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Abstract

Background: Increased focus surrounds identifying patients with advanced non-small cell lung
cancer (NSCLC) who will benefit from treatment with epidermal growth factor receptor (EGFR)
tyrosine kinase inhibitors (TKI). EGFR mutation, gene copy number, coexpression of ErbB proteins
and ligands, and epithelial to mesenchymal transition markers all correlate with EGFR TKI
sensitivity, and while prediction of sensitivity using any one of the markers does identify
responders, individual markers do not encompass all potential responders due to high levels of
inter-patient and inter-tumor variability. We hypothesized that a multivariate predictor of EGFR
TKI sensitivity based on gene expression data would offer a clinically useful method of accounting
for the increased variability inherent in predicting response to EGFR TKI and for elucidation of
mechanisms of aberrant EGFR signalling. Furthermore, we anticipated that this methodology would
result in improved predictions compared to single parameters alone both in vitro and in vivo.

Results: Gene expression data derived from cell lines that demonstrate differential sensitivity to
EGFR TKI, such as erlotinib, were used to generate models for a priori prediction of response. The
gene expression signature of EGFR TKI sensitivity displays significant biological relevance in lung
cancer biology in that pertinent signalling molecules and downstream effector molecules are
present in the signature. Diagonal linear discriminant analysis using this gene signature was highly
effective in classifying out-of-sample cancer cell lines by sensitivity to EGFR inhibition, and was more
accurate than classifying by mutational status alone. Using the same predictor, we classified human
lung adenocarcinomas and captured the majority of tumors with high levels of EGFR activation as
well as those harbouring activating mutations in the kinase domain. We have demonstrated that
predictive models of EGFR TKI sensitivity can classify both out-of-sample cell lines and lung
adenocarcinomas.

Conclusion: These data suggest that multivariate predictors of response to EGFR TKI have
potential for clinical use and likely provide a robust and accurate predictor of EGFR TKI sensitivity
that is not achieved with single biomarkers or clinical characteristics in non-small cell lung cancers.
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Background

Small molecule tyrosine kinase inhibitors (TKI) of the epi-
dermal growth factor receptor (EGFR) can induce both
tumor regression and disease stabilization when used as
second line therapy in patients with advanced non-small
cell lung cancer (NSCLC) [1-3]. Mutations in the tyrosine
kinase domain of EGFR were observed in patients that
responded to EGFR TKIs. Cell lines harboring mutated
EGFR are dependent on EGFR for survival since inhibition
of EGFR using TKIs, monoclonal antibody C225 or RNAi
knockdown results in apoptosis [4-8].

While substantial data now exists that mutations in the
tyrosine kinase domain of EGFR are associated with
increased sensitivity to EGFR TKI, mutation in EGFR was
not found to correlate with response to erlotinib in the
BR21 trial [9]. More recent reports have suggested that
increased EGFR gene copy number, co-expression of other
ErbB receptors and ligands, and epithelial to mesenchy-
mal markers are important in determining sensitivity to
EGFR TKI [10-13]. There are conflicting reports about the
role of RAS mutation and subsequent signalling in
response to EGFR TKI [2,10,12]. In addition, identifying
patients who may clinically benefit from EGFR TKI other
than through overt tumor response remains unclear.
Importantly, tumor regression has been observed with
these agents in patients that did not have identifiable
EGFR mutations, suggesting other mechanisms, such as
activation of parallel signalling pathways, underlie
responsiveness to these agents [8,14-16]. Therefore, the
clinical decision on how best to choose patients for EGFR
TKI remains an important and ongoing dilemma.

Development of molecular profiles as predictive measures
of outcome or response to therapy has increased signifi-
cantly since the advent of large-scale genomic and pro-
teomic approaches for classification of cancers [17].
Microarray technology allows for interrogation of large
numbers of genes that encompass variability found in
biological conditions. However, methods of data analysis
and modelling are hampered by the data itself in that it
involves significantly more data points than experiments
primarily due to the cost associated with performing
many replicates [18,19]. Thus, building predictive profiles
of clinical outcome or therapeutic response in non-small
cell lung cancers using large-scale genomic data is a daunt-
ing process, but may be necessary for improving patient-
targeted therapy.

