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Abstract
Background: The genome of Mycobacterium tuberculosis harbors four copies of a cluster of genes
termed mce operons. Despite extensive research that has demonstrated the importance of these
operons on infection outcome, their physiological function remains obscure. Expanding databases
of complete microbial genome sequences facilitate a comparative genomic approach that can
provide valuable insight into the role of uncharacterized proteins.

Results: The M. tuberculosis mce loci each include two yrbE and six mce genes, which have
homology to ABC transporter permeases and substrate-binding proteins, respectively. Operons
with an identical structure were identified in all Mycobacterium species examined, as well as in five
other Actinomycetales genera. Some of the Actinomycetales mce operons include an mkl gene, which
encodes an ATPase resembling those of ABC uptake transporters. The phylogenetic profile of Mkl
orthologs exactly matched that of the Mce and YrbE proteins. Through topology and motif analyses
of YrbE homologs, we identified a region within the penultimate cytoplasmic loop that may serve
as the site of interaction with the putative cognate Mkl ATPase. Homologs of the exported proteins
encoded adjacent to the M. tuberculosis mce operons were detected in a conserved chromosomal
location downstream of the majority of Actinomycetales operons. Operons containing linked mkl,
yrbE and mce genes, resembling the classic organization of an ABC importer, were found to be
common in Gram-negative bacteria and appear to be associated with changes in properties of the
cell surface.

Conclusion: Evidence presented suggests that the mce operons of Actinomycetales species and
related operons in Gram-negative bacteria encode a subfamily of ABC uptake transporters with a
possible role in remodeling the cell envelope.

Background
A putative Mycobacterium tuberculosis virulence gene,
named mce1A, was originally identified because its expres-
sion in Escherichia coli enabled this noninvasive bacterium
to enter mammalian epithelial cells [1]. Sequencing of the
M. tuberculosis genome revealed that mce1A (Rv0169) was
part of an operon that encoded eight putative membrane-
associated proteins: YrbEA-B, MceA-F [2,3]. This operon is

present four times in the M. tuberculosis genome (mce1-4).
Homologs of the genes adjacent to the mce1 locus,
Rv0175-Rv0178, are located downstream of the mce3 and
mce4 gene clusters (Figure 1) [3].

Continued interest in the function of the M. tuberculosis
mce operons stems from reports of the profound effect of
disruption of mce operons on growth and virulence of the
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mutant strains in mice. Shimono et al. [4] showed that an
mce1 mutant was hypervirulent when inoculated intrave-
nously into BALB/c mice. In the first few weeks of infec-
tion, the mutant strain multiplied more rapidly than wild-
type in the mice's lungs, spleen and liver. Surprisingly,
Gioffre et al. [5] found that a yrbE1B mutant grew faster
than wild-type in the lungs and spleens of BALB/c mice
inoculated via the peritoneum, but more slowly in mice
infected through the tracheal route. Sassetti and Rubin [6]
reported that in competitive mixed infections mce1
mutants exhibited a growth defect in the spleens of intra-
venously-infected C57BL/6J mice after one week of infec-
tion. Although the exact cause of these apparently
disparate phenotypes remains to be established, the
observations suggest that the fate of mce1 mutants in vivo
is determined by the prevailing immunological environ-
ment experienced during the first few weeks of infection.

Both mce2 and mce3 mutants replicated slower than wild-
type in BALB/c mice infected via either the trachea or per-
itoneum [5]; however, neither mutant demonstrated a sig-
nificant growth defect in competitive mixed infections [6].
In co-infected C57BL/6J mice, an mce4 mutant was atten-
uated relative to wild-type after two to four weeks infec-
tion, whilst an mce1-mce4 double mutant exhibited
further attenuation, indicating that the mce operons per-
form non-redundant roles during infection [7].

The similarity of the YrbE and Mce proteins with ATP-
binding cassette (ABC) transporter permeases and sub-
strate-binding proteins, respectively, has been noted pre-

viously [8,9]. ABC transporters couple the energy released
by ATP hydrolysis to the translocation of a substrate across
a membrane. Members of the ABC transporter family are
ubiquitous in living organisms and comprise one of larg-
est superfamilies known [10].

A functional ABC transporter system minimally contains
two cytoplasmic nucleotide-binding ATPase domains and
two transmembrane channel-forming permease domains.
These components can be homo- or heterodimers and
may be encoded on separate or fused polypeptides. Both
eukaryotes and prokaryotes contain ABC exporters,
whereas importers have been identified only in prokaryo-
tes. Importers additionally require substrate-binding pro-
teins (SBPs) that provide specificity and high-affinity.
Typically, SBPs are periplasmic in Gram-negative bacilli
and lipoproteins in Gram-positive bacilli [11]. SBPs share
a two-lobed quaternary structure with a central cleft that
undergoes a large conformational change upon ligand-
binding, promoting close interaction with the cognate
permease. This results in hydrolysis of ATP, which ener-
gizes translocation of the substrate [12]. In Gram-negative
bacteria, SBP-dependent importers also usually require
porins or specific receptors to facilitate transport across
the outer membrane [11].

The genes encoding the ATPase, permease and SBP com-
ponents of an ABC transporter are often contiguous in the
genome and comprise an operon. Phylogenetic clustering
of the individual transporter components is almost always
concordant, indicating that the operons have arisen from

Schematic representation of the M. tuberculosis H37Rv mce lociFigure 1
Schematic representation of the M. tuberculosis H37Rv mce loci. Proximal transcription regulators are colored in pur-
ple, yrbE genes in blue, mce genes in green, and genes encoding 'conserved mce-associated proteins' in yellow [44].
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a common ancestral transporter with minimal shuffling
of constituents. In addition, sequence similarity shows
good correlation with substrate specificity [13-15].

The ATPase is the most conserved component of the sys-
tem and transporter function is frequently predicted
solely on the basis of ATPase orthology [10,15]. These
proteins contain a homologous region, of 200 amino
acids, with several characteristic motifs: Walker A and B
motifs in the nucleotide-binding fold [16], as well as a sig-
nature motif found only in ABC transporter-associated, or
'traffic', ATPases [17].

The permease components and SBPs have limited primary
sequence similarity, and thus their identification is not
facile. They are typically identified in genome sequences
by their proximity to ATPases and, for permeases, posses-
sion of predicted transmembrane regions [18-20]. The
inference of function through sequence comparison has
traditionally relied upon similarity to close homologs of
known function. The advent of the genomic age has pro-
vided invaluable new methods for the elucidation of roles
of proteins with unknown function. Non-homology-
based methods of genome comparison use patterns of
domain fusion [21], conserved chromosomal location
[22], and phylogenetic profiles [23], to predict functional
interactions between proteins. In addition, the availability
of hundreds of complete genome sequences permits the
reliable identification of orthologs, operationally-defined
as reciprocal best hits [24], enabling more precise func-
tional prediction than sequence similarity alone. These
methods are non-redundant and their application can
facilitate deduction of specific function [25]. Here we
endeavor to further understand the function of the M.
tuberculosis mce operons, and assess the likelihood that
they encode ABC transporters, through sequence and
genome comparisons, database mining and the applica-
tion bioinformatic methods.

