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Abstract

Background: Using mathematical deterministic models of the epidemiology of hospital-acquired infections and
antibiotic resistance, it has been shown that the rates of hospital-acquired bacterial infection and frequency of

antibiotic infections can be reduced by (i) restricting the admission of patients colonized with resistant bacteria, (ii)
increasing the rate of turnover of patients, (iii) reducing transmission by infection control measures, and (iv) the use
of second-line drugs for which there is no resistance. In an effort to explore the generality and robustness of the

predictions of these deterministic models to the real world of hospitals, where there is variation in all of the factors

the first antibiotic.

contributing to the incidence of infection, we developed and used a stochastic model of the epidemiology of
hospital-acquired infections and resistance. In our analysis of the properties of this model we give particular
consideration different regimes of using second-line drugs in this process.

Methods: We developed a simple model that describes the transmission of drug-sensitive and drug-resistant
bacteria in a small hospital. Colonized patients may be treated with a standard drug, for which there is some
resistance, and with a second-line drug, for which there is no resistance. We then ran deterministic and stochastic
simulation programs, based on this model, to predict the effectiveness of various treatment strategies.

Results: The results of the analysis using our stochastic model support the predictions of the deterministic models;
not only will the implementation of any of the above listed measures substantially reduce the incidences of
hospital-acquired infections and the frequency of resistance, the effects of their implementation should be seen in
months rather than the years or decades anticipated to control resistance in open communities. How effectively
and how rapidly the application of second-line drugs will contribute to the decline in the frequency of resistance
to the first-line drugs depends on how these drugs are administered. The earlier the switch to second-line drugs,
the more effective this protocol will be. Switching to second-line drugs at random is more effective than switching
after a defined period or only after there is direct evidence that the patient is colonized with bacteria resistant to

Conclusions: The incidence of hospital-acquired bacterial infections and frequencies of antibiotic resistant bacteria
can be markedly and rapidly reduced by different readily implemented procedures. The efficacy using second line
drugs to achieve these ends depends on the protocol used for their administration.

Background

Over the past two decades, antibiotic resistance has
become an increasingly grave health problem, serious
enough for some to see this not-unanticipated product
of evolution as foretelling of the end of the antibiotic
era [1]. Because of resistance, bacterial infections that
had been readily cleared by antibiotics are lasting longer
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and are more likely to result in severe morbidity and
mortality than they would be if these infecting bacteria
were susceptible to the treating antibiotic(s). This resis-
tance problem is particularly serious in hospitals, where
patients are commonly compromised by age, illness and
treatment with immune suppressing drugs. Invasive pro-
cedures and the use of life-support machinery that are
likely to be infected by bacteria also contribute to anti-
biotic-resistant hospital infections [2]. Moreover,
patients who enter hospitals for the treatment of resis-
tant bacterial infections or acquire resistant infections
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while in the hospital are adding to the already too high
costs of healthcare [3] and are a source of resistant bac-
teria and/or resistance-encoding genes.

Within this pessimistic framework, however, there is
an element of optimism. Hospitals are potentially con-
tainable institutions in which the use of antibiotics can
be monitored and managed. Unlike the open commu-
nities it should be, and in some countries like the Neth-
erlands [4] has been, possible to control the spread of
resistance in hospitals. In accord with mathematical
models [5], the frequency of colonization and infections
with antibiotic-resistant bacteria in hospitals can be
reduced in at least five ways by: (1) reducing the rate of
use of drugs for which there is resistance, (2) improving
infection control and thereby reducing transmission
between patients and from hospital care workers to
patients, (3) increasing the rate of turnover of patients,
(4) reducing the rate of influx of patients with resistant
bacteria into hospitals or their intensive care wards, and
(5) using additional antibiotics for which there is no
resistance [6]. This theory predicts that not only will
these measures individually and collectively reduce the
frequency of resistant bacteria in hospitals, they will also
reduce the absolute rate of these infections. Moreover,
and most importantly, the effects of their implementa-
tion should be manifest over a relatively short period of
time. Declines in the rates of infection and frequency of
resistant bacteria should be seen in months rather than
the years or decades anticipated for controlling resis-
tance in open communities.

