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Abstract

Background: Previous studies have demonstrated that white matter (WM) lesions bias automated brain tissue
classifications and cerebral volume measurements. However, filling WM lesions using the intensity of neighbouring
normal-appearing WM has been shown to increase the accuracy of automated volume measurements in the brain. In the
present study, we investigate the influence of WM lesions on cortical thickness (CTh) measures and assessed the impact
of lesion filling on both cross-sectional/longitudinal and global/regional measurements of CTh in multiple sclerosis (MS)
patients.

Methods: Fifty MS patients were studied at baseline as well as after three and six years of follow-up. CTh was estimated
using a fully automated pipeline (CIVET) on T1-weighted magnetic resonance images data acquired at 1.5 Tesla without
(original) and with WM lesion filling (filled). WM lesions were semi-automatically segmented and then filled with the mean
intensity of the neighbouring voxels. For both original and filled T1 images we investigated and compared the main
CIVET’s steps: tissue classification, surfaces generation and CTh measurement.

Results: On the original T1 images, the majority of WM lesion volume (72%) was wrongly classified as gray matter (GM).
After lesion filling the accuracy of WM lesions classification improved significantly (p < 0.001, 94% of WM lesion volume
correctly classified) as well as the WM surface generation (p < 0.0001). The mean CTh computed on the original T1
images, overall time points, was significantly thinner (p < 0.001) compared the CTh estimated on the filled T1 images. The
vertex-wise longitudinal analysis performed on the filled T1 images showed an increased number of vertices in the
fronto-temporal region with a significantly decrease of CTh over time compared the analysis performed on the original
images.

Conclusion: These results indicate that WM lesions bias the CTh estimation both cross-sectionally as well as longitudinally.
The lesion filling approach significantly improved the accuracy of the regional CTh estimation and has an impact also on
the global estimation of CTh.
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Background
Accurate brain tissue classification approaches are cru-
cial for extracting useful information and developing re-
liable measures to describe brain morphological changes
related to development and disease. Various sources of
variability and inaccuracy may bias the computation of
brain measurements based on magnetic resonance (MR)
data. The quality of MR data (e.g. intensity inhomogen-
eity or partial volume averaging due to low resolution),
differences of mathematical algorithms and brain tissue
alterations due to pathologies may contribute to reduce
the accuracy of brain tissue classification [1-4]. In this
regard, the influence of the white matter (WM) lesions
as observed in multiple sclerosis (MS) patients has been
previously investigated. Indeed, on T1- weighted (T1w)
images (MR sequences used in typical clinical neuro-
scientific research settings), WM lesions are character-
ized by MR signal intensities close to gray matter (GM)
and cerebrospinal fluid (CSF) introducing a possible bias
on tissue classification. The outputs of typical classifica-
tion algorithms that do not account for lesions may sub-
sequently categorize these lesions as GM or, in some
cases, as CSF. Previous works have demonstrated how
lesion misclassification biases overall brain tissue seg-
mentation [1,5-7], leading to an overestimation of GM
atrophy [6]. Various methods have been proposed to ac-
count for WM lesions in order to optimize tissue segmen-
tation. Chard and colleagues [5], for instance, developed
an automated method to fill the WM lesions with values
approximating normal-appearing white matter (NAWM).
They showed that GM and WM volumes were substan-
tially affected by the misclassified WM lesions and that a
lesion filling approach could reduce the classification
error. Interestingly, Sdika and Pelletier [7] argued that, not
only the segmentation, but also the image registration step
could be affected by WM lesions. For this reason, they
tested three different lesion filling methods: 1) they filled
the lesions from their border to their center with an aver-
age of neighbouring voxels; 2) using only the value of the
surrounding NAWM; 3) and using the mean intensity of
the NAWM over the whole brain. They found out that
the second approach led to optimal results in case of non-
linear registration. Furthermore, in a recent paper, Batta-
glini and colleagues [1] compared two different methods
to reduce the impact of WM lesions. One simply masked
out the lesions from the original MR images, while the
other refilled each lesion with intensities derived from a
histogram of the WM surrounding the lesion. The latter
approach significantly improved the accuracy of the tissue
classification and brain volume measurements computed
by SIENAX [8].
The tissue classification is a fundamental step not only

