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Abstract
Background: Human linkage and animal QTL studies have indicated the contribution of genes on Chr17 into
blood pressure regulation. One candidate gene is PNMT, coding for phenylethanolamine-N-methyltransferase,
catalyzing the synthesis of epinephrine from norepinephrine.

Methods: Fine-scale variation of PNMT was screened by resequencing hypertensive (n = 50) and normotensive
(n = 50) individuals from two European populations (Estonians and Czechs). The resulting polymorphism data
were analyzed by statistical genetics methods using Genepop 3.4, PHASE 2.1 and DnaSP 4.0 software programs.
In silico prediction of transcription factor binding sites for intron 1 was performed with MatInspector 2.2 software.

Results: PNMT was characterized by minimum variation and excess of rare SNPs in both normo- and
hypertensive individuals. None of the SNPs showed significant differences in allelic frequencies among population
samples, as well as between screened hypertensives and normotensives. In the joint case-control analysis of the
Estonian and the Czech samples, hypertension patients had a significant excess of heterozygotes for two
promoter region polymorphisms (SNP-184; SNP-390). The identified variation pattern of PNMT reflects the effect
of purifying selection consistent with an important role of PNMT-synthesized epinephrine in the regulation of
cardiovascular and metabolic functions, and as a CNS neurotransmitter. A striking feature is the lack of intronic
variation. In silico analysis of PNMT intron 1 confirmed the presence of a human-specific putative Glucocorticoid
Responsive Element (GRE), inserted by Alu-mediated transfer. Further analysis of intron 1 supported the possible
existence of a full Glucocorticoid Responsive Unit (GRU) predicted to consist of multiple gene regulatory
elements known to cooperate with GRE in driving transcription. The role of these elements in regulating PNMT
expression patterns and thus determining the dynamics of the synthesis of epinephrine is still to be studied.

Conclusion: We suggest that the differences in PNMT expression between normotensives and hypertensives
are not determined by the polymorphisms in this gene, but rather by the interplay of gene expression regulators,
which may vary among individuals. Understanding the determinants of PNMT expression may assist in developing
PNMT inhibitors as potential novel therapeutics.
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Background
Hypertension is a critical risk factor for cardiovascular dis-
ease. Estimates from the studies of familiar aggregation
indicate that approximately 30% of blood pressure vari-
ance is due to a genetic component [1]. Human Chr17
harbors genes possibly playing an important role in blood
pressure regulation [2]. Multiple evidence from the
genetic analysis of hypertensive rats indicates that genes
on Chr10, syntenic to human Chr17, might be implicated
in the aetiology of hypertension [3,4]. Consistently, there
is a group of markers at an interval 60–67 cM from the
proximal telomere on Chr17, that has been reported to
demonstrate significant evidence of linkage in human
families with clustering of essential hypertension [2,4].
Furthermore, for four pseudohypoaldosteronism type II
(PHAII; Gordon's syndrome) pedigrees characterized by
Mendelian inheritance of the disease, four different muta-
tions, possibly leading to increased salt reabsorption and
intravascular volume were found in PRKWNK4 (WNK
lysine deficient protein kinase 4) at 17q21-22 [5].

Angiotensin Converting Enzyme (ACE) is the only Chr17
candidate gene investigated in detail for the role in the
aetiology of essential hypertension. Still, association stud-
ies targeted to ACE polymorphisms are inconsistent about
the role of ACE variants providing susceptibility to hyper-
tension [1]. Another functionally relevant candidate at
17q21-22 is PNMT, coding for phenylethanolamine-N-
methyltransferase, which has, however, attracted less
attention as an affecter of human blood pressure. PNMT
catalyzes the synthesis of epinephrine from norepine-
phrine, the last step of catecholamine biosynthesis.
Although, it is mainly expressed in neuroendocrine chro-
maffin cells in the adrenal medulla, extraadrenal PNMT
has been suggested to be involved in the development of
hypertension in rat [6]. In human phaeochromocytomas,
catecholamine-producing neuroendocrine tumours aris-
ing from chromaffin cells or extra-adrenal paraganglian,
50–60% of patients suffer from sustained and 30% from
paroxysmal hypertension [7]. Inhibitors of PNMT reduce
its activity in the brainstem and have reported to lower
blood pressure in the spontaneously hypertensive rats
(SHR) [8]. Pnmt mRNA expression in Central Nervous
System (CNS) was significantly greater in SHR compared
to normotensive strains, and was positively correlated
with systolic blood pressure [9]. However, comparative
sequencing of the rat Pnmt coding regions has revealed no
sequence differences between stroke-prone spontane-
ously hypertensive rat (SHRSP) and normotensive Wistar-
Kyoto rat genes [10]. Although Pnmt expression, its regu-
lation, and involvement in blood pressure maintenance
have been intensively studied for animal (rat, bovine)
models [11], there is a scarce of knowledge about human
PNMT gene. The early works on cloning of the human
PNMT gene [12,13] revealed that two types of mRNA tran-

