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Abstract

Background: The absence of a gold standard, i.e., a diagnostic reference standard having perfect sensitivity and
specificity, is a common problem in clinical practice and in diagnostic research studies. There is a need for methods
to estimate the incremental value of a new, imperfect test in this context.

Methods: We use a Bayesian approach to estimate the probability of the unknown disease status via a latent class
model and extend two commonly-used measures of incremental value based on predictive values [difference in
the area under the ROC curve (AUC) and integrated discrimination improvement (IDI)] to the context where no
gold standard exists. The methods are illustrated using simulated data and applied to the problem of estimating
the incremental value of a novel interferon-gamma release assay (IGRA) over the tuberculin skin test (TST) for latent
tuberculosis (TB) screening. We also show how to estimate the incremental value of IGRAs when decisions are
based on observed test results rather than predictive values.

Results: We showed that the incremental value is greatest when both sensitivity and specificity of the new test are
better and that conditional dependence between the tests reduces the incremental value. The incremental value of
the IGRA depends on the sensitivity and specificity of the TST, as well as the prevalence of latent TB, and may thus
vary in different populations.

Conclusions: Even in the absence of a gold standard, incremental value statistics may be estimated and can aid
decisions about the practical value of a new diagnostic test.

Keywords: Area under the curve, Bayesian estimation, Incremental value, Informative priors, Integrated
discrimination improvement, Imperfect diagnostic tests, Latent class models, Tuberculosis
Background
Incremental value of a diagnostic test
The literature on diagnostic test evaluation has centered
on estimation of sensitivity and specificity, measures that
do not directly convey the clinical impact of a given test
[1-3]. The added value of a test will depend on how much
information is already available from the diagnostic work-
up and whether the test result actually changes clinical
decisions. The development of methods for evaluation
of the incremental value of new tests or biomarkers is
thus an active area of biostatistical research [4].
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Evaluation of the incremental value of a new test typic-
ally involves comparing prediction models of the out-
come of interest (measured by a gold standard), with
and without the new test as a covariate. The difference
between the area under the receiver operating character-
istic curve (AUC), or the C-statistic, for the 2 models is
the most familiar statistic for estimating incremental
value [5]. The AUC measures the discrimination of a
model, or its ability to distinguish between individuals
with and without the outcome. One criticism of the
AUC has been that it changes only slightly, even when
effect measures such as the odds ratio suggest that a
predictor is strongly associated with the outcome [6].
Another criticism is that the AUC has no direct clinical
interpretation for individual patients. This has led to
d. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:nandini.dendukuri@mcgill.ca
http://creativecommons.org/licenses/by/2.0
http://creativecommons.org/publicdomain/zero/1.0/


Ling et al. BMC Medical Research Methodology 2014, 14:67 Page 2 of 11
http://www.biomedcentral.com/1471-2288/14/67
work on comparing predictive models in terms of the
number of patients who are reclassified by adding a new
test to an existing model.
Pencina and colleagues proposed 2 measures for the

net increase in patients who are appropriately classified,
i.e. higher predicted probabilities for patients with the
outcome and lower probabilities for those without the
outcome [7]. They defined the net reclassification im-
provement (NRI) as the increase in the proportion of
patients who are accurately reclassified by the new
versus the old model into pre-defined risk categories.
They also proposed the integrated discrimination im-
provement (IDI) as a continuous version of the NRI
across all possible risk thresholds from 0 to 1. The IDI
is defined as the sum of the average increase in pre-
dicted probability among patients with the outcome
and the average decrease in probability among patients
without the outcome. Pepe and colleagues have also
shown that the IDI is equivalent to the change in R2

for logistic regression [8].

Evaluation of diagnostic tests in the absence of a gold
standard
Both the AUC and IDI rely on the availability of infor-
mation on the final outcome and assume that the true
disease status can be determined with certainty (i.e., no
misclassification). This assumption is not met for many
diseases for which there is no gold standard, i.e., no
diagnostic reference standard having perfect sensitivity
and perfect specificity. Several approaches have been
described for estimating disease prevalence and evaluating
diagnostic accuracy in the absence of a gold standard [9].
Among these approaches, latent class models provide a
more realistic interpretation of the problem by treating
both the index and reference tests as imperfect [10,11].
In this article, we describe 2 ways in which these models

can be used to estimate the incremental value of a new
test compared to an imperfect reference test: 1) estimating
the improvement in predicted probabilities using the AUC
or IDI statistics 2) estimating the increase in correctly-
classified patients using decisions rules based on observed
test results. We illustrate our methods using simulated
data and an application to estimating the incremental
value of a diagnostic test for latent tuberculosis infection
(LTBI). For diseases, such as LTBI, that have no clinically-
relevant thresholds, it has been suggested that the IDI is
more meaningful than the NRI [7,12]. Thus, our work
focuses on the IDI and AUC difference but not the NRI
statistic.

Diagnosis of latent TB infection
TB is a leading cause of morbidity and mortality in
the developing world [13]. LTBI can potentially develop
into active disease without adequate preventive therapy.
Unlike active TB (which can be detected with high accur-
acy using culture), LTBI has no gold standard. Until re-
cently, the tuberculin skin test (TST) was the only
screening test for LTBI. However, the TST suffers from im-
perfect sensitivity and specificity [14,15]. Interferon-gamma
release assays (IGRAs), such as the QuantiFERON-TB
Gold In-Tube (QFT), are now available and use antigens
that are more specific to M. tuberculosis than the TST.
Several meta-analyses show that the sensitivity of IGRAs
is at least as good as the TST [16-18]. While the specificity
of TST varies depending on when and how many BCG
vaccines are given, the specificity of IGRAs is consistently
high regardless of BCG vaccination [16-18]. Thus, a rele-
vant question is whether IGRAs have any incremental
value over the TST at the time of diagnosis in order to
initiate preventive therapy, while using an approach that
adjusts for the lack of a gold standard for LTBI.