for measuring volumes, but also for assessing more com-
plex features of brain morphology such as cortical
thickness (CTh). It has been shown that CTh can be re-
liably measured both globally as well as locally in healthy
subjects and in patients with neurological and psychi-
atric disorders [9-11]. The currently used automated
techniques [12,13] estimate CTh using three main ana-
lysis steps. First, each voxels of the brain 3D T1w MRI
data are classified into GM, WM and CSF and include
estimates of partial volume. Then WM and GM surfaces
are generated by using a three-dimensional polygonal
mesh, and, finally, the CTh is computed as the distance
between the two surfaces at each node (vertex). The ac-
curacy of CTh measurements is strongly related to the
accurate reconstruction of the inner and outer-surfaces
of the cortex, which are in turn influenced by the tissue
classification. Hence, we hypothesized that WM lesions
could affect the reliability of CTh estimation. Although
the number of studies investigating CTh in MS patients
is increasing [14-23], to our knowledge, only few of them
considered the WM lesions during tissue classification
and when reconstructing the surfaces [16,17,21]. Inter-
estingly, all these studies evaluated the relationship be-
tween WM lesion volume and CTh, but only one study
explored the influence of WM lesions on the estimation
of CTh [21]. The authors showed an increased accuracy
of CTh estimation near the WM lesions after lesion
masking.
In the present work, we explored the effect of WM le-

sions on the estimation of CTh in a group of MS pa-
tients. WM lesions were filled with the intensity of the
normal-appearing neighboring voxels and we assessed
the accuracy of brain tissue classification, surface recon-
struction and CTh estimation. Moreover, a vertex-wise
longitudinal analysis was performed comparing the CTh
estimated on the original T1w images and on the filled
images.

Patients and methods
Subjects
Data of fifty patients with MS (35 women, mean age:
45.69 ± 10.75 years, range: 21-64 years; mean disease
duration at baseline: 15.9 ± 9.2 years), taking part in a
longitudinal cohort study on the genotypic-phenotypic
characterization of MS recruited at a tertiary center
(Department of Neurology, University Hospital Basel),
were retrospectively analysed. All patients underwent a
thorough medical and structured neurological examin-
ation with Expanded Disability Status Scale (www.neuro-
status.net; Table 1). MRI data at baseline (BL), after
3 years (Y3) and after 6 years (Y6) of follow-up were
assessed. Written informed consent was obtained from
each patient after a detailed explanation of all procedures.
The study was approved by the local ethics committee
(Ethikkommission beider Basel, EKBB) and was conducted
in concordance with the Declaration of Helsinki.

http://www.neurostatus.net
http://www.neurostatus.net


Table 1 Clinical characteristics of multiple sclerosis
patients

CIS RRMS SPMS PPMS EDSS median (range)

BL 1 37 8 4 3 (0-6.5)

Y3 0 36 10 4 3 (1-7)

Y6 0 36 10 4 3.5 (0-7.5)

CIS: Clinical Isolated Syndrome; RRMS: Relapsing-Remitting Multiple Sclerosis;
SPMS: Secondary Progressive Multiple Sclerosis; PPMS: Primary Progressive
Multiple Sclerosis EDSS = Expanded Disability Status Scale; BL: baseline; Y3:
follow-up after 3 years; Y6: follow-up after 6 years.
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MRI protocol
Morphological analyses were performed on high-
resolution three-dimensional T1w MPRAGE images
acquired in sagittal plane (TR/TI/TE = 2080/1100/
3.0 ms; α = 15°, 160 slices, isotropic resolution of
1 mm3). Additionally, a double spin echo proton dens-
ity (PDw)/T2-weighted (T2w) sequence was acquired
(TR/TE1/TE2 = 3980/14/108 ms; flip angle 180, 40 slices,
3 mm slice thickness without gap with an in-plane reso-
lution of 1 mm × 1 mm). All MRI scans were performed
on a 1.5 Tesla Magnetom Avanto MRI scanner (Siemens
Medical Solutions, Erlangen, Germany).