In this report, we consider the contribution of the dif-
ferent factors controlling the incidence of hospital-
acquired infections and the spread of antibiotic resistant
bacteria considered by [5], giving primary consideration
to the use of second-line antibiotics for which there is
no resistance. Using a deterministic and a stochastic
simulation model, we explore the effects of different
regimes employing these second-line antibiotics to suc-
cessfully treat patients and, at the same time, reduce the
frequency of resistance to other drugs. Treatment is
initiated with the first-line antibiotic, for which there is
resistant bacteria. Patients may be switched to the sec-
ond-line drug in one of three ways: (i) at random, with
a constant probability of switching each day, (ii) after a
defined term with the first-line drug, and (iii) directed,
where the patient remains on the first-line drug until
testing provides evidence that she/he is colonized with
bacteria resistant to that drug.

Methods

The Basic Model

The model we develop here is an extension of the
model presented in a previous publication [5]. The for-
mats of the deterministic and stochastic versions of this

Page 2 of 10

model are the same. We assume the hospital is a closed
environment into which patients enter and leave. Within
the hospital, patients are of different states with respect
to colonization and treatment with one of two drugs for
the target bacteria (e.g. Staphylococcus or Enterococcus).
Patients are either uncolonized, U, colonized with bac-
teria susceptible to both drugs, S, or colonized with bac-
teria that are resistant to drug 1 but susceptible to drug
2, R. In this basic model, we assume there is no resis-
tance to the second drug (see the Discussion). On any
given day, colonized patients carrying the S bacteria are
of three states with respect to treatment, So untreated,
S; treated with drug 1, S, treated with drug 2. Patients
colonized with bacteria resistant to drug 1 are of the
three corresponding states with respect to treatment
with drugs 1 and 2: Ry, R; and R,. The letters, U, S, S;,
..., are both the designations of these patient states and
their numbers (proportions) in the hospital. See Figure 1
for a diagram of this model. The parameters and vari-
ables in this basic model are separately defined in
Table 1.

Untreated patients may begin treatment with antibio-
tic 1 at rates fs, and fz so that on any given day fs-Sy and
fzr'Rp untreated patients colonized with bacteria suscepti-
ble and resistant to antibiotic 1 begin treatment with
that antibiotic and enter the S; and R, states respec-
tively. In this basic model, we assume that the rate of
treatment of colonized patients is independent of
whether they are colonized with sensitive or resistant
bacteria, and that antibiotic 2 is a second-line drug
which is not used upon first treatment. Colonized
patients treated with antibiotic 1, S; and R; however,
can be switched to antibiotic 2, at rate swg and swy per
day. Once a patient is treated with drug 2, treatment
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Figure 1 Basic hospital model. See the text and Table 1 for the
definitions of the parameters and variables and a description of the
model and the assumptions behind its construction.
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Table 1 Parameters and their default values
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Symbol Description Value in Simulations
e Proportion colonized with sensitive bacteria among patients entering the hospital 040
er Proportion colonized with resistant bacteria among patients entering the hospital 00-02
Bso Transmission rate of sensitive bacteria from an untreated patient 0.007
Bs: Transmission rate of sensitive bacteria from a patient treated with drug 1 0.007
Bs> Transmission rate of sensitive bacteria from a patient treated with drug 2 0.007
Bro Transmission rate of resistant bacteria from an untreated patient 0.007
Bri Transmission rate of resistant bacteria from a patient treated with drug 1 0.007
Bro Transmission rate of resistant bacteria from a patient treated with drug 2 0.007
fs Rate of initiating treatment with drug 1 for a patient in varies
fa Rate of initiating treatment with drug 1 for a patient in varies
SWs Rate of switching to drug 2 for a patient in varies
SWg Rate of switching to drug 2 for a patient in varies
X Rate of clearance for patients who are not treated or are treated with an ineffective drug 0.10
% Additional rate of clearance for patients who are treated with an effective drug 0.50
v Rate of exiting hospital for patients in U. 0.20
Cs Rate of exiting hospital for patients in S. 0.10
Cr Rate of exiting hospital for patients in R. 0.10

All the rates are daily rates.

will go on until the patient clears the bacteria or until
she/he is discharged from the hospital.