Results
Distribution of mce operons in Actinomycetales
Perusal of databases of conserved domains, such as Inter-
Pro [26], Pfam [27] and TIGRFAM [28], constitutes a sim-
ple method for the identification of homologous
proteins. The M. tuberculosis H37Rv genome encodes 24
Mce proteins, each of which contains a conserved domain
of 304 amino acids defined by the TIGRFAM family:
TIGR00996 (IPR005693). Members of this family are
confined to the Order Actinomycetales. The corresponding
Pfam family, PF02470 (IPR003399), describes a 98
amino acid sub-region of the Mce domain that is more
widely distributed (see below). The mce genes in M. tuber-
culosis are clustered in groups of six; each cluster is pre-
ceded by two copies of a gene termed yrbE (Figure 1).
Databases of conserved domains group the YrbE proteins

into a family called DUF140 (domain of unknown func-
tion). Pfam defines the family by a region approximately
150 amino acids long (PF02405; IPR003453). The corre-
sponding TIGRFAM family (TIGR00056) describes a sub-
family of DUF140, but excludes the mycobacterial
homologs based on a stated extreme divergence at the
amino end. For the sake of clarity, we refer to a cluster of
genes encoding two YrbE and six Mce proteins as an 'mce
operon'.

To assess the distribution of mce operons in completed
and draft assemblies of genomes of members of the Order
Actinomycetales, we surveyed the annotation of predicted
proteins for members of Pfam families PF02470 and
PF02405 (Table 1). The proteomes of all 10 Mycobacterium
species examined contained Mce proteins. The number
varied from 6 in Mycobacterium leprae up to 66 in Mycobac-
terium vanbaalenii. Other genomes containing mce genes
belonged to species of Nocardia, Janibacter, Nocardiodes,
Amycolatopsis and Streptomyces. Mce homologs were absent
from 18 Actinomycetales genomes, notably including those
of the four sequenced Corynebacterium species. DUF140
proteins were found encoded within all Actinomycetales
genomes that contain mce genes and were absent from all
genomes that do not contain mce genes. Other completely
sequenced genomes of species belonging to the Class
Actinobacteria, namely Rubrobacter xylanophilus, Symbiobac-
terium thermophilum and Bifidobacterium longum, did not
contain either Mce or DUF140 homologs.

Examination of the genomic location of the Mce and
DUF140 homologs revealed that the mce genes were
almost always found clustered in groups of six, located
downstream from a pair of DUF140 genes (Figure 2).

Identification of mce-like operons in Gram-negative 
bacteria
A 98 amino acid sub-region of Mce family proteins,
termed the 'Mce-like' domain (PF02470), is widely dis-
tributed in Gram-negative bacteria and has also been
found encoded in plant genomes. No Mce-like domains
have been identified in any Archeael or low GC-content
Gram-positive bacterial genomes.

Genes with related functions are frequently encoded
within operons and thus found clustered in the genomes
of prokaryotes [22]. We investigated the gene neighbor-
hoods of selected mce-like genes with the aim of obtaining
clues regarding the biological role of proteins of this fam-
ily (Figure 3). The Mce-like proteins in Gram-negative
bacteria were frequently found clustered in the genome
with a DUF140 family protein and an ATPase homolog
(IPR003439) in an arrangement typical of an ABC trans-
porter system [11]. The three components were found
encoded in any order and in some instances either the
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Table 1: Distribution of Mce and YrbE proteins within the Order Actinomycetalesa

Suborder Family Species Mceb DUF140c Source

Actinomycinaeae Actinomycetaceae Actinomyces naeslundii MG1 0 0 UniProt

Corynebacterineae Corynebacteriaceae Corynebacterium diphtheriae NCTC 13129 0 0 UniProt

Corynebacterium efficiens YS-314 0 0 UniProt

Corynebacterium glutamicum ATCC 13032 0 0 UniProt

Corynebacterium jeikeium K411 0 0 UniProt

Mycobacteriaceae Mycobacterium leprae TN 6 2 UniProt

Mycobacterium bovis AF2122/97 18 7 UniProt

Mycobacterium tuberculosis CDC1551 24 7 TIGR

Mycobacterium tuberculosis H37Rv 24 8 TIGR

Mycobacterium paratuberculosis K-10 48 14 UniProt

Mycobacterium smegmatis MC2 155 34 11 TIGR

Mycobacterium sp. MCS 38 11 JGI

Mycobacterium sp. KMS 38 12 JGI

Mycobacterium sp. JLS 50 16 JGI

Mycobacterium flavescens PYR-GCK 48 13 UniProt

Mycobacterium vanbaalenii PYR-1 66 24 UniProt

Nocardiaceae Nocardia farcinica IFM 10152 36 12 UniProt

Frankineae Acidothermaceae Acidothermus cellulolyticus 11B 0 0 UniProt

Frankiaceae Frankia sp. CcI3 0 0 UniProt

Frankia sp. EAN1pec 0 0 UniProt

Kineosporiaceae Kineococcus radiotolerans SRS30216 0 0 UniProt

Micrococcineae Brevibacteriaceae Brevibacterium linens BL2 0 0 JGI

Cellulomonadaceae Tropheryma whipplei str. Twist 0 0 UniProt

Tropheryma whipplei TW08/27 0 0 UniProt

Intrasporangiaceae Janibacter sp. HTCC2649 6 2 NCBI

Microbacteriaceae Leifsonia xyli subsp.xyli str. CTCB07 0 0 UniProt

Micrococcaceae Arthrobacter aurescens TC1 0 0 UniProt

Arthrobacter sp. FB24 0 0 UniProt

Propionibacterineae Nocardioidaceae Nocardioides sp. JS614 12 3 UniProt

Propionibacteriaceae Propionibacterium acnes KPA171202 0 0 UniProt

Pseudonocardineae Pseudonocardiaceae Amycolatopsis mediterranei d 6 2 Pfam

Streptomycineae Streptomycetaceae Streptomyces avermitilis MA-4680 6 2 UniProt

Streptomyces coelicolor A3(2) 6 2 UniProt

Streptosporangineae Nocardiopsaceae Thermobifida fusca YX 0 0 UniProt

a Taxonomy from Bergey's Manual of Systematic Bacteriology [107]
b Number of proteins classified as PF02470
c Number of proteins classified as PF02405
d Incomplete genome, EMBL Accession AF040570

http://www.ebi.ac.uk/cgi-bin/dbfetch?AF040570
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Schematic representation of the organization of mce loci in Actinomycetales genomesFigure 2
Schematic representation of the organization of mce loci in Actinomycetales genomes. Genes encoding proteins 
belonging to Pfam family PF02470 (Mce) are depicted as green boxes, and to family PF02405 (DUF140) as blue boxes. Dashes 
indicate gaps in gene numbering.
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DUF140 or ATPase homolog was duplicated. In a number
of γ-Proteobacteria the ATPase-DUF140-Mce cluster was
encoded in a conserved genomic region that included a
Tol protein (IPR008869), a STAS domain protein
(IPR002645) and MurA(IPR005750), the product of
which catalyses the first step of murein biosynthesis. Like
Mce domains, Tol proteins have homology to SBPs [29];
the presence of SBPs indicates that these operons encode
substrate uptake transporters. Aravind and Koonin sug-
gested that the nucleotide-binding activity of STAS
domains, found in sulfate transporters, could regulate
uptake in response to intracellular ATP or GTP concentra-
tions [30]. Several DUF140 proteins that are N-terminally
fused to STAS domains have been identified [31], imply-
ing a functional linkage between these two proteins in the
mce operons [21]. The Mce transporter clusters were also
frequently found associated with homologs of a surface-
exposed lipoprotein VacJ (IPR007428), and the morpho-
protein BolA (IPR002634).

The Mce homologs in these putative transporter operons
each contain a single 98 amino acid Mce-like domain.
Many proteobacterial genomes additionally contain Mce
homologs, sometimes annotated as PqiB, that contain 2–
7 copies of the Mce-like domain and are usually associ-
ated with a PqiA family protein (IPR007498) of unknown
function. The E. coli pqiAB operon is induced by treatment
with the model superoxide generator, paraquat [32].