scripts are produced through the use of alternative pro-
moters. To our knowledge the only published study
focusing on PNMT gene and hypertension investigated
the role of two 5'upstream Single Nucleotide Polymor-
phisms (SNPs) and reported a significant enrichment of
the G-allele of PNMT-390 promoter variant for hyperten-
sive African Americans, but not for the Greeks and Amer-
icans of European decent [14]. We aimed (1) to
resequence the entire human PNMT gene in hypertensive
and normotensive individuals of European origin in order
to uncover the fine-scale sequence variation and to iden-
tify novel hypertension-susceptibility polymorphisms;
(2) to apply population genetics statistics and in silico
methods to trace the evolutionary pressure on human
PNMT and to explore a gene regulatory potential of PNMT
first intron reflecting the effect of purifying selection.

Methods
DNA samples of hypertensive and normotensive 
individuals
The study has been approved by the Ethics Committee on
Human Research of University of Tartu, Estonia (permis-
sion no 122/13,22.12.2003). All recruited individuals
gave their informed consent prior to their inclusion in the
study. Diagnosis and classification of hypertension was
carried out by "Practice Guidelines for primary care physi-
cians: 2003 ESH/ESC hypertension Guidelines" Journal of
Hypertension 21(10)" pp. 1779–1786. Estonian individ-
uals with primary hypertension (n = 25) were recruited
into the study by blood pressure specialists (cardiologist
M.V.; nephrologist M.O.) during their ambulatory visit or
hospitalization in the Cardiology and Internal Medicine
Clinics at the Tartu University Hospital, Estonia. Czech
individuals with essential hypertension (n = 25) were
recruited from the Cardiology Department of the 2nd

Clinic of Internal Medicine, Faculty Hospital Královské
Vinohrady in Prague (coordinated by V.K.). Details of the
collection of Czech patients and normotensives are pub-
lished elsewhere [15]. The criteria for the selection of
hypertensive individuals for the study:

1. Hypertension diagnosed by a specialist (cardiologist,
nephrologist)

2. Grade 2 or severe hypertension at diagnosis (systolic
blood pressure, SBP >160 mmHg; diastolic blood pres-
sure, DBP >100 mmHg)

3. Age at diagnosis for men ≤55 and women ≤65 years (to
exclude secondary, age-related hypertension)

4. Exclusion of secondary causes for hypertension (such as
diabetes, primary renal failure) by a specialist clinician
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5. Family background of high blood pressure (to maxi-
mize genetic susceptibility)

Hypertension was documented among 1st degree relatives
for 84% (n = 21) of Estonian and 92% (n = 23) of Czech
patients and among 2nd degree relatives for 28% (n = 7) of
Estonian hypertensives (for Czech: data not available).
Multiple hypertensive family members were reported for
36% (n = 9) of Estonian and 48% (n = 12) of Czech
patients.

6. All recruited individuals received antihypertensive
treatment prescribed by a specialist. Blood pressure meas-
urements under antihypertensive therapy were docu-
mented: SBP mean 142.8 and range 115 – 215 mmHg;
DBP mean 88.4 and range 80–105 mmHg).