During their tenure in the hospital, uncolonized
patients of the U state may become colonized at rates
proportional to the numbers of colonized individuals of
the different states. Once colonized, patients enter the
untreated class of that state. For example, during the
course of a day, (BspSp + Bsi-S: + Bso +S»)-U uncolonized
patients will be colonized with bacteria that are suscep-
tible to drug 1 and enter the untreated S, state, and
(Bro Ry + Brs ‘R; + Bra -Ro)-U will be colonized by bac-
teria resistant to drug 1 and enter the R, state. The
parameters, Bso, Bsi, Bs2 Bro» Br1> and Bgro are rates of
infectious transmission [7] for patients of different
states. In this basic model, we assume that patients colo-
nized with susceptible or resistant bacteria, S or R, have
to be cleared (enter the U state) before bacteria of the
other kind can re-colonize them.

Patients may be cleared of the colonized bacteria,
either spontaneously or through successful treatment,
and enter the U state. The rates of spontaneous and
antibiotic-mediated clearance are x and v, respectively.
Patients colonized with bacteria resistant to antibiotic
and treated with that antibiotic, R;, only clear those bac-
teria spontaneously.

New patients entering the hospital may enter into the
states U, Sy or R at rates ey, es and ep, respectively. We
assume that individuals are not treated before they enter
the hospital. Hospitalized patients may be discharged at
rates that depend on their colonization status and

treatment. The discharge rates are denoted by cx where
X denotes the state is which the patient is just prior to
discharge. The entrance and discharge rates are chosen
so that, on average, the daily number of entering
patients equals to the daily number of patients who are
discharged.

The deterministic model

The rates of change in the numbers of the different
patient states are given by a set of coupled differential
equations. For the numerical analysis of this determinis-
tic model we use Berkeley Madonna™. Copies of the
program used can be obtained from http://www.eclf.net/
programs.

The stochastic model

The main difference between the deterministic and sto-
chastic version of this model are that the former consid-
ers the transitions at the population level. For example,
in the deterministic model on any given day precisely S,
% untreated patients colonized with susceptible bacteria
enter the U state. The stochastic version of the model,
on the other hand, keeps track of individual patients
and in this example, the parameter x is the daily transi-
tion probability for an individual patient rather than a
rate for the population at large Thus, a patient of the S,
state has a probability of x per day of being sponta-
neously cleared of the infection. The stochastic version
of this model enables us to more precisely simulate pro-
cesses that include several steps and to investigate the
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efficacy of different regimes of treatment and switching
drugs, e.g. the effectiveness of switching a patient from
drug 1 to drug 2 after a fixed number of days of treat-
ment with drug 1 rather than switching at the same rate
per day. The stochastic model can also be used to esti-
mate quantities that are related to periods longer than
one day. For example, the total number of days a patient
was colonized with the resistant bacteria.

For the stochastic simulations we use a Monte Carlo
protocol where each day we calculate the probability
that each patient will move from her/is current state to
each of the other states, or will stay at the same stage. A
pseudo random number between 0 and 1 from a uni-
form distribution is generated and that patient’s new
state is determined by comparing this number with the
transition probabilities. For example if the random num-
ber y is less or equal to x, then a colonized patient will
enter the U state that day. If y >x, the patient will
remain colonized. Once this has been done for all the
patients, the simulation program determines and stores
the total number of patients in each state on that day.
This simulation program runs for a given number of
days (currently 360 days). The outcome for one simula-
tion is the average number of patients in each state over
the last 100 days. This entire process is repeated many
times (currently 200 times) and the final outcome is the
average proportion (over the 200 simulations) of
patients uncolonized, colonized with susceptible bacteria
and colonized with resistant bacteria. It should be noted
that because of their structural differences, and primarily
the sequential order of events occurring on the same
day (see Appendix), there are often modest quantitative
differences between the outcomes predicted by the
deterministic model and the average results of the
stochastic simulations. This Monte Carlo simulation
was programmed in Fortran and can be obtained from

mhaber@sph.emory.edu.