Mce-associated ATPases
Since ABC transporters absolutely require an ATPase to
provide the energy required for substrate translocation,
the genes neighboring the Actinomycetales mce operons
were inspected for ATPase homologs (IPR003439).
Although none of the mycobacterial mce operons neigh-
bors an ATPase, a candidate gene was identified immedi-
ately upstream of a single mce operon in the genome of
every non-mycobacterial Actinomycetales species that pos-
sesses mce genes (Table 2). BLASTP analyses demonstrated
that the corresponding protein sequences were reciprocal
best hits with the mce-linked ATPases in Gram-negative
bacteria, indicating orthology [24]. A phylogenetic analy-
sis of ABC transporter ATPases reported by Dassa and
Bouige groups these Actinomycetales and Gram-negative
bacterial ATPases into a family termed Mkl [8].

The sequences of the N. farcinica and Streptomyces mce-
linked ATPases (nfa51100, SAV5902 and SCO2422) were
used as BLASTP queries in order to identify additional
Mkl-like ATPases. The best hits from each of the com-
pleted Actinomycetales genomes (Table 1) were retrieved
for further evaluation. Phylogenetic analysis of the pro-
tein sequences revealed that each Mycobacterium species
contained a single ATPase that clustered with the Mkl fam-
ily, providing strong evidence of orthology (Figure 4,

Table 2). In addition, a paralog was identified in the N.
farcinica genome (nfa20200); this ORF is annotated in
The Institute of Genome Research (TIGR) database as
MetN, a D-methionine ABC transporter ATPase, but it
does not cluster with other putative MetN orthologs (Fig-
ure 4).

Comparison of the most closely related ORFs in other
Actinomycetales revealed that only those genomes that con-
tained mce operons possessed an orthologous ATPase
(Figure 4). Congruency of the phylogenetic profiles of the
Mkl ATPases with YrbE and Mce proteins provides further
evidence of functional association [23].

Each of the mce-linked ATPases and mycobacterial
orthologs contain the conserved Walker A and B motifs
required for ATP binding, as well as the ABC transporter
family signature (LSGGQ) with no more than one mis-
match [16,33]. In a published analysis of M. tuberculosis
ABC transporters, the putative Mce ATPase, Rv0655, segre-
gated with importers but did not fall into any of the pre-
viously described families with known substrates [20].
Similarly, in a more expansive study, the Mkl family
ATPases fell into the SBP-dependent importer clade, but
clustered separately from those with established specifi-
city [8].

The mycobacterial Mkl ATPases and nfa20200 and are not
genomically located near any other ABC transporter com-
ponents and appear to be transcriptionally-isolated. The
M. leprae ortholog is located adjacent to RNA polymerase
rpo genes leading to speculation that this ATPase was
involved in ribonucleotide uptake [34]. Consequently,
Mkl ATPases are sometimes annotated as ribonucleotide
uptake systems.

The Mce proteins
Comparison of the amino acid sequences of the Mce pro-
teins encoded in the genomes of Mycobacterium bovis and
the M. tuberculosis strains H37Rv, CDC1551 and 210,
revealed that each of the M. tuberculosis genomes con-
tained 24 Mce ORFs, whilst, as noted previously, the mce3
operon is deleted in M. bovis [35]. A number of genes were
found to contain frameshift mutations: mce1F in strain
210; mce2B in strains H37Rv and CDC1551; mce2C in
strain CDC1551; and mce2D and mce2E in M. bovis. The
truncated ORFs thus conspicuously clustered within the
mce2 operon.

A non-redundant set of Mce proteins from the genomes of
M. tuberculosis, M. bovis, M. leprae, Mycobacterium avium
subsp. paratuberculosis (M. paratuberculosis), Mycobacterium
smegmatis, N. farcinica, S. coelicolor and S. avermilitis were
selected for further analysis. Examination of the genomic
regions of partial operons revealed the presence of several
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Conserved proteins encoded in the neighborhood of mce genes in Gram-negative bacteriaFigure 3
Conserved proteins encoded in the neighborhood of mce genes in Gram-negative bacteria. Coloring reflects con-
served domains identified in the key. Protein families shown are: NBD, an ABC transporter ATPase (IPR003439); DUF140 
(IPR003453); Mce (IPR003399); Tol, a Ttg2 toluene tolerance protein (IPR008869); STAS, a domain found in sulfate transport-
ers and anti-sigma factor antagonists (IPR002645); VacJ, a lipoprotein of unknown function (IPR007428); BolA, a possible regu-
lator induced by stress (IPR002634); MurA, UDP-N-acetylglucosamine-1-carboxyvinyltransferase (IPR005750); DUF330 
(IPR005586); PqiA, an integral membrane protein inducible by superoxide generators (IPR007498); SAM, an S-adenosyl methio-
nine binding methyltransferase (IPR000051); and ABC2, an ABC-2 type permease (IPR013525).
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additional putative Mce homologs that were included in
this analysis (Table 3).

Multiple alignment and phylogenetic analysis of the Mce
homologs revealed six distinct branches, which corre-
sponded exactly to the encoding genes in the respective
operons (that is mceA-F; Figure 5). Within each of the six
major branches, the clustering of sequences was essen-
tially the same. This pattern indicates that each mce gene
cluster duplicated from an ancestral operon that con-
tained six mce genes and that no shuffling between or
within operons has occurred.

We have classified the operons as mce1-8 according to the
clustering observed (Table 3). The mce1 and mce2 operons
are the most closely related and duplication may have
occurred after divergence of the fast- and slow-growing
mycobacteria, since M. smegmatis contains a single copy.
Although the orthology of the M. smegmatis operon can-
not be deduced from the phylogenetic tree, we infer from
synteny that it is orthologous to the M. tuberculosis mce1
operon. Thus, mce1 is the sole operon that is found in all,
and in only, the Mycobacterium species examined. The
Streptomyces operons fall into a cluster, termed mce6, that
does not contain any mycobacterial orthologs, but is
found in N. farcinica. The Mkl-like ATPase is located
upstream of yrbEA6 in all three of these operons. In several
cases operon orthology could not be deduced from the
branching pattern observed, presumably due to recent
duplication events. Thus, it appears that M. paratuberculo-
sis and M. smegmatis possess two copies of the mce5
operon; M. paratuberculosis and N. farcinica have two cop-
ies of the mce7 operon; and N. farcinica has two copies of
the mce8 operon. The M. paratuberculosis Mce5E protein

(MAP2193) seems to have diverged significantly from its
paralog (MAP0764); examination of the encoding
sequences revealed that this is a consequence of a 40bp
deletion, which results in a frameshift of the N-terminal
120 amino acids.

One and two extra copies of Mce1A were found in M.
paratuberculosis (MAP3289) and M. smegmatis
(MSMEG5783, MSMEG6500), respectively; whilst N. far-
cinica contained a second copy of Mce4A (nfa25900).
Each of the encoding genes appeared to be transciption-
ally isolated, with the exception of MSMEG5783, which is
located within a four-gene operon that includes pyridox-
amine 5-phosphate oxidase and a putative lipoprotein.

Secondary structure predictions, through the JPred server,
revealed the consensus structure of the conserved Pfam
region folded into five β-strands; the central region of
Actinomycetales Mce proteins, included in the conserved
TIGRFAM region, contains eight α-helices. The C-terminal
region varies in length from 10–250 amino acids, has pre-
dicted low complexity and is rich in proline residues (Fig-
ure 6). Length is not conserved within the six homologous
families, with the exception of the MceB proteins in which
the C-terminal region is 30–50 amino acids in all cases.
On average the MceA and MceF proteins are the longest.
An RGD motif was identified in the C-terminal tail of 16
(of 27) MceE sequences. This motif is known to bind
integrins, as well as C2 domains [36,37].

