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Abstract

Background: A recent paper proposed an intent-to-diagnose approach to handle non-evaluable index test results
and discussed several alternative approaches, with an application to the meta-analysis of coronary CT angiography
diagnostic accuracy studies. However, no simulation studies have been conducted to test the performance of the
methods.

Methods: We propose an extended trivariate generalized linear mixed model (TGLMM) to handle non-evaluable
index test results. The performance of the intent-to-diagnose approach, the alternative approaches and the extended
TGLMM approach is examined by extensive simulation studies. The meta-analysis of coronary CT angiography
diagnostic accuracy studies is re-evaluated by the extended TGLMM.

Results: Simulation studies showed that the intent-to-diagnose approach under-estimate sensitivity and specificity.
Under the missing at random (MAR) assumption, the TGLMM gives nearly unbiased estimates of test accuracy indices
and disease prevalence. After applying the TGLMM approach to re-evaluate the coronary CT angiography
meta-analysis, overall median sensitivity is 0.98 (0.967, 0.993), specificity is 0.875 (0.827, 0.923) and disease prevalence
is 0.478 (0.379, 0.577).

Conclusions: Under MAR assumption, the intent-to-diagnose approach under-estimate both sensitivity and
specificity, while the extended TGLMM gives nearly unbiased estimates of sensitivity, specificity and prevalence. We
recommend the extended TGLMM to handle non-evaluable index test subjects.
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Background
In studies of meta-analysis of diagnostic test comparing
an index test with a reference test, non-evaluable test out-
come is an important issue that could potentially lead to
biased estimates of index test accuracy. Many papers in
the literature discussed missing reference test outcome
(missing disease status) and how to correct such bias,
so called partial verification bias or work up bias [1-4].
However, index test outcomes can be non-evaluable as
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well, especially for tests yielding dichotomous results. Dif-
ferent situations were discussed where index test result
can be non-evaluable: uninterpretable, intermediate and
indeterminate [5,6].
For a single study, there are many discussions about

how to deal with non-evaluable index test outcomes,
such as excluding them [7], grouping them with posi-
tive or negative outcomes [5,7], or use 3 × 2 table to
report them as an extension of the standard 2 × 2 table
[7]. On the other hand, in meta-analysis, there is little
discussion on how to deal with missing index test out-
comes [6]. The “classic” 2 × 2 table models such as the
bivariate linear mixed models [8-13], bivariate general-
ized linear mixed model (GLMM) [14-16] and TGLMM
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[17] ignore missing index test outcomes. Recently, a paper
by Schuetz et al. [6] discussed this issue by studying dif-
ferent approaches dealing with index test non-evaluable
subjects. The paper conducted a meta-analysis of coro-
nary CT angiography studies and presented an intent-to-
diagnose approach together with three commonly applied
alternative approaches. The intent-to-diagnose approach
takes non-evaluable diseased subjects as false positives
and non-diseased subjects as false negatives such that
sensitivity and specificity won’t be over-estimated. We
name the other three alternative approaches in Schuetz
et al. [6] as Model 1 (non-evaluable subjects are excluded
from the study), Model 2 (non-evaluable diseased sub-
jects are taken as true positives and non-diseased subjects
are taken as false positives) and Model 3 (non-evaluable
diseased subjects are taken as false negatives and non-
diseased subjects are taken as true negatives). We use
Model 1-3 to denote the above three approaches though-
out the rest of this paper. The authors concluded that
excluding the index test non-evaluable subjects (Model
1) leads to overestimation of sensitivity and specificity
and recommended the conservative intent-to-diagnose
approach by treating non-evaluable diseased subjects as
false negatives and non-evaluable non-diseased subjects
as false positives. However, no simulation studies have
been conducted to evaluate the performance of these
approaches. Moreover, the above conclusions can be mis-
leading.
We can treat index test non-evaluable subjects as miss-