Methods
Model for assessing incremental value without a gold
standard
The observed data may be described by a latent class
model which assumes that the standard test (T1) and new
test (T2) are imperfect measures of an underlying latent
variable D, or true disease status. Both tests and the dis-
ease status are assumed to be dichotomous, positive (+) or
negative (−) based on standard cut-offs. The observed data
follow a multinomial distribution where each probability
of the 4 combinations of 2 tests can be expressed in terms
of the sensitivity and specificity of both tests and the
prevalence. Furthermore, each probability is a mixture of
patients who are D + and D-:

P T1þ;T 2þð Þ ¼ π sens1sens2ð Þ þ 1−πð Þ 1−spec1ð Þ 1−spec2ð Þð Þ
P T1þ;T 2−ð Þ ¼ π sens1 1−sens2ð Þð Þ þ 1−πð Þ 1−spec1ð Þspec2ð Þ
P T1−;T 2þð Þ ¼ π 1−sens1ð Þsens2ð Þ þ 1−πð Þ spec1 1−spec2ð Þð Þ
P T1−;T 2−ð Þ ¼ π 1−sens1ð Þ 1−sens2ð Þð Þ þ 1−πð Þ spec1spec2ð Þ;

ð1Þ
where π = P(D+) or the prevalence of disease, sensj =
P(Tj + |D+) or sensitivity of the jth test (j = 1,2) and
specj = P(Tj-|D-) or specificity of the jth test.
The latent class model in Equation (1) is non-identifiable

due to the number of unknown parameters (5, i.e., sensitiv-
ity and specificity of both tests and prevalence) exceeding
the degrees of freedom (3, i.e., possible test combinations -
1). This model can be estimated using a Bayesian approach
with informative priors on at least 2 parameters (5 un-
known parameters - 3 degrees of freedom) [10,19]. The
prior information is combined with the observed data
to obtain a joint posterior distribution. A sample from
the posterior distribution can be drawn using Markov
Chain Monte Carlo methods such as the Gibbs sampler
[20]. To perform a Bayesian analysis, prior information on
sensitivity and specificity must be expressed as probability
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distributions, such as the Beta distribution. Parameters for
which no prior information is available may follow object-
ive prior distributions, such as the Uniform distribution
that assigns equal weight to all possible values.

Estimation of incremental value
Let P(D + |T1, T2) denote the positive predictive prob-
ability given the results of T1 and T2, and let P(D+|T1)
denote the positive predictive probability given T1
alone. Following Pencina et al. [7], we define the IDI as
the difference of the differences between the expected
(E) positive predictive probabilities with and without
the new test, conditional on D + and D-:

IDI ¼ E P Dþ jT 1;T 2ð ÞjDþð Þ−E P Dþ jT1ð ÞjDþð Þ
−½E P Dþ jT 1;T 2ð ÞjD−ð Þ−E P Dþ jT1ð ÞjD−ð Þ�

¼
Xþ
u;v¼−

P Dþ jT 1 ¼ u;T 2 ¼ vð Þ

P T 1 ¼ u;T 2 ¼ vjDþð Þ

−
Xþ
u¼−

P Dþ jT 1 ¼ uð Þ P T 1 ¼ ujDþð Þ

þ
"Xþ
u;v¼−

P D−jT 1 ¼ u;T 2 ¼ vð Þ

P T 1 ¼ u;T 2 ¼ vjD−ð Þ

−
Xþ
u¼−

P D−jT 1 ¼ uð Þ P T 1 ¼ ujD−ð Þ
#

ð2Þ

In the original definition by Pencina et al. [7], the pre-
dicted probabilities were derived from separate models–
the old model based on T1 alone and the new model
based on both T1 and T2. In the absence of a gold
standard, the true disease status is unknown and must
be estimated. We assumed that the latent class model
for the joint results of T1 and T2 in Equation (1) pro-
vides the best estimate of an individual’s disease status,
under the assumption of conditional independence. All
predicted probabilities, whether conditional on T1 and
T2 or T1 alone, were derived from this model. Further-
more, all the probabilities in Equation (2) can be
expressed as functions of the sensitivity, specificity and
prevalence estimates from the latent class model. For
example,

P T 1þ;T2−jDþð Þ ¼ sens1 1−sens2ð Þand

P Dþ jT1þ;T2−ð Þ ¼ π sens1 1−sens2ð Þ
π sens1 1−sens2ð Þ þ 1−πð Þ 1−spec1ð Þspec2 :

The predictive values above can also be used to calculate
the AUC. It may be calculated as the Wilcoxon rank sum
statistic comparing predictive values in the groups D +
and D- as follows [5]:

AUC ¼ RDþ−
NDþ NDþþ1ð Þ

2

NDþ ND−
; ð3Þ

where RD + is the sum of the ranks of the positive predict-
ive values calculated among the disease positive subjects
and ND + and ND − are the number of disease positive and
disease negative subjects, respectively. The AUC based on
the probability conditional on T1 was subtracted from the
AUC based on the probability conditional on T1 and T2 to
obtain the AUC difference (AUCdiff). A WinBUGS pro-
gram for estimating the latent class model and the IDI and
AUCdiff statistics appears in the Additional file 1: Table S1.