Each of the Mce proteins contained a hydrophobic stretch
at the N-terminus, likely to be a transmembrane helix.
Using a neural network trained on Gram-positive bacteria
the program SignalP predicted a signal peptide cleavage
site for 98 of 161 of these proteins [38]. There was no cor-
relation between prediction of secretion and Mce-type (A-
F) or bacterial species. Although the Mce anchor regions
frequently contained a pair of arginine residues, character-
istic of Twin-arginine transporter (Tat) motifs, few (12 of
161) are recognized as Tat substrates [39]. A lipoprotein
attachment site (PS00013) was present in 22 of 27 MceE
proteins. The highly conserved operon structure contain-
ing six mce genes suggests that they associate to form a
heteromeric complex [22,40], which is therefore likely to
remain tethered to the cell membrane even if some pro-
teins are cleaved. Indeed, Mce1A-1F have been shown to
localize to the cell envelope of M. tuberculosis [4].

The YrbE proteins
Unlike the Mce proteins, the amino acid sequences of
YrbE orthologs in the M. tuberculosis strains H37Rv,
CDC1551 and 210, as well as M. bovis, were found to be
>99.5% identical in all cases. The sequences of the YrbE
proteins associated with the mce gene clusters of M. tuber-
culosis, M. leprae, M. paratuberculosis, M. smegmatis, N. far-

Table 2: Actinomycetales mce-linked ATPases and mycobacterial 
orthologs

Organism ATPase

Amycolatopsis mediterranei TrEMBL: Q7BUF5
Janibacter sp. HTCC2649 JNB_08429
Nocardia farcinica nfa51100
Nocardioides sp. JS614 NocaDRAFT_4321
Streptomyces avermitilis SAV5902
Streptomyces coelicolor SCO2422
Mycobacterium bovis Mb0674
Mycobacterium flavescens MflvDRAFT_3283
Mycobacterium leprae ML1892
Mycobacterium paratuberculosis MAP4129
Mycobacterium smegmatis MSMEG1359
Mycobacterium sp. JLS MjlsDRAFT_1757
Mycobacterium sp. KMS MkmsDRAFT_1059
Mycobacterium sp. MCS MmcsDRAFT_0968
Mycobacterium tuberculosis CDC1551 MT0684
Mycobacterium tuberculosis H37Rv Rv0655
Mycobacterium vanbaalenii MvanDRAFT_5200
Page 8 of 23
(page number not for citation purposes)
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Phylogenetic tree showing relationship between mce-linked ATPases and mycobacterial orthologsFigure 4
Phylogenetic tree showing relationship between mce-linked ATPases and mycobacterial orthologs. ATPases 
encoded within mce operons in Actinomycetales species are colored blue; those in Gram-negative bacterial mce operons are 
colored green. The sequences most similar to nfa51100, SAV5902 and SCO2422 (indicated in bold), in the Actinomycetales 
genomes listed in Table 1, were identified by BLASTP searches and included in the tree. All of the best hits from mycobacterial 
species cluster within the Mkl family and are colored red. For comparison, sequences of all M. tuberculosis H37Rv ATPases of 
ABC uptake transporters were included [20]. All of the top hits from Actinomycetales that do not possess mce operons are 
rooted among these non-mce-linked ATPases, as are all of the second hits from mycobacterial species. ORFs are designated by 
(UniProt gene name | protein name).
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Table 3: Classification of Actinomycetales yrbE and mce genes a

Prefixb yrbE1A yrbE1B mce1A mce1B mce1C mce1D mce1E mce1F

Rv 0167 0168 0169 0170 0171 0172 0173 0174
MT 0176 0177rc 0178 0179 0180 0181 0182 0183
Mb 0173 0174 0175 0176 0177 0178 0179 0180
ML 2587 2588 2589 2590 2591 2592 2593 2594

MAP 3602 3603 3604 3605 3606 3607 3608 3609
MSMEG 0126 0127 0128 0129 0130 0131 0132 0133

yrbE2A yrbE2B mce2A mce2B mce2C mce2D mce2E mce2F
Rv 0587 0588 0589 0590 0591 0592 0593 0594
MT 0616 0617 0618 0619 0621 0622 0623 0624
Mb 0602 0603 0604 0605 0606 0607 0609 0610

MAP 4082 4083 4084 4085 4086 4087 4088 4089

yrbE3A yrbE3B mce3A mce3B mce3C mce3D mce3E mce3F
Rv 1964 1965 1966 1967 1968 1969 1970 1971
MT 2016 2017 2018 2019 2020 2021 2022 2023
Mb 1999

MAP 2117c 2117c.1d 2116c 2115c 2114c 2113c 2112c 2111c
MSMEG 0335 0336e 0337 0338 0339 0340 0341 0342

yrbE4A yrbE4B mce4A mce4B mce4C mce4D mce4E mce4F
Rv 3451c 3450c 3499c 3498c 3497c 3496c 3495c 3494c
MT 3605 3604 3603 3602 3601 3600 3599 3598
Mb 3531c 3530c 3529c 3528c 3527c 3526c 3525c 3524c

MAP 0562 0563 0564 0565 0566 0567 0568 0569
MSMEG 5861 5860 5859.3e 5859.2e 5859.1e 5859 5858 5857.1e

nfa 5350 5360 5370 5380 5390 5400 5410 5420

yrbE5A yrbE5B mce5A mce5B mce5C mce5D mce5E mce5F
MAPf 0757 0758 0759 0760 0761 0762/3g 0764 0765
MAP 2189 2190 2191 2192 2193h 2194

MSMEG 2855 2856 2857 2858 2859 2860 2861 2862
MSMEGf 4785 4784 4783 4782 mei 4777 4776 4775

yrbE6A yrbE6B mce6A mce6B mce6C mce6D mce6E mce6F
nfa 51090 51080 51070 51060 51050 51040 51030 51020

SCO 5901 5900 5899 5898 5897 5896 5895 5894
SAV 2421 2420 2419 2418 2417 2416 2415 2514

yrbE7A yrbE7B mce7A mce7B mce7C mce7D mce7E mce7F
MAPj mei 0107 0108 0109 0110 0111 0112 0113
MAP 1849 1850 1851 1852 1853 1854 1855 1856

MSMEGj 1131 1132 1133 1134 1135 1136 1137 1138
nfa 50540 50530 50520 50510 50500 50490 50480 50470
nfa 56330 56320 56310 56300 56290 56280 56270 56260

yrbE8A yrbE8B mce8A mce8B mce8C mce8D mce8E mce8F
nfa 11130 11140 11150 11160 11170 11180 11190 11200
nfa 29780 29770 29760h 29750 29740 29730 29720 29710

a Operons mce1-4 designated as in TubercuList; mce5-8 designated herein. Gene names in organisms other than M. tuberculosis do not correspond 
to those given in genome annotation.
b Organism specific gene number prefix: Rv, M. tuberculosis H37Rv; MT, M. tuberculosis CDC1551; Mb, M. bovis; ML, M. leprae; MAP, M. 
paratuberculosis; MSMEG, M. smegmatis; nfa, N. farcinica; SCO, S. coelicolor; SAV, S. avermitilis.
c Orthologous sequence present, but ORF annotated in reverse direction.
d Orthologous sequence present, but not annotated. ORF extends ~400 bp at 5'end.
e Orthologous sequence present, but not annotated.
f Orthology inferred from synteny.
g Contains frameshift mutation, resulting in two ORFs.
h Not a member of IPR003399 or IPR005693.
i Insertion of mobile element.
j Orthology inferred from synteny.