MRI pre-processing
Lesion segmentation
White matter lesions were segmented by trained experts
according to the structured operating procedures used at
our institution for the analysis of clinical phase II and
phase III trials. In brief, lesions are first marked by putting
a cursor into the lesion and then semi-automatically seg-
mented using intensity thresholding with Amira 3.1.1
(Mercury Computer System Inc.). Manual adjustments
are performed when necessary. The lesions are marked on
PDw images, while the according slices of T2w images are
displayed to confirm the lesion site and extent. All raters
undergo a training period with consecutive reliability test-
ing before working on any study. Reliability is retested in
all raters at fixed intervals (once a year). This ensures a
consistently high quality of lesion marking and segmenta-
tion. After lesion marking and segmentation, there is a
final quality control step with verification of all segmenta-
tions by a radiologist. Then, the mean WM lesion volume
across patients was computed for the whole brain and for
each lobe as segmented by the “Automatic Nonlinear
Image Matching and Anatomical Labeling” algorithm
(ANIMAL; [24]).

Lesion filling procedure
The registration matrix between T1w and PDw images
was estimated for each MRI session and applied to the
binary lesion mask. In order to identify the neighbour-
ing voxels of lesions that belong to WM, the registered
and resampled lesion masks were expanded to the
neighbouring two voxels in each direction. The lesion
masks and the GM masks estimated on the original
T1w images using the “Intensity Normalized Stereo-
taxic Environment for Classification of Tissues” algo-
rithm (INSECT; [25]) were then subtracted from the
expanded lesion masks. The mean voxel intensity was
computed on the generated lesion border mask exclud-
ing voxels below the 10th percentile of signal intensity.
The computed mean was used to fill the lesions on the
original T1w images producing filled T1w images in
the native space (Figure 1, a1 and b1). All steps were
performed by using Medical Imaging NetCDF tools
(MINC; http://en.wikibooks.org/wiki/MINC).

Cortical thickness
CTh was estimated on the T1w images (separately for
original and filled images) by using the fully automated
CIVET 1.1.10 pipeline [26,27]. In brief, the images were
linearly registered to the standard stereotaxic space de-
fined by the MNI ICBM 152 model [28]. The images
were then corrected for intensity non-uniformity using
N3 [29] and a non-linear registration to the model [26]
was applied. The tissue classification was performed
using INSECT, whose output was then fed to a Partial
Volume Estimator, which in turn is used for the actual
surface fitting [30]. Each voxel was classified as WM,
GM or CSF. The images were then mapped to a prob-
abilistic atlas using the ANIMAL algorithm. Finally, the
WM surface was generated by using a deformable ellips-
oid polygonal model that shrinks until it fits the WM/
GM interface. To generate the GM surface, the WM
surface was expanded until the GM/CSF interface (or
pial surface) is reached using a Laplacian approach in
order to find the best fit [31,32]. Specifically, to ad-
equately estimate the CTh, the Laplace’s equation de-
scribes a smooth trajectory between the WM and GM
surfaces defining a layered set of surfaces [32]. Thus,
each vertex on the WM surface maps to a specific point
in the GM surface and back to the same point in WM
surface. The CTh is estimated as the distance, in milli-
metres, between WM and GM matter surfaces at each
vertex. The surfaces are composed of 40,962 vertices for
each hemisphere. Moreover, the mean CTh for each
region-of-interest (ROI) generated by the ANIMAL al-
gorithm was computed (for each hemisphere: frontal,
parietal, occipital and temporal lobe, cingulate gyrus,
splenium, parahippocampal gyrus and insula). Thickness
data were blurred using a surface-based diffusion
smoothing kernel of 20 mm full-width at half-maximum
(FWHM) to be consistent with cortical topology [33].