ing data. Schuetz et al. [6] concluded that sensitivity and
specificity could be over-estimated by excluding non-
evaluable subjects. In fact, under a reasonable general
assumption, missing at random (MAR), excluding non-
evaluable subjects can provide unbiased estimates of
sensitivity (Se) and specificity (Sp). Under MAR assump-
tion, the probability of missing only depend on observed
information, such as patient characteristics and known
true disease status [18,19]. For example, when diagnosing
extrahepatic cholestasis using percutaneous transhepatic
cholangiography, non-diseased subjects can have unin-
terpretable results more often than diseased patients [5].
A special case of MAR is missing completely at random
(MCAR), where missing is independent of both observed
and unobserved variables [18]. E.g., accidental contamina-
tion of a urine sample such that the test result is discarded.
Under MAR, T andM are independent given disease sta-
tus D, where M = 1, 0 indicates missingness of index
test outcome, D = 1, 0 indicates diseased or non-diseased
and T = 1, 0 represents index test positive or negative.
Hence, excluding non-evaluable subjects will have unbi-
ased estimates of Se and Sp: Ŝe = Pr(T = 1|D = 1,M =
0) = Pr(T = 1|D = 1) and Ŝp = Pr(T = 0|D =
0,M = 0) = Pr(T = 0|D = 0). Similarly, positive
and negative likelihood ratios (LR+ and LR−) and area

under the curve (AUC) are unbiased too. Under MCAR,
Pr(M = 1|D = 1) = Pr(M = 1|D = 0), and hence disease
prevalence (π ) estimate is also unbiased if non-evaluable
subjects are excluded. However, when missing probabil-
ities are not equal between diseased and non-diseased
participants, disease prevalence estimate can be biased if
non-evaluable subjects are excluded, leading overall esti-
mates of positive predictive value (PPV) and negative
predictive value (NPV) biased. PPV and NPV are gener-
ally preferred by clinicians as measurements of how well
a test predicts true disease status because their interpre-
tations are more intuitive: PPV is the probability that a
subject with positive intex test result is truely diseased and
NPV is the probability that a subject with negative intex
test result is truely non-diseased [19]. However, none of
the approaches discussed in Schuetz et al. [6] can correct
bias in their estimates.
In this article, we propose to extend the TGLMM

approach [17] by treating non-evaluable subjects as miss-
ing data to adjust for potential bias. The TGLMM was
proposed by Chu et al. [17] as an extension of the bivariate
GLMM [9,10,14]. Sensitivities and specificities are found
to be potentially dependent on disease prevalence [20-22].
The TGLMM models disease prevalence together with
sensitivity and specificity to account for potential correla-
tions among them. Moreover, once overall disease preva-
lence is evaluated, other test accuracy indices such as PPV
and NPV can be calculated. By extending the TGLMM to
account for missing data, potential bias in disease preva-
lence estimate can be adjusted and thus, bias in PPV and
NPV estimates can be avoided.
In the rest of this paper, we first present the extended

TGLMM approach in the “Methods” section. Next, in
section “Results”, simulation studies are carried out to
systematically evaluate the performance of the extended
TGLMM,Model 1-3 and the intent-to-diagnose approach
when there are non-evaluable index test subjects. The
meta-analysis of coronary CT angiography studies is
re-evaluated by the extended TGLMM approach. The
SAS code for the extended TGLMM is available in the
Appendix. Finally, we conclude the paper with some dis-
cussions in section “Conclusions”.

Methods
Assume there are i = 1, . . . ,N studies in one meta-
analysis data set. We generalize the TGLMM approach
to account for missing index test outcomes by extending
the “classic” 2 × 2 table to Table 1. Each cell in Table 1
reports the cell count and cell probability corresponding
to a combination of index test and disease outcomes in
study i. Let nitd denote the cell counts in study iwith index
test outcome T = t and reference test outcome D = d,
where t = 1, 0,m stands for positive, negative and miss-
ing, and d = 1, 0 denotes positive and negative. Sei, Spi
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Table 1 3× 2 table accounting for prevalence andmissing index test results