We developed a novel methodology using both bioinfor-
matics approaches and supervised learning methods to
model sensitivity to EGFR inhibitors with gene expression
data from lung cancer cell lines. Cell lines were chosen as
tumor surrogates for ease of handling, the ability to assay
EGFR and downstream signalling events by biochemical
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methods, and the capacity to test inhibitors in a control-
led environment. The predictive models were subjected to
extensive leave-one(or a group)-out cross-validation as
well as out-of-sample validation using gene expression
data from additional cell lines and human tumors. The
predictive models described here are both robust and
accurate predictors of response which exceed the capacity
of single parameters alone in NSCLC cell lines. Our data
suggest that this finding may be translated to in vivo
tumors with similar value.

Results

Identification of sensitive and resistant cancer cell lines
Using lung cancer cell lines as tumor surrogates, we
sought to find gene expression patterns that can predict
the sensitivity to EGFR tyrosine kinase inhibitors. Pub-
lished data, and our own, demonstrate that lung cancer
cell lines are differentially sensitive to EGFR inhibitors,
likely reflecting dependency upon EGFR or related signal-
ling pathways [20]. We identified lung adenocarcinoma
cell lines sensitive to a representative EGFR TKI, erlotinib,
by DNA content analysis using propidium iodide stain-
ing. Apoptosis was assayed by quantifying the sub-G1
peak following propidium iodide staining and FACS anal-
ysis in cells treated with 1 uM erlotinib for 72 hours or
DMSO control (Figure 1). Several cell lines tested were
sensitive to treatment with 1 uM erlotinib and these data
are consistent with the findings of others [13,20]. We
selected the A549 and UKY-29 cell lines for the drug-
resistant training group, and the H1650, H3255, and PC-
9 cell lines for the drug-sensitive training group.

Sequence analysis of EGFR and K-Ras genes

Since EGFR and K-Ras mutational status are thought to
correlate with sensitivity and resistance to EGFR TKIs,
respectively [21], we characterized the mutational status
of EGFR and K-Ras in the cell lines. The status of K-Ras
and EGFR has been previously determined in all of the cell
lines used, except lung adenocarcinoma cell line UKY-29,
isolated at the University of Kentucky. We performed
direct DNA sequencing to identify mutations in EGFR
exons 18-21 as well as K-Ras exons 1 and 2 in the UKY-29
cells as previously described [22,23]. The UKY-29 cells are
wildtype for EGFR and harbour a mutation (G61H) in
exon 2 of K-Ras which has been observed in other NSCLC
tumors and cell lines. A summary of the cell line data is
shown in Table 1.

Microarray analysis and feature selection

Based on the observation that cancer cell lines and tumors
are selectively susceptible to inhibition of the EGFR sig-
nalling pathway and that sensitivity may not be directly
correlated to EGFR mutation or amplification in all cases,
we sought to identify a gene expression signature that is
predictive of EGFR TKI sensitivity. Using independent rep-
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Sensitivity to erlotinib in cell lines. Sensitivity to EGFR
tyrosine kinase inhibitors was determined by treating cells
with | uM erlotinib for 72 hours under serum-starved condi-
tions. Apoptosis was assessed by integration of the sub-G,
peak and compared to cells treated with equal volume of
vehicle (DMSO). Experiments were repeated in triplicate

with error bars representing standard deviation. 7’1\*7 :
denotes statistical significance (p < 0.05, two sided t-test for
unequal variances).