Simulation study of model performance
We used the model in Equation (1) to generate simu-
lated datasets to illustrate the change in IDI and AUCdiff

when varying the sensitivity and specificity of T2. In all
simulations, we assumed a sample size of N = 1000 and
that both T1 and T2 were performed on all individuals.
The sensitivity and specificity of T1 were set at 0.7 and
0.9, respectively; the prevalence was set at 0.3. We con-
sidered situations where the sensitivity (S) and/or speci-
ficity (C) of T2 was better (i.e., S2 = 0.8 and/or C2 = .95),
worse (S2 = 0.6 and/or C2 = 0.8), or no different than T1.
The true values of IDI and AUCdiff were calculated in
each simulation setting using Equation (2) and Equation
(3), respectively.
We generated 1000 datasets under each setting. We

then fit the latent class model to the simulated data-
sets and estimated the AUCdiff and IDI statistics
under each scenario. We used the results of the simu-
lated datasets to estimate the frequentist properties of
the AUCdiff and IDI statistics: average bias (i.e., the
average difference between the true value and the
posterior median across 1000 datasets), average cover-
age (i.e., the proportion of the 1000 datasets for which
the posterior credible interval of a statistic included
its true value) and average 95% posterior credible
interval length.
As mentioned above, we need to specify at least 2 in-

formative prior distributions for the model to be identi-
fiable. We used 2 informative priors for the sensitivity
and specificity of T1 (prior distribution ranging 0.7 ± 0.1
for sensitivity and 0.9 ± 0.05 for specificity) and uniform
priors for the other parameters (i.e., sensitivity and spe-
cificity of T2 and prevalence). Prior information on the
sensitivity and specificity of T1 was expressed as Beta
(α,β) distributions by equating the midpoint of the range
to the mean (μ) and one-quarter of the range to its
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standard deviation (σ) in order to obtain the alpha and
beta parameters:

α ¼ −
μ σ2 þ μ2−μð Þ

σ2
and β ¼ μ−1ð Þ σ2 þ μ2−μð Þ

σ2
:

Impact of modeling conditional dependence
If the tests are positively correlated within the D + and
D- groups, then their sensitivity and specificity may be
overestimated or underestimated if this conditional de-
pendence is ignored [21,22]. We carried out additional
simulations assuming that the 2 tests are conditionally
dependent, while retaining the same values for sensitivity
and specificity as given above in the simulations involving
the conditional independence model. The joint probabil-
ities may be expressed as:

P T 1þ;T 2þð Þ ¼ π sens1sens2 þ covsð Þ
þ 1−πð Þ 1−spec1ð Þ 1−spec2ð Þ þ covcð Þ

P T1þ;T 2−ð Þ ¼ π sens1 1−sens2ð Þ−covsð Þ
þ 1−πð Þ 1−spec1ð Þspec2−covcð Þ

P T 1−;T 2þð Þ ¼ π 1−sens1ð Þsens2−covsð Þ
þ 1−πð Þ spec1 1−spec2ð Þ−covcð Þ

P T 1−;T 2−ð Þ ¼ π 1−sens1ð Þ 1−sens2ð Þ þ covsð Þ
þ 1−πð Þ spec1spec2 þ covcð Þ; ð4Þ

where covs and covc are the covariance between the tests
in the D + and D- groups, respectively.
As described in Dendukuri and Joseph [21], these pa-

rameters were assumed to be bounded such that covs ~
dunif(0, min(sens1, sens2) - sens1sens2) and covc ~ dunif
(0, min(spec1, spec2) - spec1spec2), allowing only for posi-
tive conditional dependence. To simulate data from
Equation (4), we set covs and covc to the midpoint of
their range to reflect a moderate degree of conditional
dependence. Due to the addition of 2 unknown param-
eters, we need to provide informative priors on at least
4 parameters (7 unknown parameters - 3 degrees of
freedom). Although the bounds on the covariance pro-
vide partial information, we estimated the model with
additional informative priors on the sensitivity and specifi-
city of T2. The corresponding Beta(α,β) prior distributions
can be found in Additional file 2: Table S2.

Sensitivity to prior information
Non-identifiable latent class models are known to be heav-
ily influenced by the subjective prior information used.
While some may argue that it is impossible to study the
consequences of prior misspecification because the prior
information is subjectively defined for a given application,
it is possible to study the impact of prior misspecification
in a limited way in a simulated setting. We can expect that
as the prior information moves away from the true values,
the bias of the posterior estimates increases. However, this
bias would also depend on the relative weight of the prior
versus the data. Clearly, a weak prior distribution would
cause less bias than a strong prior in the event that the
prior is misspecified.
To examine the sensitivity of the IDI and AUCdiff sta-

tistics to prior information, we considered the following
three types of prior misspecification that are likely to
occur in practice: i) we replaced the range of prior infor-
mation on the sensitivity and specificity of the standard
test (T1) by point estimates that are equal to their true
value. These would be very strong prior distributions,
ii) we used point estimates of the sensitivity and specificity
of T1 that were close to but not equal to their true values
and iii) we used wide prior distributions on the sensitivity
and specificity of T1 which covered the true value but
were not centered on it. These would be weak prior
distributions.
Situations (i) and (ii) are akin to assuming that the

sensitivity and specificity of the standard test are per-
fectly known [23]–an assumption, which though hard to
justify, is not uncommonly made in studies of accuracy
or effectiveness of a new diagnostic test in the absence
of a gold standard [19,24]. Situation (iii) reflects the con-
sequences of misspecification of the relative importance
of the true values when specifying an informative prior.
It is more likely that the misspecified prior information
is closer to the true values than being completely unre-
lated to the true values.

Bayesian estimation
We used the BRugs package within R to fit the latent class
model to each simulated dataset. To assess convergence,
we ran 3 chains of the Gibbs sampler with different initial
values. Convergence was checked by visual inspection of the
history and density plots, and the Brooks-Gelman-Rubin
statistic available within BRugs. We ran 50,000 itera-
tions and dropped the first 5,000 burn-in iterations to
report summary statistics based on 45,000 iterations
(AUC was based on 5,000 iterations after model conver-
gence). Median estimates from the posterior distribution
are reported along with their 95% credible interval (CrI).