Data analysis
The mean WM lesion volume as well as mean juxtacor-
tical WM lesion volume across subjects and sessions

http://en.wikibooks.org/wiki/MINC


Figure 1 Comparison of different analysis steps necessary for the measurement of the cortex with and without lesion filling. The first
row (a) illustrates the analysis strategy without lesion filling, while the second (b) illustrates the approach with lesion filling. In both rows, a T1w
MRI (a1 and b1) with segmented lesions, the corresponding tissue classification derived from CIVET (a2 and b2), the WM surface transformed
back to volume space (a3 and b3), the representation of the cortex (a4 and b4), and a magnified view of the cortical thickness assessment
(a5 and b5) are shown. The figure shows that the misclassification of WM lesions, which occurs using the approach without lesion filling (a2)
produces an inaccurate WM surface (a3) and, consequently, an incorrect estimation of cortical thickness (a4) especially in the proximity of
juxtacortical lesions (a5). Using the approach without lesion filling, the estimated cortex in fact includes also lesional voxels.
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were computed separately. The results of the analysis
strategies with and without lesion filling were compared at
three critical steps: tissue classification, surface generation
and CTh measurement. Regarding tissue classification,
the overall percentages of voxels classified as WM, GM
and CSF, and the mean voxel intensities for each seg-
mented class were computed. The percentages of voxels
(mis-)classified as WM, GM and CSF, but truly belonging
to WM lesions were calculated as well.
For the surface generation step, the WM and GM sur-

face errors were automatically computed by CIVET separ-
ately for the approaches with and without lesion filling as
the number of WM/GM voxels outside the WM/GM sur-
face respectively (but inside the brain mask) divided by
the number of voxels of the brain mask.
Finally, for the whole brain and for each defined ROI the

mean CTh was compared between the strategies with and
without lesion filling for each time point. The local effect
on CTh produced by the filling approach of regions next to
juxtacortical lesions was investigated. In this regard, three
regions of interest (ROI; Figure 2a) were built: L0 repre-
sented the lesion and its border, L1 included a two voxels
rim surrounding L0, and L2 included a two voxels rim sur-
rounding L1. The mean CTh in these three ROIs was com-
puted as the average CTh at the vertices included in L0, L1
and L2. Longitudinal vertex-wise thickness changes derived
from the two analysis strategies were also assessed.
Statistical analyses
Normal-model based analysis of variance (ANOVA) was
performed to investigate the differences between the ap-
proaches with and without lesion filling. Normality as-
sumption was assessed by Shapiro-Wilk test [34] and
homoscedasticity was assessed by the robust Brown-
Forsythe version of the Levene’s test [35]. Non-parametric
Wilcoxon signed rank test was used if data did not meet
the assumptions of the linear model. The results (WM le-
sion classification, tissue volumes, tissues intensity and
whole brain and ROI mean CTh) were compared both
within each session and over the time points. In order to
reduce the risk of type I errors the ROI results were
corrected for multiple comparisons by using the False
Discovery Rate (FDR) approach set at alpha levels of
0.05. Moreover, the vertex-wise longitudinal analysis
was performed using a linear mixed model (http://
www.bic.mni.mcgill.ca/ServicesSoftware/StatisticalAna-
lysesUsingR) including age at baseline, gender and time
points as fixed-effects and patients as random-effect.
All statistical analyses were performed using the R stat-
istical environment (http://www.r-project.org).

Results
The mean WM lesion volume across subjects was
11798 ± 7228 mm3 at BL, 12429 ± 7461 mm3 at Y3 and
12150 ± 7465 mm3 at Y6. The mean juxtacortical lesion

http://www.bic.mni.mcgill.ca/ServicesSoftware/StatisticalAnalysesUsingR
http://www.bic.mni.mcgill.ca/ServicesSoftware/StatisticalAnalysesUsingR
http://www.bic.mni.mcgill.ca/ServicesSoftware/StatisticalAnalysesUsingR
http://www.r-project.org


Figure 2 Mean cortical thickness in proximity of juxtacortical lesions computed by the two analysis strategies over 6 years of follow-
up in MS patients. a) Three ROIs were drawn in order to evaluate how the approach with lesion filling performs in the presence of juxtacortical
lesions: L0 represents the lesion and its border, L1 includes a two voxels rim surrounding L0 and may be consider as a transition zone between
lesion and normal-appearing tissue. L2 includes the two voxels rim surrounding L1 and represents normal-appearing tissue. b) mean cortical
thickness (CTh) and standard error for the defined ROIs. BL: baseline; Y3: follow-up after 3 years; Y6: follow-up after 6 years.
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volume was 5415 ± 5209 mm3 at BL, 6099 ± 5796 mm3

at Y3 and 5665 ± 5512 mm3 at Y6. Specifically, the
frontal lobe was bilaterally the most affected region. The
occipital lobe was less affected (see Table 2).