Gold standard

Index test + − Total

ni11 ni10 ni1+
+ (1 − ωim1)πiSei (1 − ωim0)(1 − πi)(1 − Spi) (1 − ωim1)πiSei + (1 − ωim0)(1 − πi)(1 − Spi)

ni01 ni00 ni0+
− (1 − ωim1)πi(1 − Sei) (1 − ωim0)(1 − πi)Spi (1 − ωim1)πi(1 − Sei) + (1 − ωim0)(1 − πi)Spi

nim1 nim0 nim+
Missing ωim1πi ωim0(1 − πi) ωim1πi + ωim0(1 − πi)

ni+1 ni+0 ni++
Total πi 1 − πi 1

Each cell reports the cell count and cell probability corresponding to a combination of index test and disease outcomes in study i. nitd denotes the cell counts in study
i with index test outcome T = t and reference test outcome D = d, where t = 1,0,m stands for positive, negative and missing, and d = 1,0 denotes positive and
negative. Sei , Spi and π i are sensitivity, specificity and prevalence of study i, respectively. ωimd denotes the missing probability of index test given disease status d in
study i.

and πi are sensitivity, specificity and prevalence of study
i, respectively. Let ωimd denote the missing probability of
index test given disease status d in study i: ωimd = Pr(T =
m|D = d). The missing probabilities and disease preva-
lence are incorporated in the cell probabilities in Table 1.
Assuming a multinomial distribution, the likelihood for
θ i = (Sei, Spi,πi) and ωi = (ωim1,ωim0) given data (cell
counts) is:

L (θ i,ωi|Data) ∝ {(1 − ωim1) πiSei}ni11{
(1 − ωim0) (1 − πi) (1 − Spi)

}ni10
{(1 − ωim1) πi (1 − Sei)}ni01{
(1 − ωim0) (1 − πi) Spi

}ni00
(πiωim1)

nim1 {(1 − πi) ωim0}nim0

(1)

It is straight forward to tell from (1) that
L(θ i,ωi|Data) ∝ L(θ i|Data) × L(ωi|Data), where the
log-likelihood of θ i is:

logL(θ i|Data) = ni11{log(πi) + log(Sei)}
+ ni10{log(1 − πi) + log(1 − Spi)}
+ ni01{log(πi) + log(1 − Sei)}
+ ni00{log(1 − πi) + log(Spi)}
+ nim1log(πi) + nim0log(1 − πi)

Let θ = {θ i}. Assuming independence among studies
conditional on θ i, the total log likelihood of θ is:

logL(θ |Data) =
N∑
i=1

logL(θ i|Data) (2)

Let logit(πi) = η + εi, logit(Sei) = α + μi and
logit(Spi) = β + νi, where logit(·) is the logit link function

such that logit(p) = log(p/(1 − p)), for 0 < p < 1.
(η, α, β) are the fixed effect parameters such that median
π , Se and Sp can be approximated as logit−1(η), logit−1(α)

and logit−1(β), respectively, where logit−1(·) is the inverse
logit function such that logit−1(x) = 1/(1+exp(−x)). The
random effect vector (εi,μi, νi) is assumed to be trivariate
normally distributed:

(εi,μi , νi)T ∼ MVN(0,�), � =
⎡
⎣ σ 2

ε ρεμσμσε ρενσνσε

σ 2
μ ρμνσνσμ

σ 2
ν

⎤
⎦ ,

where the diagonal elements in � account for between-
study variations of π , Se and Sp and the off-diagnonal
elements take care of potential correlations among the
three parameters.
Median PPV, NPV, LR+ and LR− and median area

under the curve (AUCM) can be approximated as [16]:

PPV = logit−1(η)logit−1(α)

logit−1(η)logit−1(α) + {
1 − logit−1(η)

} {
1 − logit−1(β)

} ,

NPV = {1 − logit−1(η)}logit−1(β){
1 − logit−1(η)

}
logit−1(β) + logit−1(η)

{
1 − logit−1(α)

} ,

LR+ = logit−1(α)/
{
1 − logit−1(β)

}
,

LR− = {
1 − logit−1(α)

}
/logit−1(β),

AUCM =
∫ 1

0
logit−1 {

(α − ρμνβσμ)/σν

+ρμνσμ/σν [ logit(1 − Sp)]
}
dSp.