licates of drug-resistant cell lines (n = 11) and drug-sensi-
tive cell lines (n = 14), we generated gene expression data,
and using both bioinformatics and statistical analyses
identified a set of genes that predict sensitivity to EGFR
TKI, outlined in Figure 2 [see Additional Files 1 and 2].
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Specifically, gene expression data generated from Affyme-
trix U133A arrays was filtered based on present/absent
calls and BLAST sequence alignment. The 12,019 remain-
ing probe sets were analyzed by Significance Analysis for
Microarrays (SAM), resulting in 1495 differentially-
expressed genes between the two groups, with a very low
false discovery rate (0.025%) [24]. We wished to focus on
genes found primarily to function in signalling transduc-
tion in order to minimize noise from genes that are less
likely to be responsible for differences in EGFR TKI sensi-
tivity. To accomplish this, we annotated the list of 1495
differentially expressed genes using GATHER, a web-based
gene ontology algorithm which detects enrichment of GO
terms at all levels within a submitted list of genes [42]. In
the GATHER algorithm, p-values represent the probability
of the term being similarly enriched in a randomly gener-
ated list of genes of identical size. A number of GO terms
were significantly enriched within the 1,495 gene list,
including signal transduction (GO:0007165, level 4, p <
0.0001), G-protein coupled receptor protein signalling
pathway (GO:0007186, level 6, p < 0.0001) and cell sur-
face receptor linked signal transduction (GO:0007166,
level 5, p < 0.0001), consistent with the hypothesis that
altered signalling cascades may represent a significant pro-
portion of the variability in EGFR TKI response. We
selected only those genes which were annotated under sig-
nal transduction (GO:0007165, level 4) to constitute a
signature of EGFR sensitivity.

After GATHER annotation, 223 probesets remained, and
several of these probesets were redundant with respect to
their target gene. To minimize bias in subsequent analy-
ses, we kept only the most significant of the redundant
probesets. When all filtering steps were complete, we

Table I: Characterization of cell lines used in training and validation

Affymetrix UI33A chips

Cell Line Type Sensitivity to EGFR TKI K-Ras Status (n) in training  (n) in validation EGFR Status
Training A549 AC No Mutant (Codon 12) 8 N/A Wt !
UKY-29 AC No Mutant (Codon 61)! 3 N/A Wt !
HI1650 AC Yes Wt 6 N/A Mutant (DelE746-A750)!
PC-9 AC Yes Wt 5 N/A Mutant (DelE746-A750)!
H3255 AC Yes Wt 3 N/A Mutant (L858R) !
Validation H358 AC Yes Mutant (Codon 12) 0 | Wt!
H460 Large Cell No Mutant (Codon 61) 0 | Wt!
HI1975 AC No Wt 0 | Mutant (L858R, T790M) !
K562 CML No Wt 0 | Wt!
A431 Epidermoid Yes Wt 0 | Wt (Amplified)!

I Assayed in this study
AC: Adenocarcinoma
CML: Chronic Myelogenous Leukemia
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Figure 2
Feature selection and bioinformatics analysis for the 180 gene signature.
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Table 2: Genes 1-50 of the 180-gene signature of EGFR TKI sensitivity