A classical case-control study maximizes its power by sam-
pling a clinically homogeneous group of patients. The aim
of our resequencing and mutation screening study was to
obtain exhaustive coverage of PNMT variation in hyper-
tensives. Thus, a high proportion of included patients
(Estonians 56%; Czech 92%) exhibited a spectrum of het-
erogeneous high-blood pressure related organ complica-
tions (MI, CAD, stroke, end-stage renal disease).

Normotensives (age at recruitment >35 years) exhibited
age-adjusted normal blood pressure based on repeated
measurements, lack of family history of essential hyper-
tension, absence of organ damages and had never been
prescribed antihypertensive medication. Estonian normo-
tensives (n = 25) were recruited in collaboration with
Estonian Blood Centers across Estonia, including only
long-term blood donors exhibiting optimal (<120/<80
mmHg)/normal (120–129/80–84 mmHg) blood pres-
sure. Hypertensive and normotensive groups did not dif-
fer in Body Mass Index (BMI), a risk factor for
hypertension (Mann-Whitney U-test; p > 0.05, two-
tailed). BMI ranged for Estonian hypertensives 28.7 ± 6.3,
and normotensives 25.2 ± 3.0; and for Czech hyperten-
sives 26 ± 2.3, and normotensives 24.6 ± 2.5.

Re-sequencing the human PNMT gene
The sequence of human PNMT gene [GenBank:J03280.1]
has been obtained from NCBI GenBank database [16].
PCR and sequencing primers for PNMT (Table 1) were
designed using the web-based Primer3 software [17]. The
uniqueness of all the primers was checked using BLAST
[18]. The PCR primers were designed to cover the entire
coding region and parts of 5' and 3' UnTranslated Regions
(UTR) (3148 bp); and amplify two overlapping PCR frag-
ments, 1846 bp and 1842 bp respectively. Amplification
was performed with 100 ng genomic DNA using Long
PCR Enzyme Mix (MBI Fermentas). Conditions for PCR
amplifications, product purification, sequencing,

sequence contig assembly and polymorphism identifica-
tion are described in detail elsewhere [19].

Data analysis
Testing of Hardy-Weinberg equilibrium (α = 0.05); esti-
mation of allele and genotype frequencies of identified
Single Nucleotide Polymorphisms (SNPs); and compari-
son of allelic/genotypic as well as promoter haplotype dis-
tribution between hypertensives and normotensives
(Fisher's exact test; α = 0.05) were implemented with
Genepop software (Version 3.4) [20]. Promoter haplo-
types were predicted by the Bayesian statistical method in
the program PHASE 2.1 [21].

Sequence diversity parameters were calculated by DnaSP
software (Version 4.0) [22]. Nucleotide diversity provides
a measure of genetic variation that is normalized by the
number of sampled chromosomes. We calculated two
conventional measures of nucleotide diversity: (i) π, the
direct estimate of per-site heterozygosity derived from the
observed average pairwise sequence difference and (ii)
Watterson's θ [23], the population mutation parameter
representing an estimate of the expected per-site heterozy-
gosity based on the number of segregating site (S).
Tajima's D statistic (DT) [24] was calculated to determine
if the observed pattern of human PNMT gene diversity is
consistent with the standard neutral model. The DT value
is the difference between π and θ estimates. In case of neu-
trality π equals θ, and thus DT statistic equals zero. The
direction of DT statistics (either <0 or >0) is potentially
informative about the evolutionary and demographic
forces that the population has experienced. Significant
positive DT values indicate an excess of intermediate-fre-

Table 1: PCR and sequencing primers for human PNMT gene

Primers Sequence 5'-3'