BMC Genomics 2007, 8:60 http://www.biomedcentral.com/1471-2164/8/60

Page 11 of 23
(page number not for citation purposes)

Phylogenetic tree of Actinomycetales Mce proteinsFigure 5
Phylogenetic tree of Actinomycetales Mce proteins. A non-redundant set of Mce protein sequences were aligned and an 
unrooted neighbor-joining tree was computed by MEGA. Coloring corresponds to the classification scheme specified in Table 
3. ORFs are designated by [gene locus name | operon number (1–8) and gene position (A-F)]. Where operon orthology cannot 
be inferred, operons are designated: -1, -2.
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cinica, S. coelicolor and S. avermilitis were selected for
further analysis. In several cases the ORF downstream of
yrbEA was either not annotated or annotated in the reverse
direction; however, translation of the genomic sequence
revealed a YrbEB homolog encoded in the expected direc-
tion (Table 3).

Phylogenetic analysis showed deep branching between
the YrbEA and YrbEB sequences (Figure 7). Within each
clade the clustering of sequences was almost identical
demonstrating that the yrbEA-yrbEB genes have evolved as
a pair. The clustering was comparable to that seen in the
Mce protein tree, with members of the mce1/2 and mce3 to
mce8 operons easily distinguishable. Thus, it appears that
all of the operons examined evolved from a common
ancestral eight-gene cluster without shuffling of genes
within or between operons.

ABC permeases typically contain six transmembrane seg-
ments with the C-terminus located on the cytoplasmic
side of the membrane [11]. The consensus TMHMM-pre-
dicted structure of Actinomycetales YrbE homologs found
in mce operons suggests the presence of five or six trans-
membrane helices with the C-terminus outside (Figure
8a). The presence of the N-terminal transmembrane helix
was equivocal, and therefore the N-terminus may be cyto-
plasmic or outside. Further topological predictions using
the programs HMMTOP and TopPred confirmed this
model, but were unable to verify or refute the existence of
the N-terminal transmembrane segment.

Dassa and colleagues [41,42] have described a highly-con-
served sequence, the EAA motif, in the final cytoplasmic

loop of some SBP-dependent ABC permeases that is pro-
posed to interact with the cognate ATPase [43]. Examina-
tion of the multiple alignment of YrbE proteins revealed a
conserved sequence motif located in the penultimate
cytoplasmic loop. The consensus deduced from 50 Actin-
omycetales YrbEA and YrbEB sequences is shown in Figure
8b. Alignment of Gram-negative bacterial DUF140 pro-
teins revealed that this region was highly conserved in all
family members. The consensus sequence we have
deduced does not appear to be homologous to the pub-
lished motifs, but does contain the common invariant gly-
cine residue and is predicted to adopt the typical α-helical
structure [42]. The consensus 47 amino acid YrbE
sequence, that we have termed the EExDA motif, was able
to specifically retrieve Actinomycetales and Gram-negative
DUF140 proteins from the National Center for Biotech-
nology Information (NCBI) microbial proteomes data-
base.

In one case (Rhodopirellula baltica, RB3287) a DUF140
domain is fused to an ABC ATPase domain providing evi-
dence that the function of DUF140 proteins requires ATP
hydrolysis [21].

The Mas proteins
The four genes downstream of the M. tuberculosis mce1
operon, as well as two each downstream of the mce3 and
mce4 operons, are annotated in TubercuList [44] as 'con-
served mce-associated proteins' (herein termed Mas). The
mce1 operon transcript has been empirically demon-
strated to include the associated mas genes (Rv0175-78)
[45]. Examination of a multiple alignment of the protein
sequences revealed that they were not conserved along

Illustration of conserved regions and predicted secondary structure of Actinomycetales Mce proteinsFigure 6
Illustration of conserved regions and predicted secondary structure of Actinomycetales Mce proteins. Six sepa-
rate alignments of the Mce proteins (A-F) listed in Table 3 were submitted to JPred and the consensus secondary structure 
prediction estimated manually. White boxes represent α-helices and grey arrows β-strands. The C-terminal proline-rich 
region had low complexity and varied in length from 10–250 amino acids. Signal sequences were identified by SignalP and lipid 
attachment sites matched the ProSite motif PS00013.

transmembrane

segment

Pro-rich region

10-250 amino acids

IPR005693 [TIGR00996]

304 amino acids

IPR003399 [PF02470]

98 amino acids
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Phylogenetic tree of Actinomycetales YrbE proteinsFigure 7
Phylogenetic tree of Actinomycetales YrbE proteins. A non-redundant set of YrbE protein sequences were aligned and 
an unrooted neighbor-joining tree was computed by MEGA. Coloring corresponds to the classification scheme specified in 
Table 3. ORFs are designated by [gene locus name | operon number (1–8) and gene position (A, B)]. Where operon orthology 
cannot be inferred, operons are designated: -1, -2.
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their entire length but shared a similar C-terminal region
of approximately 160 amino acids. Pairwise sequence
identity scores, generated by ClustalX, for the conserved
region ranged from 12 to 25%.

To determine whether homologous domains were present
in other genomes, we used each of the eight Mas C-termi-
nal sequences as a PSI-BLAST query against the NCBI non-
redundant database. A total of 137 sequences were
retrieved; of these, 124 sequences were hit by all eight
query sequences, and all 137 were hit by more than two
queries. The proteins identified belonged to six genera:
Amycolatopsis, Janibacter, Mycobacterium, Nocardia, Nocardi-
odes and Streptomyces. Thus, the phylogenetic profile for
the putative Mas homologs in Actinomycetales genera
exactly matches that of the Mce, DUF140 and Mkl pro-
teins. Mas homologs in the M. smegmatis genome, which
was not covered by the NCBI database, were identified by
exhaustive BLAST querying of the TIGR proteome. Nine-

teen putative Mas homologs were thus identified (P <
0.00001).

Sequences of the putative Mas domain containing pro-
teins from M. tuberculosis, M. leprae, M. paratuberculosis, M.
smegmatis, N. farcinica, S. avermitilis and S. coelicolor were
selected for further analysis. This resulted in a set of 66
sequences (including one hybrid sequence, MAP2107/9c,
that has been disrupted by a transposase).

The Mas domain genes were typically found in pairs (58
of 66) and the majority (43 of 66) were encoded down-
stream of, and in the same direction, as mce genes (Table
4). Putative orthologs of each of the eight M. tuberculosis
mce operon-associated mas genes were identified in the
corresponding positions of those genomes carrying
orthologous operons. Each of the mce7 operons had a sin-
gle Mas protein encoded downstream. The mce6 operons
of N. farcinica and S. avermilitis contained two mas genes,

Predicted topology and conserved sequence motif of Actinomycetales YrbE proteinsFigure 8
Predicted topology and conserved sequence motif of Actinomycetales YrbE proteins. (A) The consensus topology 
prediction of Actinomycetales YrbE proteins analysis is shown compared to that of a typical ABC permease [42]. (B) WebLogo 
illustration of the conserved YrbE EExDA sequence motif identified through MEME analysis.
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while the corresponding S. coelicolor operon carried four.
In M. paratuberculosis, a pair of mas homologs was located
in the regions both upstream and downstream of the mce5
operon, but transcribed from the opposite strand
(MAP0750-51c, MAP0767-68c). The 23 non-mce operon-
associated Mas homologs were generally located in pairs
in isolated operons. An exception was Rv2390c, which
TIGR predicts is part of a three-gene operon including a
resuscitation promoting factor (rpfD, Rv2389c) and an Fe-
S enzyme involved in porphyrin biosynthesis (hemN,
Rv2388c).