Probeset Gene Description p-value
205891 _at ADORA2B adenosine A2b receptor 1.65347E-12
213434 _at EPIM epimorphin 2.03526E-12
211475 _s_at BAGI BCL2-associated athanogene 1.2089E-1 |
201716_at SNX1 sorting nexin | 1.3942E-1 1
219933_at GLRX2 glutaredoxin 2 2.82157E-11
204513_s_at ELMOI engulfment and cell motility | 2.92588E-1 |
20301 | _at IMPAI inositol(myo)- | (or 4)-monophosphatase | 4.20475E-11
202743_at PIK3R3 phosphoinositide-3-kinase, regulatory subunit 3 (p55, gamma) 4.51605E-11
204491 _at PDE4D Phosphodiesterase 4D, cAMP-specific 8.05036E-11
204000_at GNB5 guanine nucleotide binding protein (G protein), beta 5 8.768IE-11
204115_at GNGI | guanine nucleotide binding protein (G protein), gamma | | 1.02678E-10
218913 _s_at GMIP GEM interacting protein 2.64411E-10
200994_at IPO7 importin 7 2.65447E-10
202286 s_at TACSTD2 tumor-associated calcium signal transducer 2 2.75325E-10
209035_at MDK midkine (neurite growth-promoting factor 2) 7.31553E-10
218995_s_at EDNI endothelin | 7.75626E-10
219855_at NUDTI | nudix (nucleoside diphosphate linked moiety X)-type motif | | 8.77697E-10
209678 _s_at PRKCI protein kinase C, iota 1.04253E-09
202501 _at MAPRE2 microtubule-associated protein, RP/EB family, member 2 2.31343E-09
212117_at RHOQ ras homolog gene family, member Q 3.22134E-09
206277 _at P2RY2 purinergic receptor P2Y, G-protein coupled, 2 3.92313E-09
209295_at TNFRSFI0B tumor necrosis factor receptor superfamily, member [0b 4.33798E-09
205376_at INPP4B inositol polyphosphate-4-phosphatase, type I, 105kDa 4.50987E-09
206722 _s_at EDG4 endothelial differentiation, lysophosphatidic acid GPCR 4 7.96715E-09
205673_s_at ASB9 ankyrin repeat and SOCS box-containing 9 1.24878E-08
201471 _s_at SQSTMI sequestosome | 1.34231E-08
204352 _at TRAF5 TNF receptor-associated factor 5 1.46887E-08
206907_at TNFSF9 tumor necrosis factor (ligand) superfamily, member 9 1.57771E-08
218150_at ARL5 ADP-ribosylation factor-like 5 2.04888E-08
205459_s_at NPAS2 neuronal PAS domain protein 2 2.22961E-08
205455_at MSTIR macrophage stimulating | receptor (c-met-related tyrosine kinase) 2.45512E-08
202641 _at ARL3 ADP-ribosylation factor-like 3 2.78193E-08
201667_at GJAl gap junction protein, alpha |, 43kDa (connexin 43) 2.86113E-08
210512_s_at VEGF vascular endothelial growth factor 2.90316E-08
212104_s_at RBM9 RNA binding motif protein 9 5.42805E-08
200762 _at DPYSL2 dihydropyrimidinase-like 2 5.43168E-08
221235_s_at TGFBRAPI transforming growth factor, beta receptor associated protein | 5.51367E-08
211302_s_at PDE4B phosphodiesterase 4B, cAMP-specific 5.51731E-08
205080_at RARB retinoic acid receptor, beta 7.03586E-08
202266_at TTRAP TRAF and TNF receptor associated protein 7.2889E-08
205240_at GPSM2 G-protein signalling modulator 2 (AGS3-like, C. elegans) 8.30858E-08
213798_s_at CAPI CAP, adenylate cyclase-associated protein | (yeast) 8.61121E-08
221819_at RAB35 RAB35, member RAS oncogene family 8.9216E-08
20701 1_s_at PTK7 PTK7 protein tyrosine kinase 7 9.78716E-08
204255_s_at VDR vitamin D (1,25- dihydroxyvitamin D3) receptor 1.1087E-07
208864 _s_at TXN thioredoxin 1.34274E-07
209885_at RHOD ras homolog gene family, member D 1.50021E-07
201923 at PRDX4 peroxiredoxin 4 1.6148E-07
204392 _at CAMKI calcium/calmodulin-dependent protein kinase | 2.24378E-07
203269_at NSMAF neutral sphingomyelinase (N-SMase) activation associated factor 2.59238E-07

* Genes 51-180 are included [see Additional File 3]
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identified a 180-gene signal transduction-oriented expres-
sion signature of EGFR sensitivity (genes 1-50, Table 2,
genes 51-180) [see Additional File 3]. The genes con-
tained within the signature were re-annotated on higher
levels of GO in to more precisely characterize the biologic
roles of these genes that are differentially expressed in
EGFR TKI sensitive cells. Using GATHER's GO pathway
analysis, we found significant deregulation of the NFkB/
IkB signalling cascade (15 genes, GO:0007249, level 7, p
< 0.0001). Interestingly, KEGG pathway analysis of the
180-gene predictor revealed significant enrichment of
pathways known act downstream of EGFR, including the
MAPK signalling pathway (16 genes, p = 0.0001) and the
phosphotidylinositol signaling pathway (9 genes, p =
0.00006) [see Additional File 4].

We also queried for significant enrichment of transcrip-
tion factor binding sites among the 180-gene signature
using TRANSFAC via GATHER. The genes clustered into
three interesting and significant classes of DNA-binding
domains: c-Myc/Max complex binding sites (112 genes, p
< 0.0005), E2F1 sites (143 genes, p = 0.003) and Tax/
CREB sites (22 genes p = 0.0002) [see Additional File 5].