PCR primers for the first and second gene fragments
PNMT_PCR1_F AACCCGAACCTTCTGTCCTC
PNMT_PCR1_R CAGAGTTAGACTGAACCCAGCTC
PNMT_PCR2_F GCTCAGAATTGAGAGCTAAGGTG
PNMT_PCR2_R TGTTTGTGACTTCACCTCTCTGA
Sequencing primers for the first PCR fragment
PNMT_seq1_F CTAAGTGCATTAGCACAGCTCAC
PNMT_seq1_R ATCCTCCCCACCCATTCATC
PNMT_seq2_F GTCTAAAGATTGTGGGGGTGAG
PNMT_seq2_R CTCTCCTAAGGGATGTTGCTCTT
PNMT_seq3_F ACGAGGGACAAGAGGTCGT
PNMT_seq3_R GTGGATCCTAAGGTTGGGAGTT
Sequencing primers for the second PCR fragment
PNMT_seq4_F ATAGGAGGAAATGGAGGCAGA
PNMT_seq4_R CCTGAACCAATGTCGATGAG
PNMT_seq5_F TTGCAGAGGAGAAGGAAGAACTA
PNMT_seq5_R TCAGCAGCGTGGTGATGT
PNMT_seq6_F TGCTGGCAGGATAAGGAG
PNMT_seq6_R AAAAAGCCTAGGGTGAATGTCTC
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quency alleles consistent with either balancing selection
or population bottleneck, whereas significant negative DT

values indicate an excess of rare SNPs consistent with
either recent directional selection or an increase in popu-
lation size.

In silico prediction of transcription factor-binding sites
(TFBS) for PNMT intron 1 was carried out by MatInspec-
tor 2.2 [25,26] online software. The program identifies
TFBS in nucleotide sequences using large library of posi-
tion weight matrices (PWM) and is based on the informa-
tion about experimentally defined TFBSs collected in the
TRANSFAC database [27]. The presence of repetitive
sequences was analyzed by RepeatMasker online software
[28].

Results
Resequencing of human PNMT reveals low diversity
We resequenced the human PNMT genomic sequence (in
total 3187 bp) in hypertensive (n = 50) and normotensive
(n = 50) individuals originating from two European pop-
ulations. The analyzed region (from -882 to +2305 rela-
tive to ATG) included the entire 5' and 3'UTR regions,
three exons (424 bp, 208 bp and 525 bp respectively) and
two introns. The identified diversity patterns supported
the conservative nature of the PNMT gene. We determined
only three rare genic polymorphisms; in contrast, the
upstream region harboured four SNPs, two of which (SNP
-184 A/G; SNP -390 A/G) are previously characterized

common variants (Table 2, Figure 1). Majority of the SNPs
were identified in both populations and none was exclu-
sively present in only hypertensive individuals. Compared
to a data set of 74 genes [29], characterized by a mean
nucleotide diversity parameter π = 0.00080 for European
Americans, PNMT gene exhibited approximately three
times lower diversity among studied populations includ-
ing both normotensive and hypertensive individuals (π =
0.00026 – 0.00032; Table 3). As the only identified non-
synonymous mutation (Exon 3; SNP +1517; Ala->Thr)
was present in both populations for individuals with nor-
mal (Major Allele Frequency, MAF = 6%) as well as ele-
vated (MAF = 4%) blood pressure, we exclude this protein
variant increasing susceptibility for hypertension.

When we addressed the population differentiation of the
identified SNPs by Fisher's exact test, none of the poly-
morphisms showed either allelic or genotypic differentia-
tion among the Estonians and the Czech, as well as
between normotensive and hypertensive individuals in
the intrapopulation comparisons (p > 0.05, data not
shown). The joint case-control analysis of all samples
with an increased test power detected a significant excess
of heterozygotes for common promoter region polymor-
phisms (SNP-184; SNP-390) among the patients (Fisher
exact test, p < 0.05; Table 2). There was a non-significant
difference between normotensives and hypertensives for
the distribution of haplotypes formed from two common
5'UTR polymorphisms, SNP -390 and SNP -184.

Table 2: Allele (major) and genotype (major homozygote, heterozygote) frequencies for identified SNPs by resequencing in Estonian 
and Czech normotensives and hypertensives

SNPa dbSNP Alleleb/Genotype Estonians Czech
Normotensives Hypertensives Normotensives Hypertensives

SNP-702 NA G 1 1 0.96 0.98
5'UTR GG 1 1 0.92 0.96

GA 0 0 0.08 0.04
SNP-591 NA G 0.96 0.96 0.98 0.88
5'UTR GG 0.92 0.92 0.96 0.88

GT 0.08 0.08 0.04 0
SNP-390 NA A 0.60 0.70 0.85 0.675
5'UTR AA 0.44 0.40 0.79 0.45

AG 0.32 0.60 0.125 0.45
SNP-184 rs876493 A 0.60 0.58 0.66 0.54
5'UTR AA 0.40 0.24 0.44 0.20

GA 0.40 0.68 0.44 0.68
SNP+360 rs200173 G 0.98 1 0.96 0.96
Intron 1 GG 0.96 1 0.92 0.92