Tissue classification
The WM lesions showed a lower mean signal intensity
(Δ: 32 ± 2.4%) than the NAWM, i.e. non-lesional WM,
on the original (non-filled) images at all time points,
causing a misclassification of the majority of WM le-
sions as GM or CSF (Figure 3). The lesions correctly
classified as WM, instead, were characterized by a
mean intensity that was only 1.05 ± 1.28% lower than
NAWM. The differences between the two analysis strat-
egies in the ability to correctly classified WM lesion were
tested performing a separated statistical model for each
segmented tissue (GM, WM, CSF). The data showed a
non-normal distribution (original: GM, W= 0.97, p <
0.001; WM, W= 0.93, p < 0.001; CSF, W= 0.81, p < 0.001;
filled: GM, W= 0.91, p < 0.001; WM W=0.9, p < 0.00;
CSF, W= 0.52, p < 0.001) and violation of the assumption
of homogeneity of variance (GM: F(1, 298) = 79.69, p <
0.001; WM: F(1, 298) = 69.89. p < 0.001; CSF: F(1, 298) =
115.4, p < 0.001). Thus, non-parametric analysis was
performed. Significantly improved accuracy in clas-
sifying WM lesions as WM (V = 0, p < 0.0001, CI-95%:
Table 2 White matter lesion volume

Frontal Parietal

Left Right Left Right

BL 2742 ± 1943 2972 ± 2158 1729 ± 1322 1455 ± 111

Y3 2938 ± 2024 2738 ± 1971 1808 ± 1339 1609 ± 124

Y6 2873 ± 2037 2822 ± 2073 1815 ± 1420 1566 ± 120

The table shows the mean and standard deviation of the WM lesion volume across
after 6 years.
-77.8:-73.1) was observed after lesion filling (Figure 2).
Accordingly, a significantly smaller volume of lesional
WM was classified as GM (W= 11325, p < 0.0001, CI-
95% = 64.7:67.8), and CSF (W = 11320, p < 0.0001, CI-
95%: 5.1:8.1). Significant differences between the two
analysis strategies at each time point were confirmed by
pairwise analysis (p < 0.001, Bonferroni corrected). No
significant differences of lesion classifications were ob-
served between time points.
Using the approach with lesion filling, the mean inten-

sity of voxels classified as WM and GM increased by
0.65 ± 1.7% and 0.3 ± 1.5%, respectively. On the other
hand, the intensity of voxels classified as CSF decreased
by 1.23 ± 7.5%. As a consequence, the overall time points
analysis showed an increase of 1.45% of GM volume
(mean difference between pipelines (ΔM): 12491 ±
63237 mm3, range: 152219: -248977), a decrease of 0.5%
of WM volume (ΔM: 1043 ± 51347 mm3, range: 171981:
-137716) and a decrease of 9.69% of CSF volume (ΔM:
15169 ± 29298 mm3, range: 139749: -71992) after lesion
filling. The non-parametric analysis showed a statistically
significant difference of GM volume between analysis
strategies (W = 408, p < 0.02, CI-95% = -42311:-2429) at
baseline, that did not survive for multiple comparisons
correction based on Bonferroni approach. No other sig-
nificant differences were observed.
Temporal Occipital