The extended TGLMM can be fitted by standard soft-
ware like SAS NLMIXED procedure, which implements
an adaptive Gaussian quadrature to approximate the log-
likelihood in (2) integrated on random effects with dual
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quasi-Newton optimization techniques. The NLMIXED
procedure directly outputs fixed effects estimates η̂, α̂

and β̂ and can provide median prevalence, Se, Sp, PPV,
NPV, LR+, LR− estimates and their confidence intervals
through the “estimate” statements. Sample SAS code is
available in the Appendix.

Results
Simulations
Simulation scenarios
We conduct simulation studies under three missing
scenarios to systematically evaluate the performance
of the proposed extended TGLMM approach and the
approaches discussed in Schuetz et al. [6]: missing prob-
abilities for diseased and non-diseased subjects are same
(0.1), or missing probability of diseased group (0.1) is
smaller than non-diseased group (0.2), or missing proba-
bility of diseased group (0.2) is larger than non-diseased
group (0.1). All three scenarios satisfy the MAR assump-
tion, and the first scenario is in fact MCAR [18]. True sen-
sitivity and specificity are 0.7 and 0.9, disease prevalence is
0.25 and variances of Se, Sp and prevalence are 1 on logit
scale. These assumptions mimic a diagnostic test with rel-
atively low sensitivity, high specificity and a disease with
moderate prevalence. A moderate positive correlation of
0.3 is assumed between Se and π , and moderate negative
correlations of −0.3 are assumed between Sp and π and
between Se and Sp, on logit scales. Such correlation direc-
tions were observed in somemeta-analysis studies [11,20].
Intuitively, a population with higher prevalence may have
more diseased cases with clear disease symptoms, leading
to increased sensitivity. Under each setting, 5000 meta-
analysis data sets are simulated with 30 studies in each
data set. πi, Sei and Spi for each study were generated
according to the trivariate assumption described in the
Methods section. True and false positives, true and false
negatives and non-evaluable counts are sampled from the
multinomial distribution in Table 1. For each simulated
meta-analysis data set, the extended TGLMM, Model 1-
3 and the intent-to-diagnose approach are fitted. Bias in
percentage, mean standard error (SE) and 95% confidence
interval coverage probability (CP) are collected and com-
pared for estimates of sensitivity, specificity, prevalence,
PPV, NPV, LR+ and LR−. Bias in percentage is calculated
by (δ̂ − δ) × 100/δ, where δ is the true value and δ̂ is the
estimator.

Simulation results
Table 2 shows the simulation results under different sce-
narios. When MCAR (ωm1 = ωm0 = 0.1), disease preva-
lence estimates from all five models are nearly unbiased
(bias less than 1%). The extended TGLMM and Model 1
both give nearly unbiased estimates (bias less than 1.6%)
and nominal coverage probabilities around 93% for Se,

Sp, PPV, NPV, LR+ and LR− estimates. Model 2 over-
estimates sensitivity and under-estimates specificity: bias
of sensitivity estimate is 4.6% and bias of specificity esti-
mates is 11.9%. Estimates of PPV and LR+ are more biased
(22.6% bias for PPV and 49.2% bias for LR+). Using Model
3 sensitivities are largely under-estimated (12.6% bias) and
specificities are over-estimated (1.1% bias). The intent-to-
diagnose approach largely under-estimates both sensitiv-
ity and specificity (12.6% and 11.9% bias, respectively).
The CPs for some estimates from Model 2 and 3 and the
intent-to-diagnose approach can be as low as 0 (e.g., speci-
ficity estimates fromModel 2), indicating that none of the
confidence intervals cover the true values. When miss-
ing probability of the diseased group is smaller than the
non-diseased group (ωm1 = 0.1,ωm0 = 0.2), the extended
TGLMMandModel 1 both give nearly unbiased estimates
(bias around 0.1%) of sensitivity and specificity. How-
ever, Model 1 over-estimates disease prevalence (9.6%
bias) while the extended TGLMM gives nearly unbiased
(bias within 1%) estimate of prevalence. As a consequence,
Model 1 gives biased estimates of PPV and NPV (3.1%
and 1.3%, respectively), while the extended TGLMM pro-
vides nearly unbiased estimates for all parameters (within
2%). Again, under this scenario, the intent-to-diagnose
approach largely under-estimates sensitivity, specificity,
PPV, NPV and LR+ and over-estimates LR−, with CPs
less than 40% and some as low as 0. On the other
hand, when ωm1 = 0.2 and ωm0 = 0.1, the extended
TGLMM and Model 1 again give nearly unbiased esti-
mates (bias around 0.1%) of sensitivity and specificity.
Model 1 under-estimates disease prevalence (8.4% bias)
while the extended TGLMM provides nearly unbiased
estimates. The intent-to-diagnose approach largely under-
estimates sensitivity, specificity, PPV, NPV and LR+ and
over-estimates LR− and some CPs are as low as 0. When
the missing probabilities for diseased and non-diseased
subjects are more unbalanced, we expect the estimates
from Model 1-3 and the intent-to-diagnose approach to
have larger bias and smaller CP. In practice, however,
depending on the test performance and missing probabili-
ties, the direction and magnitude of the bias from the four
approaches discussed in Schuetz et al. [6] can be different
from what we observed in these simulation studies.