AG 0.04 0 0.08 0.08
SNP+1520 rs5638 A 0.94 0.96 0.94 0.96
Exon 3 AA 0.92 0.92 0.88 0.92

AG 0.04 0.08 0.12 0.08
SNP+1587 NA G 0.98 1 1 0.98
Exon 3 GG 0.96 1 1 0.96

AG 0.04 0 0 0.04

alocation relative to ATG; bmajor allele frequency; NA-not available
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However, the most striking feature of PNMT gene is the
lack of variation within introns harboring only one rare
SNP (Figure 1; intron 1, SNP+360). The introns exhibit
>15-fold less diversity compared to analyzed 5'upstream
region (πintron = 0.00002 – 0.00007; π5'upstream = 0.00099–
0.00138; Table 3) and >7-fold reduction in diversity com-
pared exons (πexon = 0.00050–0.00056). In comparison,
the excess of diversity for the 5'upstream region compared
to the exons is only 2–2.5 times. To test whether patterns
of DNA sequence variation in PNMT fit the expectations
under hypothesis of neutrality, we analyzed the data with
the Tajima DT neutrality test  (Table 3). When the analysis
included an entire PNMT gene there was no difference

between observed (π) and expected (θ) nucleotide diver-
sity parameters. Notably, intronic sequences formed an
exception with the expected variation (θ = 0.00018–
0.00021) exceeding the observed values (π = 0.00002–
0.00007) up to tenfold. Whereas the lack of diversity in
intron 2 spanning only 114 bp is apparently due to func-
tional constraint on neighboring exons, minimal varia-
tion and consistent Tajima DT values for intron 1 support
an effect of purifying selection on this region.

Alignment of human PNMT and rat Pnmt gene reveals
high level of exonic conservation (>82%) at the level of
DNA sequence between two species (See additional file
1). In contrast to the expectations based on selection pres-
sure shown for human intron 1, there is no homology
between intron 1 of PNMT and Pnmt genes. An AluSp
insertion in primate lineage (See additional file 1) has
changed the genomic landscape of human PNMT.

In silico analysis of PNMT intron 1 for putative binding 
sites of gene regulatory elements
In order to explore the hypothesis of the purifying selec-
tion acting on human PNMT intron 1, we analyzed in sil-
ico the distribution of functionally important putative
regulatory elements in this region. Two seminal works
[12,13] have predicted the presence of a Glucocorticoid
Responsive Element (GRE) in the middle of intron 1. In a
number of genes, the glucocorticoid (GC) response is
enhanced by the binding of other transcription factors to
adjacent binding sites, forming Glucocorticoid Respon-
sive Units (GRUs) [30]. We explored putative PNMT reg-
ulatory elements among the predicted transcription factor
binding sites (TFBS) within intron 1 (Figure 2). We

Table 3: Sequence diversity parameters of human PNMT gene region

Estoniansd Czechd

kb Hyper Normo All Hyper Normo All

Sequenced 
area

3.187 πa 0.00035 0.00039 0.00037 0.0030 0.00024 0.00027

θb 0.00035 0.00042 0.00036 0.00042 0.00035 0.00036
Dc 0.01342 -0.16433 0.04368 -0.72287 -0.75219 -0.56268

Gene 2.222 π 0.00026 0.00031 0.00028 0.00032 0.00029 0.00031
θ 0.00020 0.00040 0.00035 0.00040 0.00030 0.00035
D 0.51545 -0.52876 -0.37972 -0.48106 -0.05656 -0.24179

Exons 1.157 π 0.00050 0.00056 0.00052 0.00054 0.00050 0.00052
θ 0.00039 0.00058 0.00050 0.00058 0.00039 0.00050
D 0.51545 -0.07671 0.07805 -0.13715 0.50566 0.06616