Left Right Left Right

0 1307 ± 1021 1365 ± 1071 284 ± 349 185 ± 291

4 1464 ± 1183 1395 ± 1074 287 ± 362 200 ± 280

5 1352 ± 1116 1305 ± 1002 243 ± 309 174 ± 257

subjects for each lobe. BL: baseline; Y3: follow-up after 3 years; Y6: follow-up



Figure 3 Percentage of lesional voxels classified as WM, GM
and CSF by the analysis strategies with and without lesion
filling. Using the original images without lesion filling, the majority
of WM lesions are segmented as GM (71.90%). After lesion filling, the
lesions are mostly classified as WM (94.02%), instead of GM or CSF
(5.81% and 0.16% respectively ± standard error). WM: white matter;
GM: gray matter; CSF: cerebrospinal fluid.
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Surfaces
The WM surface generation errors were not normally
distributed (original: W = 0.97, p < 0.01; filled: W = 0.96,
p < 0.01) and violated the homogeneity of variance as-
sumption (F(1, 298) = 16.52, p < 0.001). The performed
non-parametric analysis showed a significantly improved
accuracy of the WM surface generation after lesion fill-
ing (V = 11260, p < 0.0001, CI-95%: 1.2:1.6). The pairwise
analyses showed significant differences between the two
analysis strategies (p < 0.0001) for each time point.
ANOVA testing did not evidence differences in GM sur-
face generation errors between the analysis strategies
(Table 3; Figure 1, a3 and b3).

Cortical thickness
The mean CTh was not normally distributed (original:
W = 0.97, p < 0.01; filled: W = 0.94, p < 0.001). The non-
parametric analysis showed, over all time points, a sig-
nificant thinner mean CTh measured on the original
images compared to the filled ones (V = 3968, p < 0.001,
CI-95%: -0.02:-0.005; Figure 4). The pairwise analyses
Table 3 Surface generation errors

Original

WM surface GM surface

BL 12.62 ± 2.41 (8.66-20.56) 8.16 ± 1.37 (4.78-7.52)

Y3 12.74 ± 2.52 (8.21-17.81) 9.02 ± 1.55 (4.87-8.43)

Y6 13.28 ± 2.61 (8.65-20.24) 8.84 ± 1.52 (5.39-12.71)

The surface generation errors (mean ± standard deviation; min-max) computed as a pe
reported for both analysis strategies (with and without lesion filling). WM: White Matte
after 6 years.
showed significant differences between the two strategies
(p < 0.0001) for each time point. After correction for mul-
tiple comparisons, bilateral differences were observed in
the frontal lobe (left: V = 4555.5, uncorrected p (u.p) <
0.05; right: V = 4405, u.p < 0.01), in the parietal lobe (left:
V = 4304, u.p <0.01; right: V = 4399.5, u.p < 0.05) and in
the temporal lobe (left: V = 3938.5, u.p < 0.001; right: V =
3422, u.p < 0.0001). Moreover, differences in the left cin-
gulate gyrus (V = 3788.5, u.p < 0.01), in the left splenium
(V = 2727, u.p < 0.001) and left insula (V = 4250, u.p <
0.0001) were observed as well. At all time points, the local
CTh measured in the three ROIs L0, L1 and L2 was not
normally distributed (L0, original: W = 0.93, p < 0.0001;
filled: W = 0.98, p < 0.05; L1, original: W = 0.96, p < 0.001;
filled: W= 0.98, p = ns; L2, original: W = 0.98, p = ns; filled:
W = 0.98, p < 0.05). The non-parametric analysis showed a
significantly thicker cortex (Figure 2b) in the region close
to the lesions compared to the neighbouring regions when
using the original images (L0 vs L1: V = 8634, p < 0.0001;
L0 vs L2: V = 8345, p < 0.0001). No significant differences
of CTh between these regions were observed after lesion
filling.
The vertex-wise longitudinal analysis showed a signifi-

cant CTh change over time in the frontal and temporal
regions (Figure 5). The analysis performed on the filled
images showed a more extended region of thinner cortex
over time compared to the analysis performed on the
original images (original: critical T value: -2.8, FDR =
0.05, vertices: 5395; filled: critical T value: -2.5, FDR =
0.05, vertices: 13389). Interestedly, after lesion filling, the
standard error of the variable “years” decreased by 3.85%
(on average, 0.0144 vs 0.0150) in the vertices close to
juxtacortical lesions (i.e. belonging to L0).