Application to diagnosis of LTBI
We evaluated the incremental value of the QFT over
TST in data from 2 published studies in India and
Portugal, where both tests were performed simultaneously
in healthcare workers with different BCG vaccination ex-
posure. The TST has been shown to be less specific when
the BCG vaccine is administered after infancy (e.g., during
adolescence) or with multiple shots [18,25]. The Indian
study consists of 719 healthcare workers, and 71% had a
BCG vaccine scar [26]. Since the BCG vaccine is given
once at birth in India, we expect the TST and QFT to
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perform similarly with respect to specificity [27]. In con-
trast, the Portuguese study consists of 1218 healthcare
workers, and 70% had received ≥1 BCG vaccination after
birth, which would lower the TST specificity [28].
We obtained prior information on the sensitivity and

specificity of TST based on a previous meta-analysis
[18]. The TST sensitivity ranged from 70% to 80%, while
its specificity ranged from 96% to 99% for the Indian
data. We expressed this as Beta(224.25, 74.75) and Beta
(421.53, 10.81) distributions for the sensitivity and spe-
cificity, respectively. For the Portuguese data, the TST
sensitivity also ranged from 70% to 80%, while its speci-
ficity ranged from 55% to 65%, corresponding to a Beta
(229.8, 153.2) distribution.
Furthermore, we used Equation (4) to adjust for con-

ditional dependence, since both TST and QFT measure
cellular immune responses to M. tuberculosis antigens.
We used informative priors for the sensitivity and spe-
cificity of QFT based on the same meta-analysis [18].
The sensitivity ranged from 70% to 80%, while the spe-
cificity ranged from 96% to 99% for both studies. These
values were transformed into Beta(224.25, 74.75) and
Beta(421.53, 10.81) distributions for the sensitivity and
specificity, respectively. The prevalence and covariances
were assumed to follow Uniform distributions. To study
the sensitivity of the results to the form of the prior dis-
tribution, we replaced the Beta prior distributions by
Uniform prior distributions with the same 95% CrI
limits as those mentioned above. To study the sensitiv-
ity of the results to the prior distribution, we used a
wider prior distribution whose 95% credible interval
covered the lower and upper limits of the 95% confi-
dence interval estimated for each individual study in-
cluded in the meta-analysis.
Table 1 Step-by-step calculation of Integrated Discrimination
than Test 1 (T1)*

T1, T2, D Predicted probability conditional
on T1 and T2 (P(D|T1,T2))

Predicted probability
on T1 alone (P

+ + + 0.96 0.75

+ - + 0.41 0.75

- + + 0.54 0.13

- - + 0.03 0.13

Incremental value among D + (

+ + - 0.04 0.25

+ - - 0.59 0.25

- + - 0.46 0.87

- - - 0.97 0.87

Incremental value among D- (Σ

Overall incremental value =

D = disease status.
*S1 = 0.7, C1 = 0.9, S2 = 0.8, C2 = 0.9, π = 0.3. Median values of each parameter are list
posterior distribution of each parameter.
Decision rules for LTBI diagnosis based on observed data
In practice, the diagnosis of LTBI is based on observed
test results rather than predicted probabilities from a
latent class model [29]. Therefore, another way to view
the incremental value of QFT is the increase in the
number of individuals who are correctly classified (i.e., true
positive and negative) within the D + and D- groups,
compared to the classification based on TST alone. We
compared the following decision rules based on one or
both tests: 1) diagnose LTBI if TST + 2) diagnose LTBI
if both TST + and QFT + 3) diagnose LTBI if either TST +
or QFT+. The number of D + patients correctly classified
by a decision rule is estimated as P(D + |rule+) multiplied
by the number of patients who satisfy the rule. Similarly,
the number of D- patients correctly classified is estimated
as P(D-|rule-) multiplied by the number of patients who
do not satisfy the rule.
As this study was conducted using simulated data and

data from published articles, ethics approval was not
required.

Results
Simulation study results
Table 1 illustrates the calculation of the IDI for the ex-
pected dataset (i.e., the dataset obtained by multiplying
the probabilities in (1) by the sample size of 1000) for the
case when sensitivity of T2 was higher than that of T1.
The IDI can be decomposed into the incremental value
among true-positive and true-negative patients. In this
scenario, the predicted probability given both T1 and T2

increased among an estimated 17% of true-positive and
7% of true-negative patients, compared to the probability
based on T1 alone. Thus, the overall estimate of the IDI
was 24%.
Improvement (IDI) when Test 2 (T2) has higher sensitivity

conditional
(D|T1))

Difference Weight
(P(T1,T2|D))

Contribution to IDI
(weight × difference)

0.21 0.56 0.12

-0.34 0.14 -0.05

0.41 0.24 0.10

-0.1 0.06 -0.006

Σweight × difference) = 0.17

-0.21 0.01 -0.002

0.34 0.09 0.03

-0.41 0.09 -0.04

0.1 0.81 0.08

weight × difference) = 0.07

0.24 (95% CrI: 0.10, 0.51)

ed here only for illustration purposes. Calculations take into account the entire
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The true values of the AUCdiff and IDI for all simulation
scenarios are shown in Table 2 together with the estimated
posterior median values (median, 2.5% and 97.5% quan-
tiles) across 1000 datasets. The true incremental value was
greatest when both sensitivity and specificity of T2 were
higher than T1. As expected, the AUCdiff and IDI were
close to 0 when T2 had no value, such that sens2 + spec2 =
0.7 + 0.3 = 1 (i.e., T2 was no better than a coin toss). Even
when both sensitivity and specificity of T2 were lower than
T1, there was some incremental value for T2. The incre-
mental value was intermediate when either sensitivity or
specificity of T2 was better or worse than T1. In all scenar-
ios, the estimated values of the incremental value statistics
were very close to the true values across the 1000 datasets.
The frequentist properties of the IDI and AUCdiff statistics
for each simulation scenario are given in Additional file 3:
Table S3. In all scenarios, we find that the average cover-
age (i.e., the estimated probability that the posterior 95%
credible interval for a certain statistic included its true
value) exceeds 95% and the average bias (i.e., the differ-
ence between the true value and the posterior median) is
low. We also confirmed convergence of the Gibbs sampler
in each case (data not shown).
When T2 had higher sensitivity and specificity than T1