Results

Deterministic simulations

In an effort to orient the reader on the properties of the
basic model and its general predictions, we use numeri-
cal solutions to the deterministic version of the model.
The values of the parameters used for the numerical
solutions were chosen to illustrate the properties of this
model. Although we believe they are in a realistic range,
they do not reflect estimates made in a specific hospital
or treatment situation. In Figure 2(a), we illustrate what
we would obtain with and without treatment in the
absence of resistance. As long as there is an input of
susceptible patients (es > 0) there will be a stable equili-
brium with U and S patients present. As noted in [5],
the frequency of colonized patients will depend on the
total density of patients in the hospital, the rates at

Page 4 of 10

which S, and S; patients are cleared and enter the U
state or leave the hospital, their rates of infectious trans-
mission, and rates of input of patients carrying suscepti-
ble bacteria.

Our model assumes that treatment augments the rate
of clearance of bacteria from colonized patients. Hence,
in the absence of resistance the equilibrium frequency
of colonized patients will decline with the rate at which
they are treated. If patients carrying resistant bacteria
never enter the hospital (e = 0) and resistant bacteria
are not at a transmission and/or removal rate disadvan-
tage (Bs = Br and cs = ¢ ), and in the absence of treat-
ment, the frequency of hospitalized patients colonized
with resistant bacteria will decline and the resistant bac-
teria will be eliminated (Figure 2b). If antibiotic 1 is
used alone then there would be a threshold rate of use
below which resistance will not ascend and above which
the frequency of patients colonized with bacteria resis-
tant to antibiotic 1 will increase. However even under
these conditions, as long as patients with susceptible
bacteria continue to enter the hospital there will be a
polymorphism with uncolonized patients, patients colo-
nized with bacteria resistant to drug 1, and patients
colonized with bacteria susceptible to drug 1. The fre-
quency of patients with bacteria resistant to drug 1 will
be proportional to the rate at which this antibiotic is
used.

In Figure 2c we consider the effects of switching to a
second antibiotic for which there is no resistance on the
frequency of patients colonized with bacteria resistant to
antibiotic 1. The greater the rate of switching, the
greater the rate and extent of reduction in the frequency
of resistance to this first antibiotic. As can be seen in
Figure 2d, this optimistic picture of being able to con-
trol the frequency and even eliminate resistance to drug
1 by using a second drug for which there is no resis-
tance is thwarted if patients entering the hospital carry
bacteria resistant to drug 1. Switching to the second
drug is still effective in reducing the frequency of resis-
tance to the first drug, but far less so than in the
absence of input of patients colonized with bacteria
resistant to the first drug.

Stochastic simulations

The results of the deterministic simulation, like those of
the model from whence it was derived [5], illustrates in
a general way how switching hospitalized patients colo-
nized with bacteria resistant to one antibiotic to a sec-
ond one to which there is no resistance can reduce the
overall frequency of resistance to the first drug. In the
following, we use the stochastic version of this model to
evaluate the relative efficacies of three protocols for
switching patients to reducing the frequency of resis-
tance to that first drug.
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leave the hospital at twice that rate, ¢y = 0.20. (b) Change in the number of patients colonized with bacteria resistant to antibiotic 1 with
different frequencies of treatment with antibiotic 1. Parameters are the same as those in (a) but at the start of the simulation 10% of the patients
in the hospital are colonized with resistant bacteria. (c) Change in the number of patients colonized with bacteria resistant to antibiotic 1 with
different rates of switching to antibiotic 2. 40% of colonized patients are treated with antibiotic 1, fs = fr = 0.40 and antibiotic 1 and antibiotic 2
are equally effective on bacteria that are susceptible to their action. No input of resistant bacteria. Other parameters are the same as in previous
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(1) Random switching: for each patient there is a con-
stant daily probability of switching to a second drug. In
essence, this is a stochastic version of the switching pro-
cess considered in the deterministic model.

(2) Defined term switching: after a pre-determined
number of days of treatment with the first drug, the
patient is switched to the second drug.

(3) Directed switching: The patient remains on the
first drug until testing indicates that the bacteria colo-
nizing that individual is resistant to that drug, at which
time that patient is switched to the second drug.

A list of all the parameters in our model and the
values assigned to those parameters that remain fixed
are presented in Table 1. Whenever possible the values
of the parameters used in the stochastic simulation are
the same as those in the deterministic simulations. For
all situations we assume, probably realistically, that
treatment is initiated before information is available
about the resistance status of the colonizing bacteria. In
other words, fs = fz.