Discussion
In this work, we evaluated the influence of WM lesions
on the estimation of CTh in patients with MS. The fully
automated pipeline used in the present study was previ-
ously widely applied to investigate brain development
[36], neurological [16,17,37,38] and psychiatric [39]
diseases.
Our main results support the view that lesion filling im-

proves the accuracy of brain tissue classification, the gen-
eration of WM/GM surfaces and local CTh measurement.
Filled

WM surface GM surface

11.16 ± 1.67 (8.49-16.49) 8.25 ± 1.28 (5.58-11.84)

11.16 ± 1.78 (8.17-16.54) 9.01 ± 1.44 (5.83-12.4)

11.7 ± 1.86 (8.4-16.45) 8.91 ± 1.41 (5.7-11.96)

rcentage of classified WM/GM voxels outside the WM/GM surface respectively are
r; GM: Gray Matter; BL: baseline; Y3: follow-up after 3 years; Y6: follow-up



Figure 4 Mean cortical thickness computed by the two analysis
strategies over 6 years of follow-up in MS patients. Using the
data without lesion filling, an increase of the mean CTh after 3 years
and a drop after 6 years is observed. Correcting the misclassification
of WM lesions, instead, produces an evolution of the mean CTh as
expected in MS patients. BL: baseline; Y3: follow-up after 3 years; Y6:
follow-up after 6 years.
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Based on these observations and taking into account the
lack of an available ground truth we can only speculate
that the increased accuracy observed in all preprocessing
steps support the view that differences of global CTh mea-
sured between original and filled datasets reflect an in-
creased accuracy of the measurement as well.
In line with the results reported in previous studies

that investigated the influence of WM lesions on tissue
Figure 5 Vertex-wise longitudinal analysis using the images with and
analysis performed on original (non-filled) (a) and filled (b) images using a lin
(at baseline) and time points as fixed effects and patients as random effect.
classification [1,5,6,40-42], we found smaller GM vol-
umes using the original images compared with lesion
filled images. The error in the assessment of GM volume
can be partially explained by the darker WM intensity
observed in the original images compared to the images
with lesion filling. Accordingly, we observed that WM
lesions accurately classified as WM had a lower T1w in-
tensity than NAWM. This may cause a shift of the WM
peak towards GM intensities in the image histogram, in-
creasing the WM volume and decreasing the GM vol-
ume. In addition, a decreased mean intensity of CSF
after lesion filling was observed. A higher intensity level
of CSF may shift the CSF boundaries towards GM again
reducing the GM volume.
On the other hand, it has been shown that if WM le-

sions are classified as GM, their effect on GM is in the-
ory double: they directly increase the GM volume and
they also cause a shift of GM boundaries towards higher
intensity signal value, thereby decreasing the WM vol-
ume. In the non-filled images, the majority of WM le-
sions were classified as GM, but only the direct effect of
increasing the GM volume was observed. In fact, the
mean GM intensity did not change significantly after le-
sion filling, showing that the main effect is related to
WM and CSF intensity changes.
The misclassification of GM/WM/CSF observed in the

original images led to significant bias in the estimation
of CTh as well. As described in the Patients and methods
section, the tissue classification is one of the key steps in
the analysis pipeline used in the present study to measure
without lesion filling. The figure displays the results of the vertex-wise
ear mixed model including age (at baseline), sex, disease duration
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CTh. Specifically, after the classification of the voxels that
belong to GM, WM and CSF, the WM and GM surfaces
are extracted by using a deformable polygonal model [31]
and the CTh is computed as the distance between WM
and GM surfaces. We investigated the accuracy of the sur-
face generation step on images with and without lesion
filling, measuring the differences in percentage between
the generated surfaces and the voxels classified as WM or
GM outside the corresponding WM and GM surfaces. A
significantly higher accuracy (i.e. a lower percentages of
voxels not included in the surface) in the generation of
WM surfaces after filling the lesions was observed. A re-
duced accuracy of the “Anatomic Segmentation using
Proximity” (ASP; [43]) algorithm in the extraction of WM
surface has been previously reported predominantly in the
inferior portion of the brain. Because of the proximity of
the ventricles, the algorithm has difficulties to stretch the
surface sufficiently to match these regions [43]. Thus, it
is possible that increased complexity of regional WM
anatomy due to juxtacortical lesions classified as GM
could reduce the accuracy of the “Constrained Lapla-
cian ASP” (CLASP; [31]) algorithm that uses the same
approach used by ASP to reconstruct the WM surface.
We observed regional errors of the WM surface related
to misclassified lesions in the images without lesion fill-
ing as shown in Figure 1 (a3). The surfaces are forced
to include the lesions classified as GM producing a
more convoluted CTh than it is in reality. This effect
was completely eliminated using the lesion filling
approach (Figure 1, b3).
Including the lesions classified as GM (original images)