(S2 = 0.8, C2 = .95), the true AUCdiff was 0.14, which was
only slightly better than when T2 had either higher sensi-
tivity or higher specificity. In comparison, the magnitude
Table 2 True values and posterior estimates across 1000 simu
Integrated Discrimination Improvement (IDI) statistics obtain
independence (with S1=0.7, C1=0.9)

Accuracy of T2 Parameter
value

AUC for T1
and T2

AUC for T1

1) Higher sensitivity S2 = 80,
C2 = 90

True 0.93 0.80

Estimated 0.93 (0.91, 0.95) 0.80 (0.79, 0.80)

2) Higher specificity S2 = 70,
C2 = 95

True 0.92 0.80

Estimated 0.94 (0.91. 0.96) 0.81 (0.80, 0.83)

3) Lower sensitivity S2 = 60,
C2 = 90

True 0.88 0.80

Estimated 0.89 (0.87, 0.91) 0.80 (0.79, 0.80)

4) Lower specificity S2 = 70,
C2 = 80

True 0.88 0.80

Estimated 0.89 (0.87, 0.91) 0.80 (0.79, 0.80)

5) Both better S2 = 80,
C2 = 95

True 0.94 0.80

Estimated 0.94 (0.92, 0.96) 0.80 (0.80, 0.81)

6) Both worse S2 = 60,
C2 = 80

True 0.87 0.80

Estimated 0.87 (0.85, 0.89) 0.80 (0.79, 0.80)

7) No better S2 = 70,
C2 = 90

True 0.90 0.80

Estimated 0.91 (0.89, 0.94) 0.80 (0.79, 0.80)

8) No value S2 = 70,
C2 = 30

True 0.80 0.80

Estimated 0.81 (0.80, 0.82) 0.80 (0.79, 0.80)

T1 = test 1; T2 = test 2; S2 = sensitivity of T2; C2 = specificity of T2.
*IDI is sum of IDIevents and IDInon-events.
of the true IDI was larger (IDI = 0.30) when T2 had
higher sensitivity and specificity, compared to when T2

had either higher sensitivity (IDI = 0.25) or better specifi-
city (IDI = 0.28). The IDI was lower when T2 had lower
specificity of 0.8 (IDI = 0.11) compared to lower sensi-
tivity of 0.6 (IDI = 0.14), due to the prevalence being less
than 50%.
Impact of adjusting for conditional dependence
Table 3 shows the results for the simulations involving
conditionally dependent tests: true values as well as a
summary of the estimated values across 1000 simulated
datasets. The incremental value was largest when T2

had better sensitivity and specificity than T1 and smal-
lest when T2 was worse on both measures. When com-
paring this model to the one without adjustment for
conditional dependence, the incremental value of T2

was generally lower (Figure 1; Tables 2 vs 3). Interestingly,
the true value of both incremental value statistics sug-
gested a small incremental value even when T2 was not
useful: AUC= 0.04 and IDI = 0.02. This finding could be
explained in part by the contribution of T2 being positively
correlated with T1. Once again, the average bias was very
small and the average coverage exceeded 95% across the
1000 simulated datasets in each scenario (Additional file 4:
Table S4).
lated datasets of Area Under the Curve (AUC) and
ed from latent class models assuming conditional

AUC
difference

IDI in events IDI in non
events

IDI*

0.13 0.16 0.07 0.23

0.13 (0.11, 0.15) 0.17 (0.12, 0.22) 0.07 (0.05, 0.10) 0.25 (0.18, 0.32)

0.12 0.16 0.07 0.23

0.12 (0.11, 0.14) 0.17 (0.12, 0.22) 0.07 (0.05, 0.09) 0.28 (0.22, 0.34)

0.09 0.09 0.04 0.12

0.09 (0.07, 0.11) 0.10 (0.06, 0.14) 0.04 (0.03, 0.06) 0.14 (0.09, 0.20)

0.09 0.07 0.03 0.10

0.09 (0.07, 0.11) 0.08 (0.05, 0.12) 0.03 (0.02, 0.05) 0.11 (0.07, 0.17)

0.14 0.21 0.09 0.30

0.14 (0.12, 0.17) 0.21 (0.16, 0.26) 0.09 (0.07, 0.11) 0.30 (0.23, 0.36)

0.07 0.05 0.02 0.07

0.07 (0.05, 0.09) 0.05 (0.03, 0.08) 0.02 (0.01, 0.04) 0.07 (0.04, 0.12)

0.10 0.12 0.05 0.17

0.11 (0.09, 0.14) 0.13 (0.09, 0.19) 0.06 (0.04, 0.08) 0.19 (0.13, 0.27)

-0.00 -0.00 0.00 -0.00

0.01 (0.006, 0.02) 0.001 (0, 0.004) <0.001 (0, 0.002) 0.002 (0.001, 0.006)



Table 3 True values and posterior estimates across 1000 simulated datasets of Area Under the Curve (AUC) and
Integrated Discrimination Improvement (IDI) statistics obtained from latent class models assuming conditional
dependence (with S1=0.7, C1=0.9)