Random switching
In Figure 3a we consider the relationship between the
rate of use of drug 1 and the fraction of the population
colonized by bacteria in the absence of resistance. The
initial conditions and parameter values in this stochastic
model are identical to those in the corresponding deter-
ministic simulations presented in Figure 2. Except for
small quantitative differences due to the reasons consid-
ered in the Appendix, the results of these stochastic
simulations are the same as those of the corresponding
deterministic simulations

In the absence of resistance, antibiotic treatment will
reduce the frequency of colonized patients at a rate pro-
portional to the rate of use (Figure 3a). If the hospital
includes patients colonized with bacteria resistant to the
antibiotic, the frequency of resistance can increase. As
noted with the deterministic model (Figure 2b) the sto-
chastic model predicts a threshold rate of antibiotic use
below which resistance will not ascend and above which
it will (Figure 3b). In the absence of input of patients
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Figure 3 Stochastic simulations: (a) The effect of different rates of treatment with antibiotic 1 on the frequency of colonized patients in the
absence of resistance. (b) The effects of different rates of treatment with antibiotic 1 on the frequency of patients colonized with bacteria
resistant to this antibiotic without the use of antibiotic 2. Initially the frequency of patients colonized with bacteria resistant to antibiotic 1 is 10%
and no patients enter the hospital carrying resistant bacteria. (c) The effect of different rates of random switching to a second drug on the
frequency of resistance to the first antibiotic. Initially 10% of the patients are colonized with bacteria resistant to drug 1 and 40% of colonized
patients are treated with drug 1, f = 0.40. No patients carrying bacteria resistant to drug 1 enter the hospital. (d) The effect of different rates of
random switching to a second drug on the frequency of resistance to the first antibiotic. The parameters are the same as those in (c) save for
the 10% of the patients entering the hospital carrying bacteria resistant to drug 1.

colonized with bacteria resistant to antibiotic 1, random
switching to a second antibiotic for which there is no
resistance can reduce the frequency of patients colo-
nized with bacteria resistant to the first antibiotic, and
with a high enough rate of switching this procedure can
eliminate resistant bacteria from the hospital (Figure
3c). With the input of patients carrying resistant bac-
teria however, switching to this second antibiotic can
reduce the frequency of resistance but not eliminate
resistance from the hospital (Figure 3d).

The effects of different treatment regimes

For the comparison of the impact of different regimes
for employing the second-line antibiotic on the total fre-
quency of colonized patients and the frequency of
patients colonized with bacteria resistant to the first
drug, we consider these frequencies after one year from
the initiation of treatment. As in Figures 3, within 100
days these frequencies remain relatively constant.

In the absence of patients carrying resistant bacteria
entering the hospital, the more rapidly patients are
switched to the second drug, the fewer patients are
colonized with bacteria, although there is little

difference in this frequency if switching occurs within
the first five days (Figure 4a). With respect to the frac-
tion of patients colonized, save for late (10 days) switch-
ing, there is little difference in whether switching occurs
at random, or according to other schemes. While
switching to the second drug can clear the hospital of
patients carrying resistant bacteria, it is less effective in
doing so as the time before switching increases. More-
over, even with delayed switching, the random switching
protocol is more effective in reducing the frequency of
patients with bacteria resistant to the first drug than
directed or defined period switching. The reason for this
is that under random switching, there is a good chance
that switching will actually occur earlier than the mean
time to switching. For example, if the mean time to
switching is 5 days then under random switching there
is a chance of 59% that the patient will be switched dur-
ing one of the first 4 days following onset of coloniza-
tion and will clear infection soon after this. Under
directed and defined switching, a patient colonized with
bacteria resistant to drug 1 must wait 5 days until s/he
is switched to drug 2, therefore this patient will, on
average, stay longer in the ‘resistant’ state.
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When patients with resistant bacteria enter the hospi-
tal, there is a modest increase in the frequency of colo-
nized patients in the hospital relative to that without
resistance entering. However, in this situation early
switching to the second-line drug has a relatively greater
effect on reducing the frequency of colonized patients
(Figure 4c). While it’s no longer possible to clear the
hospital of patients with bacteria resistant to the first
antibiotic, switching to an antibiotic for which there is
no resistance reduces the frequency of patients with
resistant bacteria. The more rapidly the switching occurs
the lower the frequency of patients with resistant bac-
teria. Once again, random switching is more effective in
this regard than directed or defined switching. The rea-
son for this is the same as that described above.