Introns 1.065 π NA 0.00004 0.00002 0.00007 0.00007 0.00007
θ NA 0.00021 0.00018 0.00021 0.00021 0.00018
D NA -1.10280 -1.02786 -0.87191 -0.87191 -0.68607

5'upstream 
region

0.882 π 0.00114 0.00120 0.00116 0.00138 0.00099 0.00121

θ 0.00076 0.00076 0.00066 0.00101 0.00101 0.00088
D 1.03138 1.19760 1.38242 0.83180 -0.03929 0.74751

Estimate of nucleotide diversity per site from aaverage pairwise difference among individuals and bnumber of segregating sites (S); cTajima's D 
statistics; dn = 25 for normotensives, n = 25 for hypertensives; NA – not applicable

The structure of human PNMT gene drawn to an approxi-mate scaleFigure 1
The structure of human PNMT gene drawn to an approxi-
mate scale. The identified SNPs (major allele by capital let-
ters) are located relative to translation start site (ATG), 
where A denotes +1. SNPs with minor allele frequency <10% 
are indicated with short bars and >10% with long bars. Vari-
ants detected both in Estonians and Czech are shown in 
black; only in Czech are in grey and only in Estonians in 
white. The SNPs above and below the graph represent poly-
morphisms found in hypertensive and normotensive individu-
als, respectively. The 5'and 3'UTR have been indicated 
according to NCBI GenBank database (February 28, 2006 
release).
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focused on TFBS-s either reported (1) to regulate rat Pnmt
gene; (2) to form active GRUs; (3) to locate within
intronic gene regulatory units; or (4) selected as potential
inducers/repressors of epinephrine synthesis.

In rat, Pnmt transcription is synergistically activated by
binding of Egr-1 (Early Growth Response 1), AP2 (Activat-
ing enhancer binding Protein 2 alpha) and GR (Glucocor-
ticoid-activated Receptor complex) to the upstream
promoter [31], whereas Sp1 (Specificity protein 1) and
MAZ (Myc-Associated Zinc finger protein) transcription
factors may potentially contribute to tissue-specific

expression [32]. In human PNMT intron 1 we identified
multiple binding sites for Egr1, MAZ and Sp1/Sp2 (Figure
2). A shared recognition site for Egr1/MAZ/Sp1 276 bp
upstream GRE overlaps with a binding site for another
zinc-finger nuclear protein – ZBP-89 (Zinc finger Binding
Protein 148). For example, for bovine adrenodoxin gene
expressed in adrenal cortex, Sp1/Sp3 confer and ZBP-89
represses basal transcriptional activities [33]. An alterna-
tive binding site for Sp1/Sp2 (74 bp downstream GRE) is
co-localized with binding site for NFκB (Nuclear Factor
kappa B), a transcription factor involved mainly in
inflammatory and immune responses. There is an overlap
also in the function of the two elements since GCs have
potent anti-inflammatory and immunosuppressive prop-
erties. NFκB activity is antagonized by GCs either directly
through inhibiting NFκB binding to DNA or indirectly by
binding of the hormone-activated GC receptor complex
(GR) to GRE [34].

The most striking feature of human PNMT intron 1 is the
abundance of predicted Insulin Responsive Elements
[IRE, consensus sequence T(G/A)TTT(T/G)(G/T)]. GRE
element is flanked both sides by multiple overlapping
perfect IREs (four and two, respectively). Additional four
IREs differing by one nucleotide from the consensus [T(G/
A)TTT(T/G)C] are located in the vicinity. It has been
shown that for a subset of genes insulin inhibits GR activ-
ity either via IRE-dependent or IRE-independent mecha-
nisms [35]. PNMT intron 1 distal IREs overlap with a
predicted binding site for HMGI/Y (High Mobility Group
protein isoform I and Y), a mammalian architectural tran-
scription factor that participates in specific protein-DNA
and protein-protein interactions that induce both struc-
tural changes in chromatin substrates and the formation
of stereospecific multiprotein complexes on the promot-
ers/enhancers of genes whose transcription they regulate
[36]. This factor is also part of nucleoprotein complex
controlling human insulin receptor gene transcription
and its loss causes insulin resistance and diabetes in
human and mice [37].