Accuracy of T2
compared to T1

Parameter
value

AUC for T1
and T2

AUC for T1 AUC
difference

IDI in events IDI in non
events

IDI*

1) Higher sensitivity S2 = 80,
C2 = 90

True 0.88 0.80 0.09 0.10 0.04 0.15

Estimated 0.90 (0.89, 0.90) 0.80 (0.80, 0.81) 0.09 (0.08, 0.10) 0.13 (0.11, 0.15) 0.06 (0.04, 0.07) 0.19 (0.16, 0.21)

2) Higher specificity S2 = 70,
C2 = 95

True 0.87 0.80 0.07 0.10 0.04 0.15

Estimated 0.88 (0.87. 0.89) 0.80 (0.80, 0.81) 0.07 (0.06, 0.09) 0.12 (0.10, 0.14) 0.05 (0.04, 0.06) 0.17 (0.15, 0.19)

3) Lower sensitivity S2 = 60,
C2 = 90

True 0.84 0.80 0.04 0.03 0.01 0.04

Estimated 0.85 (0.84, 0.86) 0.80 (0.80, 0.81) 0.05 (0.04, 0.05) 0.05 (0.04, 0.06) 0.02 (0.02, 0.03) 0.08 (0.06, 0.19)

4) Lower specificity S2 = 70,
C2 = 80

True 0.83 0.80 0.03 0.02 0.01 0.03

Estimated 0.85 (0.84, 0.86) 0.80 (0.80, 0.81) 0.04 (0.04, 0.05) 0.04 (0.03, 0.04) 0.02 (0.01, 0.02) 0.06 (0.05, 0.06)

5) Both better S2 = 80,
C2 = 95

True 0.90 0.80 0.11 0.17 0.07 0.24

Estimated 0.91 (0.90, 0.92) 0.80 (0.79, 0.81) 0.11 (0.09, 0.12) 0.19 (0.16, 0.21) 0.08 (0.07, 0.09) 0.27 (0.24, 0.29)

6) Both worse S2 = 60,
C2 = 80

True 0.82 0.80 0.02 0.01 0.00 0.01

Estimated 0.84 (0.83, 0.84) 0.80 (0.80, 0.81) 0.03 (0.03, 0.04) 0.02 (0.02, 0.03) 0.01 (0.007, 0.01) 0.03 (0.02, 0.04)

7) No better S2 = 70,
C2 = 90

True 0.85 0.80 0.05 0.05 0.02 0.07

Estimated 0.86 (0.85, 0.87) 0.80 (0.80, 0.81) 0.06 (0.05, 0.07) 0.08 (0.07, 0.10) 0.04 (0.03, 0.04) 0.12 (0.10, 0.14)

8) No value S2 = 70,
C2 = 30

True 0.84 0.80 0.04 0.01 0.01 0.02

Estimated 0.84 (0.83, 0.86) 0.80 (0.79, 0.80) 0.04 (0.03, 0.06) 0.02 (0.01, 0.02) 0.01 (0.004, 0.01) 0.02 (0.02, 0.04)

T1 = test 1; T2 = test 2; S2 = sensitivity of T2; C2 = specificity of T2.
*IDI is sum of IDIevents and IDInon-events.
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Sensitivity analysis in simulated scenarios
From Table 4 we can see that informative priors for S1
and C1 that are centered on the true value of a parameter
would lead to the lowest bias and highest coverage, even
compared to the case when the parameters are fixed at the
true values. When S1 and C1 are fixed at values that are
incorrect, though not far from the true values, the bias in-
creases and coverage decreases sharply to 0. On the other
Figure 1 Incremental value of T2 over T1 based on simulation study
quantiles of posterior median values across 1000 datasets.
hand, a wider prior that covers the true values but is not
centered on them may have high coverage even though
the bias is higher than the case when the prior is narrow
and centered on the true values.
It has been reported that ignoring conditional depend-

ence between the tests when it exists will result in the la-
tent class analysis providing biased estimates of the
sensitivity, specificity and prevalence of both tests [21,22].
(with S1 = 0.7, C1 = 0.9*). *Values plotted are median, 2.5% and 97.5%



Table 4 Sensitivity to prior distribution for the case when both sensitivity and specificity of the second test are better
than the first test (true values are S1 = 0.7, C1 = 0.9)

Conditional Independence Model

Prior information on T1 sensitivity and specificity IDI (True value 0.3) AUCdiff (True value 0.14)

Bias Length Coverage Bias Length Coverage

Informative priors centered at true values* 0.001 0.43 1 -0.003 0.14 0.99

Degenerate priors at true values: S1 = 0.7, C1 = 0.9 0.006 0.19 0.95 -0.001 0.07 1

Degenerate priors, but not at true values: S1 = 0.8, C1 = 0.925 -0.17 0.08 0 -0.07 0.04 0

Informative priors covering but not centered on true values†

(centered on S1 = 0.8, C1 = 0.925)
-0.16 0.42 0.99 -0.07 0.15 1

*S1 ~ Beta(58.1, 24.9) (95% CrI 0.6, 0.8), C1 ~ Beta(128.7, 14.3) (95% CrI 0.85, 0.95).
†S1 ~ Beta(8.6, 1.4) (95% CrI 0.6, 0.99), C1 ~ Beta(38.1, 2.4) (95% CrI 0.85, 0.99).
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To study how ignoring conditional dependence will affect
the incremental value statistics, we used the simulated
datasets from the scenario where T2 had both improved
sensitivity and specificity compared to T1 and the two
tests are conditionally dependent. We found that incor-
rectly assuming conditional independence between the
tests would result in over-estimating the incremental
value. As seen in Table 3, the true values for this situation
are AUCdiff =0.11 and IDI = 0.24. When ignoring the con-
ditional dependence, the posterior median estimates were
much higher across the 1000 simulated datasets: median
AUCdiff = 0.15 [2.5% and 97.5% quantiles (0.13, 0.16)] and
median IDI = 0.41 [2.5% and 97.5% quantiles (0.39, 0.47)].