Discussion

Hospital-acquired infections are a major source of mor-
bidity and mortality in the developed as well as the
underdeveloped world, and a significant contributor to
the ever-increasing costs of health care. Extrapolating
from the data presented in the recent report of the
Pennsylvania Health Care Cost Containment Council [8]
to the United States at large, under the assumption of
the same rates and costs (Pennsylvania is 4.2% of the
USA population), we concluded that in 2005 there were

more than 456,000 hospital-acquired infections in the
USA. The frequencies of mortality of patients with and
without these infections were 12.9% and 2.3%, respec-
tively. In other words, in 2005 hospital-acquired infec-
tions contributed to approximately 48,000 excess deaths
in the US. The term of hospitalization of patients with
and without hospital-acquired infections were 20.6 and
4.5 days, respectively, for an excess cost of hospitaliza-
tion due to hospital-acquired infections in the US at
large being on the order of $70 billion in 2005. Needless
to say, anything that can be done to reduce the inci-
dence of hospital-acquired infections would be valuable
from all perspectives. There is no reason or evidence to
suggest that in general the hospital infection problem
has abated in the past five years. There is also no reason
to assume that unless a concerted effort is made to
address this problem that the incidence of hospital-
acquired infections and the human and economic costs
they engender will wane in the future. There are, how-
ever, compelling reasons to believe that unless this effort
is made, nosocomial infection will become increasingly
difficult to deal with [9].

In this report we have focused primarily on the effects
of switching to second-line antibiotics to reduce the
incidence and term of hospital-acquired infections, espe-
cially infections cased by drug-resistant bacteria.
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However, before expanding on this pharmaceutical solu-
tion to a pharmaceutical problem, we believe it is essen-
tial ethically, as well as practically, to illustrate and
emphasize the use of protocols that reduce rather than
increase the use of drugs to deal with not only the resis-
tance problem, but also to reduce incidence of hospital-
acquired infections at large. As noted in our introduc-
tion, the antecedent of the model used here [5], as well
as this model, predict that the same changes in hospital
practices that reduce resistance will also reduce the inci-
dence of hospital-acquired infections in general, a win-
win situation. To illustrate this we use the deterministic
version of the model in Figure 1 but allow for only
three classes of patients, Uncolonized (U), Colonized
with susceptible and untreated (Sy) and colonized with
susceptible and treated with antibiotic 1 (S;). In Table 2
we present the effects of changing specific parameters,
one at a time, on the frequency of colonized patients at
equilibrium.

Save for reducing the term of stay of uncolonized
patients and thereby increasing the fraction of infected
patients, all of these interventions reduce the absolute
number of infected patients and all but one of these
measures does not involve an increase in the use of
antibiotics, just the opposite. The absolute magnitude of
the effects of these different interventions on the fre-
quency of infected patients depends, of course, on the
values of the parameters. We chose these values for
illustration rather than on the basis of estimates in real
hospital and they are, we would like to think, an
extreme on the negative side. At qualitative level, how-
ever, these effects of different interventions on the rela-
tive frequency of infected patients are, we believe,
accurate for parameters in a realistic range.

Unfortunately, situations like that considered above,
where all bacteria responsible for nosocomial infections
are susceptible to the first-line antibiotics traditionally
used for treatment are unlikely to be met in many hos-
pitals. The reality that has to be dealt with is how to
reduce the morbidity and mortality of individual patients
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who are likely to be infected with bacteria resistant to
first-line antibiotics and the frequency of infected
patients in the hospital at large. As illustrated in Table
2, even with high frequencies of patients infected with
antibiotic resistant bacteria, goals can be achieved with-
out the use of second-line antibiotics by: (i) improving
infection control measures, like promoting hand wash-
ing and the more effective decontamination of equip-
ment and surfaces and medical devices like catheters
and respirators, (ii) quarantining or otherwise preventing
patients already colonized with these bacteria from
entering intensive care wards or areas of hospitals where
patients are particularly prone to bacterial infections
and are most likely to manifest serious symptoms, and
(iii) increasing the rate of discharge of colonized and
infected patients.