Among the other reported GRU-belonging cis-acting ele-
ments, we identified (i) binding sites for Myc/Max family
proteins, reported for the functional GRU of ovine β1-
adrenergic receptor gene [38]; (ii) two regions of overlap-
ping putative GAGA-boxes shown to increase the rate of
GRE-induced gene expression in the proximal enhancer of
human carbamoylphosphate synthetase gene [39]; (iii)
and Estrogen Responsive Element (ERE) [40]. Interest-
ingly, ERE within the first intron of PNMT co-localizes
with a binding site for RORA (Retinoic acid receptor-
related Orphan Receptor α; also called RORα), reported
among the key regulators of mammalian circadian gene
expression [41]. Another putative 'clock controlled ele-
ment', the binding site for a light-induced transcriptional

Identification of putative transciption regulating elements within human PNMT intron 1Figure 2
Identification of putative transciption regulating elements 
within human PNMT intron 1. Putative transcription factors 
binding sites (TFBS) predicted by MatInspector 2.2 software 
and regulatory elements identified by manual inspection are 
depicted upon the sequence of PNMT intron 1 (951 bp). The 
Glucocorticoid Responsive Element (GRE; consensus GGT-
ACAnnnTGTTCT), a core for a potential Glucocorticoid 
Responsive Unit (GRU), is given in bold. The human-specific 
AluSp element is underlined. The two-directional arrows indi-
cate the predicted binding sites for regulatory factors: IRE – 
Insulin Responsive Element (consensus T(G/A)TTT(T/G)(G/
T)); ERE – Estrogen Responsive Element (consensus GGT-
CAnnnTGACC); NFκB – Nuclear Factor kappa B; Sp1/2 – 
Specificity protein 1/2; Egr1 – Early Growth Response 1; 
MAZ – Myc-Associated Zinc finger protein; ZBP-89 – Zinc 
finger Binding Protein 148, ZNF148; HMGI/Y – High Mobility 
Group protein isoform I and Y, HMGA1; RORA (RORα) – 
Retinoic acid receptor-related Orphan Receptor α; E4BP4 – 
mammalian transcription factor E4 Binding Protein 4.
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repressor E4BP4 (mammalian transcription factor E4
Binding Protein 4) [42], was predicted within the cluster
of IREs proximal to GRE.

Discussion
Resequencing revealed low variation of PNMT gene in
both normotensive and hypertensive individuals consist-
ent with an important role of PNMT-synthesized epine-
phrine in the regulation of cardiovascular and metabolic
function and as a CNS neurotransmitter. Our data on
human PNMT agrees with the report on comparative
sequencing of the rat Pnmt in hypertensive SHRSP and
normotensive strains [10] and allows to suggest that most
of high between-subject variation in PNMT-synthesized
epinephrine levels [43] does not result from PNMT gene
variants. Indeed, the only described human PNMT alloz-
yme displaying significantly lower levels of activity com-
pared to wild-type, is a rare African-American variant
Thr98Ala [44]. The expressional variation of PNMT gene
is rather determined by the interplay of hormonal and
neural stimuli as well as by the repertoire of regulating
transcription factors [11,45].

Interestingly, the sequence parameters of the genomic
region coding for the structurally and evolutionary most
related enzyme to PNMT, the glycine-N-methyltransferase
(GNMT) resemble the PNMT region [46]. Both genes have
a similar size (the GNMT gene: 3.118 kb) and an exon-
intron structure with a long first intron harbouring a SINE
element; a low number of common SNPs, reduced diver-
sity (NCBI dbSNP and International HAPMAP Project
databases) and strong linkage disequilibrium. This sup-
ports the suggested evolutionary relationship between the
two genes [46] as well as underlines the conserved role of
N-methyltransferases in regulating essential metabolic
functions.