The Mas region is not currently recognized as a conserved
domain in the databases. However, within this region,
InterPro recognized a lipocalin family motif (IPR002345)
in Rv3492c, and a partial C2 domain signature

(IPR000008) in Rv0199 and ML2614. Notably, the corre-
sponding Pfam families (PF00061 and PF00168) did not
include these sequences as members. Nonetheless, it may
be worthy of mention that the lipocalin and C2 domains
share a lipid-binding function, as well as an eight-
stranded anti-parallel beta sandwich structure [46,47].

The majority of pairwise identity scores for the 66 Mas
domains were 10–20%. This low level of sequence simi-
larity resulted in multiple sequence alignments that were
extremely sensitive to input parameters. Exclusion of the
13 non-mycobacterial sequences produced a much more
robust alignment. A phylogenetic tree generated from this
alignment is shown in Figure 9. Examination of the tree
revealed that the Mas proteins encoded by the first and
second genes in each pair formed phylogenetically dis-

Table 4: Mas Homologs in Selected Actinomycetales Genomesab

Rv ML MAP MSMEG nfa SAV SCO

Mas1 A 0175 (213) 2595 (182) 3610 (213) 0134 (202)
B 0176 (322) 2596 (325) 3611 (323) 0135 (288)
C 0177 (184) 2597 (184) 3612 (184) 0136 (182)
D 0178 (244) 2598 (184) 3613 (252) 0137 (296)

Mas3 A 1972 (191) 2110c (203) 0343 (200)
B 1973 (160) 2109/7cc 0344 (202)

Mas4 A 3493c (242) 0570 (243) 5857 (233) 5430 (315)
B 3492c (160) 0571 (164) 5856 (161) 5440 (162)

Mas6 A 51010 (248) 5893 (177) 2413 (170)
B 51000 (274) 5892 (272) 2412 (219)
C 2411 (184)
D 2410 (253)

Mas7-1 A 0114 (198) 1139 (230) 50460 (246)
Mas7-2 A 1857 (227) 56250 (321)

ClusterI A 1363c (261) 0751c (295) 4759.2 (303)
B 1362c (220) 0750c (187) 4759 (200)
A 0768c (298) 2867 (190)
B 0767c (224) 2868 (218)

ClusterII A 0199 (219) 2614 (229) 0225 (206) 6070 (197)
B 0200 (229) 2615 (224) 0226 (229)

A 2390c (185) 0090c (212)

A 0878 (167)
B 0879 (496)

A 5189 (231)
B 5190 (192)

a Organism specific gene number prefix: Rv, M. tuberculosis H37Rv; ML, M. leprae; MAP, M. paratuberculosis; MSMEG, M. smegmatis; nfa, N. farcinica; 
SCO, S. coelicolor; SAV, S. avermitilis.
b Each row contains putative orthologs. Length of protein in amino acids shown in parentheses.
c ORF is interrupted by a transposase, MAP2108.
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tinct clusters. The Mas proteins encoded adjacent to mce
operons were not separated from the non-mce associated
Mas proteins. The M. leprae, M. paratuberculosis and M.
smegmatis Mas proteins associated with the mce1, mce3
and mce4 operons are clearly orthologs of those in the cor-
responding genomic positions in M. tuberculosis. The
mce7-associated Mas proteins also cluster together. Several
pairs of non-mce associated Mas homologs were con-
served between mycobacterial species (Figure 9; Cluster I
and Cluster II).

The mycobacterial mce-associated Mas orthologs have
greater than 50% pairwise identity. In contrast, the Nocar-
dia and Streptomyces mce6-associated Mas proteins are
highly divergent (15–20% identity). This suggests that,
unlike the mce and yrbE genes, the mas genes have either
diverged more rapidly or were independently recruited to
the operons.

Comparison of JPred secondary structure predictions for
orthologous clusters revealed the consensus structure of
the conserved domain was α1α2α3α4β1β2β3β4. Prediction
of transmembrane helices indicated that all 66 protein
sequences harbored a transmembrane segment located
about 140–180 amino acids from the C-terminus and cor-
responding to α1. Topology prediction programs,
TMHMM, HMMTOP and TopPred, suggested the C-termi-
nus was extracellular for 41, 56 and 42, of the 66 submit-
ted sequences, respectively. In no case did all three
programs predict an extracellular N-terminus for a single
protein. Thus, it seems likely that all N-termini are intrac-
ellular, while the C-terminal Mas domains are located on
the external side of the cytoplasmic membrane.

The length of the N-terminal region preceding the Mas
domain ranged from 7 to 325 amino acids. In the major-
ity of proteins in which the N-terminal segment was less
than 30 amino acids (11 of 16), α1 was predicted to be a
signal peptide by SignalP (Figure 10). Consensus topol-
ogy predictions indicated that the four Mas1B orthologs
and three Cluster IIB proteins contained two N-terminal
transmembrane helices (oriented in-out, out-in). In the
Mas1B orthologs, the two N-terminal transmembrane seg-
ments correspond to an RDD domain (IPR010432).
Examination of a multiple alignment revealed that
although M. smegmatis Mas1B does not actually have the
N-terminal signature RD residues, the Cluster IIB proteins
do. It has been proposed that the RDD domain is involved
in transport [31]; however, to date, no empirical evidence
has been published to support this claim. In MSMEG0879
the 325 amino acid N-terminal region encodes a protein
kinase domain (IPR000719) containing the Ser/Thr
kinase active site motif (PS00108). Coiled-coils, which are
known to mediate protein-protein interactions [48], were

identified in the N-terminal region of each Cluster IA
sequence by the Lupas COILS algorithm.

Discussion
In this study we sought to gain insight into the function of
the M. tuberculosis mce operons using genome compari-
sons and bioinformatic methods.

The YrbE and Mce proteins, encoded by the M. tuberculosis
mce operons, have homology to the permease and SBP
components of ABC transporters, respectively [29]. How-
ever, sequence similarity within these protein families is
notoriously low, and confirmation that the mce operons
encode ABC importers has required identification of the
necessary cognate ATPase. Dassa and Bouige [8] have pro-
posed that Rv0655, an ATPase named Mkl, might supply
this function and here we provide substantial evidence
that this is indeed the case.

Firstly, Mkl orthologs are encoded immediately upstream
of the mycobacterial-like mce operons in species of Nocar-
dia, Janibacter, Nocardioides, Amycolatopsis and Streptomy-
ces. Secondly, orthologs of Mkl are found in all, and in
only, those Actinomycetales species that also contain Mce
and DUF140 homologs. The presence of an intact mkl
gene in the M. leprae genome, which has undergone exten-
sive reductive evolution [49], is significant in this respect.
Thirdly, in Gram-negative bacteria, operons containing
DUF140 and mce homologs invariably include the orthol-
ogous mkl gene. Recently, Joshi et al. [7] observed that in
competitive mouse infections an Rv0655 mutant was
attenuated relative to wild-type M. tuberculosis, whereas an
Rv0655-mce1 double mutant showed no attenuation rela-
tive to the mce1 mutant, providing evidence that Rv0655
and the Mce1 proteins are functionally linked. It is nota-
ble that in the Mycobacterium species examined, the mkl
gene is located within the genomic region that encodes
the majority of ribosomal proteins; this is generally the
most conserved region in prokaryotic genomes and could
facilitate high level expression of mkl [40].

It is widely accepted that the direction of substrate trans-
port of ABC transporters can be predicted on the basis of
ATPase homology [10]. In phylogenetic analyses, Mkl
ATPases fall into the importer clade [8,20]; this prediction
is consistent with the proposed role of Mce proteins as
SBPs, which are found exclusively in substrate import sys-
tems.