Evaluation of QFT for LTBI
In the 2 published studies for the diagnosis of LTBI, the
cross-tabulations of the test results were: TST +QFT + =
226, TST +QFT- = 62, TST-QFT + = 72, TST-QFT- = 359
for the Indian study [26] and TST +QFT + = 371, TST +
QFT- = 532, TST-QFT + = 26, TST-QFT- = 289 for the
Portuguese study [28]. Thus, the proportion of TST +
QFT- results was higher in the Portuguese data. The esti-
mates from the latent class model with conditional de-
pendence appear in Table 5. For the Indian data, the
AUCdiff was 0.08 (95% CrI: 0.06, 0.11), while the IDI was
0.23 (95% CrI: 0.16, 0.29). For the Portuguese data, these
values were AUCdiff = 0.21 (95% CrI: 0.17, 0.25) and IDI =
0.40 (95% CrI: 0.29, 0.51). Thus, both AUCdiff and IDI
indicated greater incremental value of the QFT in the
Portuguese population where multiple BCG vaccinations
compromise the TST specificity. In both studies, the IDI
for events and nonevents are relatively equal, suggesting
that the QFT changes the probabilities for individuals with
and without LTBI to a similar extent.

Evaluating the sensitivity to the prior distribution
When using Uniform instead of Beta prior distributions,
the results remain unchanged (data not shown). When
using wider prior distributions, the posterior distributions
for the sensitivity were wider and the median estimates of
the specificities of both tests were lower in both the Indian
and Portuguese data (Additional file 5: Table S5). Corres-
pondingly, the median estimated incremental value statis-
tics were all lower than those in Table 5. However, the
credible intervals for these statistics (Additional file 5:
Table S5) included the intervals in Table 5. Thus, our
conclusion that the incremental value was higher for
the Portuguese data remains unchanged.
Incremental value of QFT when using decision rules based
on observed test results
In addition to the AUCdiff and IDI, the latent class
model can be used to determine the incremental value
based on the observed TST and QFT results by estimat-
ing the number of patients who are correctly classified
as having or not having LTBI. As shown in Table 6, the
TST + or QFT + decision rule would give the highest
incremental value in the Indian data (9% increase in the
number of correct diagnoses) mainly by increasing the
proportion of true-positive patients compared to the diag-
nosis based on TST alone. The TST + or QFT + decision
rule, however, would be similar to using the TST alone in
the Portuguese data. Instead, the TST + and QFT + deci-
sion rule would result in the largest number of correctly-
classified patients (21% increase in the number of correct
diagnoses) mainly due to a decrease in the number of
LTBI- patients who are false-positive. The difference in
the preferred decision rule for the Indian and Portuguese
data can be attributed to the different specificity of the
TST test in these two groups. Nonetheless, the QFT test
has incremental value over the TST in both populations.
By calculating the incremental value as described, we
can quantify precisely the expected impact of the differ-
ence in specificity for the two groups.
Discussion
We have described how latent class models can provide
information on the incremental value of a new diagnostic
or screening test even in the absence of a gold standard
test. Our simulations show that both the AUCdiff and
IDI statistics can provide useful information on the



Table 5 Median posterior estimates and 95% Credible Intervals (CrI) of latent class model parameters, Area Under the
Curve (AUC) and Integrated Discrimination Improvement (IDI) statistics using data from applied examples

TST Sensitivity
(95% CrI)

TST Specificity
(95% CrI)

QFT Sensitivity
(95% CrI)

QFT Specificity
(95% CrI)

Prevalence
(95% CrI)

India study
(n = 719) [26]

0.74 (0.70, 0.78) 0.98 (0.96, 0.99) 0.76 (0.72, 0.80) 0.98 (0.96, 0.99) 0.53 (0.48, 0.58)

Portugal study
(n = 1218) [28]

0.84 (0.81, 0.87) 0.46 (0.42, 0.51) 0.69 (0.62, 0.75) 0.98 (0.97, 0.99) 0.47 (0.41, 0.55)

AUC for TST and
QFT (95% CrI)

AUC for TST
(95% CrI)

AUC difference
(95% CrI)

IDI in events
(95% CrI)

IDI in non
events (95% CrI)

IDI
(95% CrI)

India study
(n = 719) [26]

0.94 (0.91, 0.97) 0.86 (0.83, 0.89) 0.08 (0.06, 0.11) 0.11 (0.07, 0.14) 0.12 (0.08, 0.16) 0.23 (0.16, 0.29)

Portugal study
(n = 1218) [28]

0.86 (0.82, 0.89) 0.65 (0.61, 0.69) 0.21 (0.17, 0.25) 0.21 (0.13, 0.30) 0.19 (0.15, 0.22) 0.40 (0.29, 0.51)
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incremental value in the absence of a gold standard. As
in the case when a gold standard is present, the IDI stat-
istic has a larger relative magnitude compared to the
AUCdiff and can be interpreted as the average improve-
ment in the predictive value. By considering different
simulation settings for the new test’s accuracy, we found
that the incremental value was greatest when both sen-
sitivity and specificity of a new test were better than the
standard test and that both incremental value statistics
were close to zero when the new test was of no value.
When adjusting for conditional dependence between tests,
the incremental value of T2 was lower. When the model
was mis-specified and ignored conditional dependence
between the tests, both incremental value statistics were
over-estimated as expected.
Bayesian estimation is particularly useful for latent

class models that are non-identifiable due to insufficient
degrees of freedom in the data, since it allows for the
use of information external to the observed data. In our
models, we used informative priors on the sensitivity
and specificity of the standard test. As was the case in our
motivating example of LTBI, evidence on these parameters
can be obtained from the literature. One criticism of the
latent class models we have used is their sensitivity to
Table 6 Median number of patients classified correctly or mis
Tuberculosis Infection (LTBI)