in the computation of CTh (Figure 1, a5 and b5) caused
the cortex to be significant thicker in the proximity of
the lesions (i.e. L0) rather than the neighbouring regions
(i.e. L1 and L2, Figure 2b), while in the filled images L0,
L1 and L2 had similar CTh values. This means that
when not accounting for lesions, misclassification can
lead to focal changes in CTh values due to lesion charac-
teristics and evolution rather than real changes of the
CTh. Nonetheless, after lesion filling a very small per-
centage of voxels belonging to the WM lesion mask was
still classified as GM. This could be related to slight er-
rors in the lesion delineation, registration and/or resam-
pling inaccuracy of the 2D lesion masks to the 3D T1w
images and partial volume effects. Moreover, these po-
tential sources of error could reduce the accuracy of the
filling step. Indeed, portions of cortex could be wrongly
classified as WM lesions (i.e. juxtacortical lesion) biasing
the CTh estimation. We specifically investigated this
issue comparing the CTh defined in the three ROIs next
to juxtacortical lesions in the filled images (Figure 2b).
As discussed before, we did not observe significant dif-
ferences in CTh among L0, L1 and L2. Hence, we can
conclude that the lesion segmentation, the lesion mask
registration and resampling to the T1w images did not
introduce significant errors.
In addition, the shifting of WM boundaries towards

lower intensity values observed in the histogram of the
images without lesion filling may produce a biased esti-
mate of the CTh as well. In fact, the original images
showed an overall thinner cortex compared to the mean
CTh measured after the lesion filling at each of the
assessed time point. Significant differences were observed
in the frontal, parietal and temporal lobe bilaterally and in
the left cingulate gyrus as well. This observation is consist-
ent with the distribution of the white matter lesions.
Interestingly, the vertex-wise longitudinal analysis con-

firmed the relevance of using the lesion filling approach.
A more extended fronto-temporal area of significant ver-
tices was observed after lesion filling (Figure 5). Likely,
the smaller cluster of significant CTh changes over time
observed using the non-filled images relates to the vari-
ability between time points induced by the lesions. As
previously demonstrated, CTh could be affected in a dif-
ferent way at each time point by the lesion changes of
volume and intensity over time. Indeed, using the non-
filled images, the mean CTh seemingly increased after
three years and then decreased again after six years. As
showed by the decreased standard error after lesion fill-
ing, the non-linear trend observed in the original images
could reduce the goodness of fit of the linear-mixed
model used to analyse the longitudinal data and conse-
quently the statistical significance. A more linear de-
crease of CTh over the time points, instead, was
observed after lesion filling. Moreover, we would like to
highlight that in the longitudinal analysis the direction
of the effect after lesion filling (increased vs. decreased
of number of the significant vertices) could be specific-
ally related to the dataset under evaluation. Indeed, the
effect of lesions is related to lesion load and lesion distri-
bution. Thus, it is not possible to judge the reliability of
the reported results from previous studies that did not
account for lesions without further analyses. However,
according to our results, an increased variability between
subjects is to be expected when not accounting for le-
sion, which should in turn reduce the statistical power.
We would also like to underline that the method used in
the present study to fill the WM lesions differs from
other methods proposed in the past [1,7]. The compari-
son between different WM lesion filling approaches was
not the aim of the present study. Further studies that
may compare different methods using the same MRI
dataset are needed in order to identify the most accurate
and robust lesion filling procedure.

Conclusion
In the present study we have shown that WM lesions
affect the estimation of CTh regionally by classifying
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lesions as part of cortex. The lesion filling approach sig-
nificantly improved the accuracy of CTh estimation lo-
cally. Moreover, our results suggest that lesion filling has
an impact also on the global estimation of CTh by shifting
the WM/GM border.
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