The results of topology prediction indicated that the YrbE
proteins contained five to six transmembrane segments,
with the C-terminal five the most conserved and the C-ter-
minus outside. In support of this model, the periplasmic
location of the C-terminus of E. coli YrbE has been dem-
onstrated empirically [50]. In general, ABC permeases
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Phylogenetic tree of mycobacterial Mas domain sequencesFigure 9
Phylogenetic tree of mycobacterial Mas domain sequences. The conserved Mas domains of mycobacterial proteins 
listed in Table 4 were aligned and an unrooted neighbor-joining tree was computed by MEGA. Coloring corresponds to the 
classification scheme specified in Table 3. ORFs are designated by [gene locus name | operon number (1, 3, 4, 7) and gene posi-
tion (A-D)]. Where operon orthology cannot be inferred, operons are designated: -1, -2.
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show the highest level of sequence similarity over the C-
terminal five transmembrane regions, and this is consid-
ered to be the minimal functional unit [11]. In compiled
alignments of ABC permease sequences, the most con-
served region localizes to the final cytoplasmic loop [42].
This motif, termed the EAA loop, likely interacts with the
cognate ATPase [43]. A highly conserved motif, predicted
to localize to the penultimate cytoplasmic loop, was iden-
tified in YrbE proteins from both Actinomycetales and
Gram-negative bacteria. We propose that this motif,
named the EExDA loop, serves as the site of interaction
with the putative cognate Mkl ATPase, in a manner analo-
gous to the EAA loop.

Conservation of the 'two yrbE plus six mce' operon struc-
ture suggests that these components comprise the func-
tional unit of the canonical Actinomycetales Mce
transporter [22,40]. We have found that mutation of
either the yrbE1A, mce1A or mce1E genes of M. tuberculosis
results in undetectable levels of all the Mce1 proteins,
implying that these proteins are part of a hetero-octomeric
complex and its formation is necessary for stability of the
Mce proteins [4] (L. Morici, personal communication). It

is interesting that many Proteobacteria contain membrane
proteins with multiple Mce domains (PqiB proteins) that
could potentially interact forming a quaternary structure
analogous to the putative Acinomycetales Mce complex.
The permease components of ABC transporters, that form
a channel across the cytoplasmic membrane, are fre-
quently heterodimers; however, although present in stoi-
chiometric excess, SBPs are generally encoded by one or
two genes [11]. The presence of six SBPs is, thus far, a
unique characteristic of the Actinomycetales Mce transport-
ers. Using computational methods, Pajon et al. [51] found
that the β-sheet region of eight of the M. tuberculosis Mce
proteins contained patterns typical of transmembrane β-
strands and suggested that this region could promote pen-
etration of the outer lipid layer. Thus, it is tempting to
speculate that the Mce proteins are designed to form a
channel that crosses this lipid bilayer. Chitale et al. [52]
have previously shown that Mce1A is indeed exposed on
the surface of M. tuberculosis.

Proteins encoded downstream of three of the four M.
tuberculosis mce operons exhibit significant sequence
homology. Similarity is confined to the 160 amino acid C-

Representative architectures of Mas domain-containing proteinsFigure 10
Representative architectures of Mas domain-containing proteins. Membrane topology predictions for the 66 Mas 
proteins listed in Table 4 indicated that the conserved domain was located on the extracellular side of the cytoplasmic mem-
brane. The Mas domain was predicted to remain anchored in the majority of proteins (A), but cleaved in eight (B). Three trans-
membrane segments were identified in seven proteins and four of these were classified as RDD domains (C, D). Five proteins 
contained an N-terminal coiled-coil region (E), and one, a serine-threonine protein kinase domain (STPK; F).
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terminal region, we have termed the Mas domain, that is
predicted to localize to the extracellular side of the cyto-
plasmic membrane. In each of the Actinomycetales
genomes examined, Mas domain proteins were found
linked to the majority of mce operons. Mas proteins show
absolute phylogenetic congruency with Mkl, DUF140 and
Mce proteins in the genomes of Actinomycetales, providing
evidence that they are involved in Mce transporter func-
tion. Given that Mas domains are not found associated
with all mce operons, their function may not always be
strictly required or they may be shared between operons.
The propensity of Mas homologs to be located in pairs
suggests that they form heterodimers. Such an interaction
would likely keep the predicted secreted Mas proteins
tethered to the cell surface. The domain architectures of
the Mas proteins suggest that the conserved domain plays
an accessory ligand-binding role.

Several studies have shown that the γ-proteobacterial mce
loci play a role in determination of structural properties of
the cell envelope, which in pathogenic species affects
invasive activity. In Pseudomonas putida, a transposon
insertion within the DUF140-Mce-associated ttg2A
ATPase (PP0958) renders the cells sensitive to toluene
[53]. In addition to toluene degradation and efflux, tolu-
ene tolerance is known to be mediated by increased cell
membrane rigidity resulting from changes in fatty acid
and phospholipid composition [54]. In Shigella flexneri,
mutations in the vpsABC locus (S_3453-51), encoding an
ABC transporter with the ATPase-DUF140-Mce configura-
tion, result in a defect in intercellular spread through epi-
thelial cell monolayers, altered colony morphology,
increased sensitivity to detergent lysis and hypersecretion
of both Sec-dependent and TypeIII-dependent virulence
proteins [55]. Carvalho et al. have reported that in Campy-
lobacter isolates, presence of iamA, the ATPase gene of the
mce operon (Cj1646-48), correlated with an invasive phe-
notype [56], although, this association remains controver-
sial [57-59]. In Neisseria meningitidis the mce-like operon,
gltT (NMB1966-64), belongs to the GdhR regulon, which
is expressed at higher levels in invasive versus commensal
isolates, and is particularly elevated in hypervirulent line-
ages [60].

Comparable function has been attributed to the M. tuber-
culosis mce1 operon. The prototypical Mce protein, M.
tuberculosis Mce1A, conferred invasive ability upon E. coli
and an M. bovis BCG mce1A mutant exhibited impaired
invasion of epithelial cells [1,61]. Moreover, an M. tuber-
culosis mce1 operon mutant has been shown to have an
overabundance of free mycolic acids in the outer lipid
layer (S. Cantrell, personal communication), supporting
the proposition that mce1 and related operons play a role
in remodeling the cell envelope. The presence of mce oper-
ons in Gram-negative bacteria and Actinomycetales genera

that possess a somewhat analogous outer lipid bilayer
raises the possiblity that the mce operons are involved in
maintenance of outer membrane integrity. However, their
presence in other Actinomycetales with typical Gram-posi-
tive type cell envelopes appears to preclude this hypothe-
sis. In addition, the absence of mce operons in
Corynebacterium species indicates that their function is not
essential for maintenance of an outer lipid bilayer.

Based on a stated similarity of the ATPase component to
GluA of Corynebacterium glutamicum, Meidanis et al. [62]
proposed that the Xylella fastidiosa mce-like operon
(XF0421-19) encoded a glutamate importer. It was subse-
quently shown that a mutation within the homologous N.
meningitidis gltT operon resulted in impaired glutamate-
specific uptake at low sodium concentrations [63]. Gluta-
mate is a prominent constituent of peptidoglycan; thus,
disruption of its uptake in the proteobacterial mce operon
mutants could perhaps account for the observed effect on
cell envelope properties. Also relevant in this respect, is
the conserved location of the peptidoglycan biosynthetic
gene, murA, downstream of the Mce transporter genes in
γ-Proteobacteria.