Decision Rule Classified correctly

TP (%) TN (%) Total FN

India study

LTBI if TST+ 280 (39) 331 (46) 611 (85) 10

LTBI if TST + and QFT+ 223 (31) 335 (47) 558 (78) 15

LTBI if TST + or QFT+ 347 (48) 326 (46) 673 (94) 3

Portugal study

LTBI if TST+ 504 (41) 245 (20) 749 (61) 7

LTBI if TST + and QFT+ 361 (30) 634 (52) 995 (82) 21

LTBI if TST + or QFT+ 528 (43) 243 (20) 771 (63) 4

TP = true positive; FP = false positive; FN = false negative; TN = true negative.
prior information. We believe that we have used the best
available information on sensitivity and specificity of
the TST and QFT tests resulting from a meta-analysis.
Further, we carried out sensitivity analyses to other
prior distributions. As we have shown, the Bayesian ap-
proach also provides credible intervals that have good
coverage properties, unlike the limitations of the ap-
proximate frequentist intervals described previously for
the IDI statistic [30].
We have argued that in the absence of a gold standard,

all available test results are needed in the latent class
model to provide the best estimate of the true disease
status. Indeed, clinicians almost always rely on all available
clinical information to make diagnostic decisions [24].
Alternative approaches to latent class analysis, including
use of a composite reference standard or panel diagno-
sis, define a decision rule to definitively classify patients
as disease positive or disease negative. Once such a defini-
tive classification of disease status is obtained, methods for
estimating incremental value in the presence of a gold
standard may be used. The concern with this approach, of
course, is that it may lead to reference standard bias [31].
In some situations, it may not be possible to implement
these alternatives. In our motivating example, there were
classified under each decision rule for diagnosis of Latent

Misclassified Incremental value compared
to LTBI if TST + (%)

(%) FP (%) Total

(n = 719)

0 (14) 8 (1) 108 (15) -

8 (21) 3 (1) 161 (22) −7

3 (4) 13 (2) 46 (6) 9

(n = 1218)

0 (6) 399 (33) 469 (39) -

3 (17) 10 (1) 223 (18) 21

6 (4) 401 (33) 447 (37) 2
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only two tests. Thus, it was not possible to define a
composite reference standard. Moreover, if we used the
simplistic approach of treating the older test as a gold
standard, it would be equivalent to assuming that the
new test has no incremental (or added) value. Hence,
we feel a latent class approach is particularly valuable
in this setting.
Since this is the first paper on the topic of estimating

incremental value in the absence of a gold standard, we
chose to focus on illustrating the concept in the simplest
case involving only observed data from two diagnostic
tests. We recognize that our model does not include pa-
tient characteristics (e.g., age) that may play a role in the
diagnostic decision-making process, thereby limiting the
variation in predicted probabilities. Further research is
needed to extend latent class models to incorporate such
covariates that could have an effect on the prevalence,
sensitivity or specificity [32]. In addition, more complex
models can be used when test results are continuous or
there are more than 2 tests involved. Findings from pre-
vious work showing that increased sample size and an
increase in informativeness of the prior distributions
improve the precision of parameter estimates from a
non-identifiable latent class model would also apply here
[33], as all incremental statistics that we have described
are functions of the prevalence, sensitivity and specificity
parameters in the latent class model. In addition, more
research is needed to examine the impact of the choice
of a particular conditional dependence structure and the
degree of conditional dependence on estimates of incre-
mental value.
Another future direction would be estimating the more

common NRI using plausible risk thresholds or even the
category-free version [12]. In particular, our method may
be able to address a recent criticism that the NRI cannot
measure improvements in risk prediction at the popula-
tion level [34], since the latent class model incorporates
prevalence into the estimates. It should be mentioned that
a number of recent articles have been critical of the IDI
and NRI statistics [30,35]. In particular, it has been pointed
out that they can be inflated for miscalibrated prediction
models whereas the AUC may not be. This remains to be
studied in the context when there is no gold standard.
An alternative approach to adding covariates to the

model is to carry out a subgroup analysis. In our LTBI
example, we estimated incremental value within sub-
groups defined by study setting. The QFT had different
incremental value beyond the TST depending on the
population and BCG vaccination policy. In low-risk
groups, using the TST + and QFT + decision rule could
help avoid unnecessary LTBI therapy. On the other
hand, using the TST + or QFT + decision rule could help
clinicians who are worried about missing LTBI cases in
high-risk groups, such as HIV/AIDS patients and young
children. Such reasoning has been used to support cost-
effectiveness analyses of the TST and QFT for diagnosis
of LTBI [36]. The Bayesian approach we propose is an
improvement over such approaches since it takes into
account the joint uncertainty in the sensitivity and speci-
ficity parameters of both tests [37].
Several national guidelines now exist on using IGRAs

such as the QFT, and many low-incidence countries rec-
ommend a two-step process: if TST is positive then per-
form the QFT as a confirmatory test [29]. This approach
is equivalent to the “diagnose LTBI if TST + and QFT+”
rule in terms of incremental value but is cheaper since
not all patients receive both tests. In fact, the “diagnose
LTBI if QFT+” rule (data not shown) would give similar
results compared to the TST + and QFT + rule in the
Portuguese data. However, the QFT is sold as a commer-
cial kit that is more expensive than the TST. Ultimately,
the decision to implement a new test into practice will
depend on many factors, including patient preferences,
risk of complications and cost considerations.

Conclusions
We have illustrated how to estimate incremental value
in the absence of a gold standard test by relying on prior
information on the sensitivity and specificity of one or
both tests. Using point priors rather than prior ranges
results in poor coverage and bias compared to using a
wide prior, even if it is not centered on the true values.
Further research is needed to develop methods for esti-
mation of incremental value conditional on more tests
and covariates.
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