How many of these interventions can be implemented
and the extent to which they can be implemented
remains to be seen. It is, however, certain that substan-
tial improvements can be made. This is very clear from
the Pennsylvania experience [8]: the incidence of infec-
tions varies considerably among hospitals. To be sure,
some this variation can be attributed to the variation in
the patient population, but not all of it.

With respect to the contribution of second-line drugs
to reducing the incidence of infections with bacteria
resistant to the first-line drugs, the results of the present
investigation with a stochastic simulation model are, as
would be anticipated, qualitatively consistent with those
anticipated from the analysis of the deterministic model
[5]. As long as the bacteria remain susceptible to these
second-line drugs, switching to those drugs can reduce
the frequency of colonized patients at large and the fre-
quency of patients carrying bacteria resistant to these
agents. In the absence of patients carrying resistant bac-
teria entering the hospital, switching to the second-line
drug can not only reduce the frequency of patients with
bacteria resistant to the first-line drug but actually elimi-
nate those bacteria. If patients carrying resistant bacteria
enter the hospital, then the elimination of resistance

Table 2 Equilibrium fraction of infected patients with different interventions

Intervention (changes in hospital protocol)

Percent of Infected Patients at Equilibrium

Standard Parameters® 528
Reduce transmission (Bso) by a factor of two 373
Reduce the term of stay of uncolonized patients (1/C) by a factor of two 60.8
Reduce the term of stay of infected patients (1/Csq) by a factor of two 44.7
Reduce the input of colonized patients entering the hospital (es) by a factor of two 433
Treat 50% of colonized patients with an antibiotic (f = 0.5) - no resistance 214

* Standard parameters: o = 2 x 103, Cy = 0.10, Cso = 0.05, es = 0.40, e, = 0.20

x = 0.10 (clearance rate in the absence of treatment - 10 days), v = 0.3333 (clearance rate with treatment - 3 days), Bs; = 2 X 10> (transmission rate of treated
patients with susceptible bacteria). Total and sustained number of patients N = 100. Note: A number of these parameters are different than those used in

simulations presented in the body of this report.
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cannot be achieved and it will not even be possible to
reduce the incidence to that which is coming in. How-
ever, switching to the second-line drug can still reduce
the frequency of patients carrying bacteria resistant to
the first-line drug. Whether resistance enters or not, the
earlier the switching is done the lower the frequency of
patients carrying resistant bacteria.

Our results suggest no difference in the contribution
of switching to second-line drugs to reducing the fre-
quency of resistance to the first-line drug for two of the
three switching regimes considered: defined term and
directed switching. In the former regime switching
occurs after a specified number of days while under the
latter regime patients are switched after being identified
as carrying bacteria resistant to the first-line drug. Over-
all, the third regime considered here, namely stochastic
(random) switching, appeared to be the most effective of
the three. In this regime, there is a constant daily prob-
ability of switching. The reason why random switching
is more effective than defined-term switching can be
seen in Figure 4b and 4d. The efficacy of switching
declines with the time before switching occurs, with
early switching contributing more than later switching.
With stochastic switching, although the average time to
switching may equal to a given number of days, actual
switching is more likely to occur earlier than the average
time because the distribution of time to switching is
very skewed. Since early switching is more effective than
late switching, stochastic switching is more effective in
reducing resistance than defined term switching when
the average number of days to switching are identical in
both regimes.

In our model, directed switching does not turn out to
do better than the other two mechanisms because we
did not take costs into account. In general second-line
drugs are more expensive than the first-line drugs.
Under random and defined switching, many patients
who are colonized by bacteria sensitive to the first drug
would be unnecessarily switched to the second drug. On
the other hand, under directed switching only patients
colonized by the resistant bacteria are switched, i.e., the
second drug is used only when it is needed. Thus, using
a second drug when it is not needed will usually
increase the cost of treatment and the likelihood of
resistance to that drug. Although much of treatment
failure may be due to factors other than inherited anti-
biotic resistance [10], some failure is indeed due to bac-
teria being inherently resistant to the treating drug,
which should be the primary reason for switching. A
thorough analysis of all the costs and benefits is needed
in order to decide which of the switching modes is the
most cost-effective.