Homologs of the Mkl, Mce and DUF140 proteins have
also been identified in plants [64]. The Arabidopsis
homologs of DUF140 (TGD1, At1g19800) and Mce
(TGD2, At3g20320) both localize to the inner plastid
membrane, with the Mce domain located in the intra-
membrane space. Lipid binding studies demonstrated
that TGD1 specifically bound 1,2-diacyl-sn-glycerol 3-
phosphate (phosphatidic acid). TGD1 and TGD2 mutants
exhibited identical phenotypes consistent with disruption
of transport of ER-derived phosphatidic acid into chloro-
plasts, suggesting the TGD proteins form part of a lipid
translocator [65-67].

Orthologous ABC transporters are expected to be func-
tionally equivalent [13-15], thus the proposal of both
phosphatidic acid and glutamate as possible substrates of
the Mce transporters is puzzling. It is noteworthy that in
sequence analyses, by us and others, the Mkl-like ATPases
are not closely related to GluA [8]. If the bacterial Mce
homologs have phospholipid binding function, equiva-
lent to TGD1, this might enable interaction with host cell
membranes and explain the invasive phenotype associ-
ated with the mce loci. It is generally accepted that host-
derived lipids are the primary source of carbon utilized by
M. tuberculosis in vivo [68]; however no mechanism of
lipid import has been identified. Thus it is enticing to
hypothesize that the Mce transporters might perform this
role. Inclusion of the fatty-acyl CoA synthetase, fadD5, in
the mce1 operon and repression of the operon by a FadR-
like regulator, lends some support to this conjecture [45].
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The canonical eight-gene mce operon has undergone
extensive proliferation and deletion events within certain
Actinomycetales lineages, most notably in Mycobacterium
and Nocardia species. The simplest explanation for the
presence of multiple mce operons is that it facilitates ele-
vated expression. However, evidence from transcriptional
analyses of M. tuberculosis suggest that, at least in this
organism, the operons are not co-regulated [69-72]; in
addition, three of the four operons are associated with
transcriptional regulators [45,73]. In competitive mouse
infections, Sassetti and Rubin [6] found that an mce1
mutant exhibited a growth defect during the first 1–2
weeks of infection, whilst an mce4 mutant showed atten-
uation 3–4 weeks after inoculation. These observations
support the proposition that the operons function at dif-
ferent stages of infection. Differential expression of the
individual Mce transporters may reflect optimization for
substrate uptake under differing conditions, such as in the
low sodium intracellular environment; alternatively, they
might have varying substrate specificities.

The number of mce operons in individual species appears
to reflect the variety of environmental niches inhabited.
Thus, the fast-growing, typically soil-dwelling, Mycobacte-
rium species possess the greatest number, with polycyclic
aromatic hydrocarbon-degrading species, isolated from
bioremediation sites, containing the most [74]. In con-
trast, the host-specialized, slow-growing pathogenic spe-
cies possess fewer operons, and the obligate intracellular
pathogen, M. leprae, encodes a single complete mce
operon. A high degree of sequence similarity indicates
that the mce1 operon duplicated to create mce2 relatively
recently. In M. tuberculosis complex strains, mce frameshift
mutations are found conspicuously in these two operons:
of the five described in this paper, four are in mce2 and the
fifth is in mce1. This pattern may reflect the functional
divergence of the mce1 and mce2 operons.

With the exception of mycolic acids, the distribution of
morphological and chemotaxonomic traits within the
Actinomycetales is polyphyletic [75]. Given the incongru-
ent taxonomic distribution of the mce operons and their
proposed role in integrity of the cell envelope, it is perti-
nent to note that presence of mce operons does not corre-
late with type of peptidoglycan, menaquinones,
phospholipids or fatty acids in the cell envelope [75,76].
In addition, there is no correlation with oxygen require-
ment, habitat or pathogenicity.

Conclusion
The available evidence suggests that the mce operons
encode a novel subfamily of ABC transporter uptake sys-
tems comprised of DUF140 permease components, Mce-
like substrate-binding proteins, and Mkl-type ATPase
domains. Disruption of mce operons, in both Actinomyc-

etales and Gram-negative bacteria, affects properties of the
cell envelope and associated virulence phenotypes of
pathogenic species. Empirical studies have implicated
both glutamate and phosphatidic acid as substrates of
mce-like transporters; thus, although the precise substrate
specificity of the M. tuberculosis Mce transporters remains
uncertain, we conclude that it is likely to be an organic
acid precursor of cell envelope biogenesis.

Methods
Databases
Gene annotations and protein sequences were obtained
from the publicly available databases: UniProt [77,78];
TIGR Comprehensive Microbial Resource (CMR) [79,80];
NCBI Microbial Genome Project [81]; Joint Genome
Institute Microbial Genomics Database [82]; and Tuber-
cuList [44]. Sequences are referred to by the ordered locus
name provided in these databases. Protein classification
was informed by interrogation of conserved domain and
motif databases: InterPro (IPR) [26,83], Pfam (PF)
[27,31], TIGRFAM (TIGR) [28,79], and PROSITE (PS)
[84,85]. The ABC transporter classification database,
ABCISSE, was also consulted [29].

BLAST analyses
Sequence similarity searches were performed by BLASTP
against complete microbial genome sequences deposited
in the TIGR-CMR and NCBI Microbial Genome Project
databases [79,81,86]. To determine whether the EExDA
motif identified in YrbE proteins was uniquely character-
istic of the DUF140 family, we performed a BLASTP
search of NCBI Microbial Genome Project with the Actin-
omycetales YrbE consensus motif
(PLVTGLALAGAGGAAITADLGARRIREEIDALEVMGID-
PISRLVVPR) using the default parameters, except with no
filter and expect threshold of 100. To identify homologs
of the M. tuberculosis Mas domain, each of the eight
sequences was used in a PSI-BLAST query against the
NCBI non-redundant database [87]. We used an inclusion
threshold of P < 10-5 and the scores were adjusted with
composition-based statistics; these parameters resulted in
convergence after 6–8 iterations.

Multiple alignment and phylogenetic analyses
Phylogenetic analyses were conducted using the MEGA
version 3.1 suite of programs [88]. Multiple alignments
were constructed by CLUSTAL-W using the Gonnet weight
matrix and default gap penalties [89]. Unrooted trees were
computed by the neighbor-joining method. The consen-
sus tree, after 500 bootstrap replicates, was displayed
graphically with Tree Explorer. In addition, CLUSTAL-W
alignments were converted to PHYLIP format and trees
computed by the maximum likelihood method imple-
mented by PROML using default parameters [90]. In all
cases this resulted in a tree with topology that was essen-
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tially the same as the neighbor-joining tree generated by
MEGA. Percentage pairwise similarity scores were calcu-
lated by CLUSTAL-X [91].

Identification of conserved motifs
The MEME server was used to discover highly conserved
sequence motifs within groups of homologous proteins
[92,93]. Motifs were displayed graphically using WebLogo
[94,95].

Secondary structure and topology prediction
Groups of aligned orthologs were submitted to JPred [96],
a consensus secondary structure prediction server, that
provides improved accuracy over single sequence predic-
tion methods [97]. Comparison of predictions between
orthologous clusters by visual inspection allowed estima-
tion of the consensus structure for a homologous family.
Coiled-coils were predicted using the Lupas COILS algo-
rithm through the JPred server [98].

Protein sequences were analyzed by SignalP and TatP to
identify Sec- and Tat-dependent signal sequences
[38,39,99]. The reliability of prediction of transmem-
brane helices and topology of proteins increases when dif-
ferent methods are combined [100]. Hence, we submitted
sequences to TMHMM [101,102], HMMTOP [103,104]
and TopPred [105,106], and determined the consensus
prediction by manual comparison.
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