Re-evaluation of themeta-analysis of coronary CT
angiography studies
Cardiac CT scans can be used to rule out stenoses, how-
ever, are found to be subject to non-evaluable results.
Schuetz et al. [6] performed a systematic search for diag-
nostic accuracy studies of coronary CT angiography. The
authors searchedMedline, Embase and ISIWeb of Science
databases for prospective studies using conventional coro-
nary angiography as the gold standard and have patients
with non-evaluable CT images. Eventually, 26 studieswere
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Table 2 Simulation results underMAR assumption

Model TGLMM Model 1 Model2 Model3 Intent-to-diagnose

Estimate Bias% meanSE CP Bias% meanSE CP Bias% meanSE CP Bias% meanSE CP Bias% meanSE CP

ωm1 = ωm0 = 0.1
Se −0.3 0.041 0.94 −0.3 0.041 0.94 4.6 0.036 0.81 −12.6 0.037 0.33 −12.6 0.036 0.33

Sp −0.1 0.017 0.93 −0.1 0.017 0.93 −11.9 0.018 0 1.1 0.015 0.84 −11.9 0.017 0

Prev 0.8 0.034 0.93 0.8 0.034 0.93 0.8 0.034 0.93 0.8 0.034 0.93 0.8 0.034 0.93

PPV −0.1 0.046 0.94 −0.3 0.046 0.94 −22.6 0.047 0.08 −0.9 0.046 0.94 −29 0.049 0.01

NPV −0.1 0.018 0.93 −0.1 0.018 0.93 −0.2 0.018 0.93 −2.9 0.020 0.81 −4.6 0.022 0.59

LR+ 1.6 1.188 0.92 1.6 1.189 0.93 −49.2 0.307 0 −0.5 1.160 0.92 −57.6 0.271 0

LR− 0.9 0.044 0.94 0.9 0.044 0.94 1.5 0.044 0.94 27.9 0.039 0.33 46.8 0.045 0.04

ωm1 = 0.1,ωm0 = 0.2
Se −0.1 0.041 0.94 −0.1 0.041 0.94 4.7 0.036 0.80 −12.3 0.036 0.34 −12.3 0.036 0.34

Sp −0.1 0.017 0.94 −0.1 0.017 0.94 −22.3 0.017 0 2.2 0.014 0.62 −22.3 0.017 0

Prev 0.4 0.034 0.93 9.6 0.036 0.90 0.4 0.034 0.93 0.4 0.034 0.93 0.4 0.034 0.93

PPV −0.3 0.046 0.93 3.1 0.044 0.88 −36 0.047 0 2.7 0.044 0.89 −42.1 0.047 0

NPV −0.1 0.018 0.94 −1.3 0.020 0.93 −1.4 0.020 0.92 −2.7 0.020 0.83 −6.3 0.024 0.36

LR+ 1.4 1.195 0.94 1.4 1.194 0.94 −65.1 0.159 0 12.3 1.312 0.95 −70.8 0.147 0

LR− 0.6 0.044 0.93 0.6 0.044 0.93 14.7 0.050 0.85 26.1 0.038 0.39 66.1 0.051 0

ωm1 = 0.2,ωm0 = 0.1
Se -0.1 0.023 0.93 -0.1 0.023 0.93 8.7 0.018 0.12 -21 0.020 0 -21 0.019 0

