disease may be associated
with clinical endophenotypes known to increase the risk
of developing these conditions. Finally, our database will
serve as a resource for in silico replication of findings
noted in other population-based samples, and in animal
models of brain aging, stroke, and neurodegenerative dis-
eases.
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