Although rat Pnmt promoter has been characterized in
detail, the regulatory regions of human PNMT gene have
not been studied, with the exception of two common pro-
moter SNPs. Consistent with a previous report [14], there
was no significant difference in allele frequencies for SNP-
184 and SNP-390 between European hyper- and normo-
tensives. However, the heterozygote status of these pro-
moter region polymorphisms was significantly associated
with the diagnosis of hypertension. Interestingly, for neu-
rological diseases such as Alzheimer disease and multiplex
sclerosis, a protective effect of the heterozygous status of
both SNPs (-390/-184 GA/AG) has been shown [47,48]. A
recent functional study [44] using dual-luciferase assay
has shown approximately 30% decrease in reporter gene
activity for a construct carrying -390A/-184A haplotype
(reported 50–60% frequency in Europeans) compared to
-390G/-184G variant (60–70% in Africans).

Intron 1 of human PNMT exhibits minimum diversity
consistent with purifying selection. Two seminal works
[12,13] predicted a putative GRE into this region, but due
to a location within an Alu-sequence its functionality was
questioned at that time [13]. Yet, there are several exam-
ples in which Alu sequences were inserted into human
gene regions long time ago, were modified, and now are
central in control/enhancement of transcription [49].
Glucocorticoid (GC) sensitivity has been reported for
PNMT promoter activity in rat [31] and bovine [50], and
at least one putative GRE has been identified for every spe-
cies-specific PNMT gene. We explored a scenario that the
Alu-introduced human-specific GRE in PNMT intron 1
has evolved to a functional GRU with an essential role in
gene expression regulation and therefore is under selective
constraint. Interestingly, the PNMT intronic GRE was sur-
rounded by multiple potential IREs. There are multiple
examples of genes (IGFBP-1, TAT, AAT, PEPCK, PFK-2)
stimulated by glucocorticoids and inhibited by insulin in
liver [35]. To our knowledge, insulin responsiveness has
not been studied for rat or bovine Pnmt promoters. But
already years ago it was shown that PNMT activity was
approximately 2-fold higher in the brainstem of strepto-
zotocin-induced diabetic rats than in controls, and the
administration of insulin partially prevented the effects of
diabetes on PNMT activity [51]. In the adrenal medulla of
rats, PNMT mRNA levels were increased as a response to a
single administration of insulin 5I U [52]. A recent study
using diabetic rats confirmed a protective effect of insulin
treatment on PNMT levels and counter regulation [53] of
epinephrine.

The location of gene regulatory elements within intronic
regions is not unique. For example, the first intron for rat
liver 6-phosphofructo-2-kinase (Pfk-2) gene harbours GRU
targeted by both glucocorticoids and insulin [35] and the
transcription of mouse c-HA-ras gene is jointly regulated
by a GRE and ERE (Estrogen Responsive Element) [54]
similarly to the prediction for PNMT intron 1 GRU. It has
been reported that ERβ-deficient mice develop sustained
systolic and diastolic hypertension by 5 months of age
and males have higher blood pressure than females [55].
Consistently, Peng [56] showed that estrogen depletion
increases blood pressure and hypothalamic norepine-
phrine in middle-aged spontaneously hypertensive rats.

It has been shown that the levels of epinephrine/nore-
pinephrine (greatly regulated by PNMT enzyme) and also
cortisol (the most abundant GC) exhibit circadian fluctu-
ation [43]. Consistently, PNMT intron 1 GRU harbors
potential binding sites for transcription factors regulating
mammalian circadian clocks, RORα and E4BP4 [41].
Patients with essential hypertension have disturbed auto-
nomic cardiovascular regulation and circadian pacemaker
function [57]. It has been suggested that a changed supra-
Page 7 of 9
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chiasmatic nucleus (SCN), the mammalian central 'clock'
within the hypothalamus in the brain, may precede the
development of hypertension[58].

Conclusion
We report low diversity of human PNMT gene consistent
with purifying selection. We suggest that the differences in
PNMT expression between normotensives and hyperten-
sives are not determined by the polymorphisms in this
gene, but rather by the interplay of gene expression regu-
lators, which may vary among individuals. A major
human-specific gene regulatory unit, Glucocorticoid
Responsive Unit (GRU), was predicted within PNMT
intron 1. In silico analysis paves the way for the further
experimental studies on human PNMT transcription reg-
ulation. Understanding the determinants of PNMT
expression may assist in developing PNMT inhibitors as
potential novel therapeutics, facilitated by recent determi-
nation of the crystal structure of human PNMT[46].
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