Sp 0 0.009 0.93 0 0.009 0.93 -10.6 0.009 0 1.1 0.008 0.74 -10.6 0.009 0

Prev 0 0.018 0.93 -8.4 0.017 0.72 0 0.017 0.91 0 0.017 0.91 0 0.0168 0.89

PPV -0.1 0.025 0.93 -3.7 0.027 0.83 -19.1 0.025 0 -4 0.026 0.8 -30.6 0.025 0

NPV 0 0.010 0.92 1.1 0.009 0.76 1.1 0.009 0.74 -4.6 0.011 0.05 -6.2 0.012 0

LR+ 0.3 0.655 0.93 0.3 0.653 0.93 -44.1 0.196 0 -11.7 0.570 0.62 -59.3 0.154 0

LR− 0.3 0.025 0.93 0.3 0.025 0.93 -10.8 0.022 0.62 47.4 0.021 0 66.7 0.024 0

Three scenarios are studied: equal or unequal missing probabilities for the diseased and non-diseased groups. Bias in percentage(Bias%), mean standard error (meanSE) and 95% confidence interval coverage probability (CP)
are summarized for estimates of sensitivity (Se), specificity (Sp), prevalence (Prev), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+) and negative likelihood ratio (LR−) from
different models. “TGLMM” stands for the extended TGLMM.Model 1 excludes non-evaluable subjects, Model 2 takes non-evaluable subjects as index test positives, Model 3 takes non-evaluable subjects as index test
negatives and the intent-to-diagnose approach takes non-evaluable subjects as false positives and false negatives.
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included that reports cell counts in a 3 × 2 table as
Table 1. The authors mentioned that the 3 × 2 table can
be extended to a 3 × 3 table for non-evaluable results of
the gold standard, however such cases were rare (0.1%)
in this systematic review. We re-evaluate the 26 stud-
ies by the extended TGLMM and compare to the esti-
mates following the four approaches discussed in Schuetz
et al. [6].
The fitted median estimates and 95% confidence inter-

vals are reported in Table 3. The extended TGLMM
accounting for missing subjects gives median sensitivity,
specificity, LR+, LR− and AUC estimates close to the
estimates when non-evaluable subjects are excluded as
in Model 1. The median disease prevalence estimated
from the extended TGLMM is slightly lower than the
estimate from Model 1. Model 2 gives significantly lower
specificity estimate and Model 3 gives lower sensitiv-
ity estimate. The intent-to-diagnose approach provides
lower estimates for sensitivity, specificity and AUC as
it is the most conservative approach. Figure 1 presents
the estimated PPV and NPV with 95% confidence bands
versus prevalence, based on the overall sensitivity and
specificity estimates from the extended TGLMM and the
intent-to-diagnose approach. Figure 1 shows that as dis-
ease prevalence changes, PPV and NPV estimates from
the latter approach are not ever included in the 95% confi-
dence band of the estimates from the extended TGLMM,
which suggests potential underestimation of PPV
and NPV.

Discussions
Adequate reporting of the missing outcomes in study
reports is essential to apply the discussed models.
As shown in the simulation studies, different missing

scenarios can have different impact on how estimates are
biased and more importantly, missing mechanism can
indicate whether the MAR assumption holds. When the
MAR assumption is violated, i.e., the probability of non-
evaluation depends on unobserved index test outcomes,
the direction and magnitude of bias are hard to predict.
Few sensitivity analysis methods using pattern mixture
models and selection models are available for this sce-
nario [23,24]. These approaches can be explored in further
research. On the other hand, number of non-evaluable
results need to be known in order to apply the pro-
posed methods. However, a recent study shows that they
are not consistently or adequately reported in published
studies [25].
A reviewer has pointed out that as long as num-