In this model, we have assumed there is no resistance
to the second line drug. Clearly if there is resistance to
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this drug, its efficacy in controlling the incidence of
infections and reducing the incidence of treatment fail-
ure due to resistance to first-line drug would be com-
promised. As the frequency of resistance to this second
line drug increases, as it almost certainly will with
increasing use of that antibiotic, that proposed switching
strategies could lose their effectiveness. Saying this in
another way, the use of a second line drug to deal with
resistance to first line antibiotics is only a transient solu-
tion to this problem. We could expand our model to
include third and fourth-line drugs, as well as multiple
switching strategies, but we believe that our conclusions
would not be very different. We certainly do not
endorse practices that endanger the health and well-
being of individual patients by withholding antibiotics
because of concerns about resistance. On the other
hand, we believe that infection control preventing colo-
nization with pathogenic bacteria remains the most
long-term effective measure to reduce both the inci-
dence of hospital-acquired infections in general and the
spread of resistance to the antibiotics used for treatment
and prophylaxis.

How good are the theoretical predictions about the
consequences of different interventions on the incidence
of hospital-acquired bacterial infections and resistance
to first-line antibiotics? Although the stochastic version
of this model is more realistic than the deterministic,
both models can be described as simplistic caricatures
of the complexities of hospitals. Although the parameter
values used for the numerical analyses of the properties
of these models may be in a ‘realistic range’, they are
not estimates obtained from real hospitals and even if
they were, they would only represent a small subset of
the vast numbers of parameters that govern the
dynamics of infectious disease transmission and treat-
ment in hospital settings. While we appreciate and
accept the limitations of these models and our analysis
of their properties, we believe that at more qualitative
rather than quantitative level the results and interpreta-
tions we make in this report are correct.

In summary, the number of hospital-acquired infec-
tions, the excess mortality and costs of these infections,
as well as the spread of antibiotic resistance in hospitals
can be significantly reduced by: (i) controlling the entry
of patients colonized with bacteria (and other micropar-
asites) that can be transmitted within a hospital into the
main wards and particularly in the intensive care units,
(ii) more intense and strictly enforced measures to
reduce transmission of microbes between patients, from
health care workers and from catheters and mechanical
devices, (iii) reducing the term of hospitalization of
infected patients, and (iv) switching to first and second-
line drugs for which there is little or no resistance. The
strategies for the application of each of these
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interventions can be, and we of course believe should
be, examined with realistic mathematical and computer
simulation models analyzed using parameters estimated
in hospitals. As well illustrated by the studies [11,12],
what may seem like a good strategy from purely intui-
tive arguments, like cycling antibiotics, may well not be
the optimal.

Appendix: Explanation for the Differences
between Deterministic and Stochastic Simulation
Results

The difference between simulation results obtained from
the two methods results from the way they deal with
multiple events occurring in the same time interval,
which is one day in our case. The transition rates used
in deterministic model correspond to probabilities that
ignore the possibility of two or more events occurring
during the same time interval. Hence these rates corre-
spond to unconditional probabilities. In the stochastic
model the probability of an event depends on other
events that have happened during the same time inter-
val, hence this model deals with conditional
probabilities.

For example, consider an uncolonized patient. There
are two things that may happen to this patient on a
given day. He may exit the hospital (denote this event
by E), and he may get colonized (event C). Suppose that
the probabilities of E and C are 0.2 and 0.6, respectively.
These probabilities determine the transition rates in the
deterministic model. The stochastic model, on the other
hand, argues that if a patient exits the hospital he can-
not be become colonized (and even if he becomes colo-
nized he cannot infect other patients). Thus, the
stochastic model considers 0.6 as the conditional prob-
ability of the patient becoming colonized if he stays in
the hospital, i.e., if the event E has not occurred on the
same day.

We denote by P(C) the unconditional probability of
the event C, and by P(C | E) the conditional probability
of the event C when it is known that the event E has
occurred. We also denote by E the event ‘E has not
occurred’, and by P(C | E) the probability that C has
occurred when it is known that E has not occurred.
Then a well-know probability theorem relates the condi-
tional and unconditional probabilities as follows:

P(C) = P(C | E) x P(E) + P(C | E) x P(E). In out
example, P(C | E) = 0, P(E) = 0.2, P(C | E) = 0.6, P(E) =
0.8. Hence the unconditional probability in the stochas-
tic model is 0 x 0.2 x 0.6 x 0.8 = 0.48, rather than the
0.6 used by the deterministic model.
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