ber of non-evaluable subjects are known, disease preva-
lence can be estimated unbiasedly through an univariate
meta-analysis. Consequently, together with unbiased sen-
sitivity and specificity estimates, PPV and NPV esti-
mates are unbiased too. This approach is a simpler
method than the proposed extended TGLMM to esti-
mate prevalence, however, can be less efficient by ignoring
the potential correlation between prevalence, sensitiv-
ity and specificity, which may result in wider confidence
intervals.
For an individual patient, different approaches of treat-

ing a missing result can have different impact. For exam-
ple, if index test results are missing due to the same reason
of returning a negative result (and thus is MNAR), then
treating such patients as disease negatives can yield unbi-
ased estimate of prevalence for a study, and also won’t
affect the patients’ diagnosis. On the contrary, if index
test missing patients are treated as positives for reasons
such as suspicious of serious disease like cancer [26],

Table 3 Median estimates and 95%CI (in brackets) for parameter estimates using differentmethods

Method Sensitivity Specificity Prevalence PPV

TGLMM 98.0 (96.7,99.3) 87.5 (82.7,92.3) 47.8 (37.9,57.7) 87.8 (83.3,92.3)

Model 1 98.0 (96.7,99.3) 87.4 (82.5, 92.3) 49.3 (38.9,59.7) 88.4 (84,92.7)

Model 2 98.1 (96.9,99.3) 75.9 (69.3,82.5) 47.8 (37.9,57.8) 78.9 (71.9,85.9)

Model 3 91.7 (88.1,95.4) 89 (85.4,92.7) 47.8 (37.9,57.7) 88.4 (84.1,92.7)

Intent-to-diagnose 91.7 (88.1,95.3) 76.2 (69.7,82.6) 47.9 (37.9,57.9) 78 (70.2,85.7)

Method NPV LR+ LR− AUC

TGLMM 97.9 (96.4,99.5) 7.8 (4.8,10.9) 0.02 (0.01,0.04) 0.99 (0.96,1)

Model 1 97.8 (96.1,99.4) 7.8 (4.8,10.9) 0.02 (0.01,0.04) 0.99 (0.96,1)

Model 2 97.8 (96.2, 99.4) 4.1 (2.9,5.2) 0.02 (0.01,0.04) 0.98 (0.97,1)

Model 3 92.1 (88.4,95.8) 8.4 (5.5,11.3) 0.09 (0.05,0.14) 0.96 (0.93,0.99)

Intent-to-diagnose 90.9 (86.4,95.5) 3.8 (2.7,5.0) 0.11 (0.06,0.16) 0.93 (0.89,0.96)

“TGLMM” stands for the extended TGLMM. Model 1 excludes non-evaluable subjects, Model 2 takes non-evaluable subjects as index test positives, Model 3 takes
non-evaluable subjects as index test negatives and the intent-to-diagnose approach takes non-evaluable subjects as fasle positives and false negatives. Positive
predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), negative likelihood ratio (LR−) and area under the curve (AUC) are summerized.
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Figure 1 Overall PPV and NPV plot based on the extended TGLMM (denoted by “TGLMM”) and the intent-to-diagnose approach. The solid
and dashed lines are the overall estimates of PPV and NPV from the extended TGLMM and the intent-to-diagnose approach corresponding to
different prevalences ranging from 0 to 1, respectively. The dotted lines are the 95% confidence intervals of PPV and NPV estimates from the
extended TGLMM approach. The vertical dashed line is the overall prevalence estimates from the meta-analysis of coronary CT angiography studies.

it may result in over-estimation of disease prevalence
and unnecessary medial cost for the patient. For another
example, if index test is repeatable and repeated for sub-
jects with non-evaluable results, then it is appropriate to
ignore missing results.

Conclusions
In this paper, we propose an extended TGLMM approach
to handle non-evaluable index test subjects in meta-
analysis of diagnostic tests. The extended TGLMM is
compared to an intent-to-diagnose approach and three
alternative approaches proposed by Schuetz et al. [6]
through simulation studies and re-evaluaion of the meta-
analysis of coronary CT angiography studies.
In summary, by simulation studies we showed that

under MAR assumption, excluding index test non-
evaluable subjects (Model 1) will not lead to biased esti-
mates of sensitivity, specificity, LR+, LR− and AUC. Thus
in practice, researchers can be confident to apply Model

1 when there is a belief in the MAR assumption. How-
ever, when disease prevalence or PPV and NPV are of
interest, excluding non-evaluable subjects could lead to
biased estimates of these parameters. Under this situa-
tion, the extended TGLMM accounting for missingness
should be preferred. Even though the extended TGLMM
is more theoretically complex than the widely used bivari-
ate random effects model, it is easy to program use SAS
NLMIXED procedure. Sample SAS code with an appli-
cation to the meta-analysis of coronary CT angiography
studies is provided in the Appendix.Model 2,Model 3 and
the intent-to-diagnose approach all largely under- or over-
estimate sensitivity and specificity, so that they should not
be recommended when MAR assumption is not seriously
violated.

Claims
Ethical approvals and informed consents are not applica-
ble to this paper.
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Appendix: SAS code of the extended TGLMM
approach: meta-analysis of coronary CT
angiography studies

/*Read in data for the coronary CT

angiography studies*/ data observe;

input sid year ntp1 nfp1 nfn1 ntn1 nm1 nm0;

datalines;

1 2005 25 4 0 19 2 0

2 2008 57 3 2 79 0 9

... ...

26 2008 32 6 4 6 10 0

; run;

/*Macro to compute AUC*/

%macro auclogit;

estimate "AUC" 0

%do sp=1 %to 1000;

+0.001/(1+exp(-alpha0-RhoSeSp*exp(sigse)/

exp(sigsp)*
(log(1-0.001*&sp+0.0005)

-log(0.001*&sp-0.0005)+beta0)) )

%end;

;

%mend auclogit;

/*TGLMM using NLMIXED procedure*/

proc nlmixed data=observe fd df=1000

cov corr ecorr gtol=1e-10;

parms beta0=2 alpha0=1.5 eta0=0.2

sigse=0.4 sigsp=-0.3 sigpi=0.5

fZ=0 fZ1=0 fZ2=0;

lsei = alpha0 + muse ;

lspi = beta0 + musp ;

lppi = eta0 + mupi ;

Sei=1/(1+exp(-lsei));

Spi=1/(1+exp(-lspi));

ppi=1/(1+exp(-lppi));

RhoSeSp = (exp(2*fZ)-1)/(exp(2*fZ)+1);

RhoSePi = (exp(2*fZ1)-1)/(exp(2*fZ1)+1);

RhoSpPi = (exp(2*fZ2)-1)/(exp(2*fZ2)+1);

/* The log likelihood accounting for

missing cell counts by nm1*log(ppi)

and nm0*log(1-ppi)*/

logL= ntp1 * (log(ppi) + log(Sei)) +

nfp1 * (log(1-ppi) + log(1-Spi)) +

nfn1 * (log(ppi) + log(1-Sei)) + ntn1 *
(log(1-ppi) + log(Spi)) +nm1 * log(ppi) +

nm0 * log(1-ppi);

model ntp1 ~ general(logL);

random muse musp mupi~normal([0, 0, 0],

[exp(2*sigse),

RhoSeSp*exp(sigse+sigsp), exp(2*sigsp),

RhoSePi*exp(sigse+sigpi),

RhoSpPi*exp(sigsp+sigpi), exp(2*sigpi)])

subject=sid;

%auclogit;

/*estimate statements in proc NLMIXED

can give point estimates of functions

of parameters as well as variances

from delta method*/

estimate "Se" 1/(1+exp(-alpha0));

estimate "Sp" 1/(1+exp(-beta0));

estimate "Prev" 1/(1+exp(-eta0));

estimate "PPV" exp(eta0+alpha0)*
(1+exp(beta0))/(exp(eta0+alpha0)*
(1+exp(beta0))+(1+exp(alpha0)));

estimate "NPV" exp(beta0)*(1+exp(alpha0))/

(exp(beta0)*(1+exp(alpha0))+exp(eta0)*
(1+exp(beta0)));

estimate "LR+" exp(alpha0)/(1+exp(alpha0))/

(1-exp(beta0)/(1+exp(beta0)));

estimate "LR-" (1-exp(alpha0)/

(1+exp(alpha0)))/(exp(beta0)/

(1+exp(beta0))); run;
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