Internal and external validation using diagonal linear
discriminant analysis

Diagonal linear discriminant analysis (DLDA) was per-
formed on the 180-gene signature of EGFR sensitivity
because this methodology performs well in classification
problems concerning gene expression data [25]. For each
unknown subject, DLDA calculates the distance of the
unknown to average subject in each group of the training
set with respect to the common diagonal covariance
matrix. The unknown is then classified into the closest

group.

The model was trained using the H1650 (n = 6), PC-9 (n
=5), and H3255 (n = 3) cell line samples as the sensitive
group and the UKY-29 (n = 3) and A549 (n = 8) samples
as the resistant group. The replicate measurements from
each cell line were treated as independent samples by the
subsequent algorithms to identify differentially expressed
genes and build the discriminatory training model. We
tested multiple predictive models, including the 10 and
50 most significantly deregulated genes (Table 2) of the
180-gene signature to determine the robustness of the pre-
dictor.

We performed a leave-one-out cross validation of the
DLDA function. We assumed that one chip in the training
set was an unknown, then performed the complete analy-
sis based on the remaining chips, beginning with the ini-
tial filtering steps. This was performed for each chip of the
initial training set in turn. Specifically, each time a chip
was removed from the training set the following steps
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were performed; presence/absence call filtering, SAM
analysis on the newly filtered data set, with the same
delta-threshold used in the complete analysis training set,
gene ontology filtering, redundant probesets were
removed, the diagonal linear discriminate function was fit
from the remaining 24 chips, and then EGFR TKI sensitiv-
ity of the removed chip was predicted based on the newly
fit diagonal linear discriminate function. This was per-
formed using the top 10 and 50 genes in each iteration, as
well as the full gene list (range: 171-208 genes). Leave-
one-out cross validation yielded a 0% misclassification
rate. Likewise, we also performed a leave-a-group-out
cross-validation in which an entire cell line set was
removed and the model was iteratively rebuilt. This
approach resulted in correct predictions for PC-9, H3255,
UKY29, and H1650 samples but incorrectly classified 3 of
the 8 replicates of A549 (88% accuracy) (data not shown).

To address the potential for bias due to unequal replicates
used in the 180-gene model, a second predictive model of
EGFR TKI sensitivity was trained using equal numbers of
training data: the resistant group contains cell lines H460,
A549, and UKY29 while the sensitive group contains cell
lines H3255, PC-9, and H1650 using three replicates
measurements for each line. The new model contains a
169-gene signature, 111 of these genes are in common
with the 180-gene signature. The 10-, 50- and 169-gene
models predict the validation cell lines identically and the
tumor samples similarly as the 10-, 50-, and 180-gene
models, with the exception of the A431 cell line in the 10-
gene model [see Additional File 6]. That said, we will con-
tinue to use the 180-gene signature as it allows us the sta-
tistical power of all of our training data in the
construction of the predictive model of EGFR TKI sensitiv-

ity.

The 180-gene models were then externally validated using
a set of cell lines not used in training the model of EGFR
TKI sensitivity. The characteristics of the cell lines
included for external validation are found in Table 1. The
K562 line was chosen as a negative control as it is a cancer
cell line dependent on BCR-Abl expression to test if our
predictor was, in fact, recognizing non-specific depend-
ence on any activated kinase. The 10-, 50-, and 180-gene
models were used to classify all cell lines. The models clas-
sified all samples correctly, with the exception of the UKY-
29 sample in the 10-gene model and the H1975 cell line
in all 3 models (see discussion). Additionally, we com-
pared our genomic predictor (gene signatures and DLDA)
to predictions based on mutational status alone, assum-
ing sensitivity in the presence of exon 19 or 21 mutations,
or resistance in the absence of EGFR mutations, or pres-
ence of an exon 20 mutation. Results are shown in Table
3. To assist the reader in reproducing the DLDA analysis
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Table 3: Diagonal linear discriminant analysis of NSCLC cell lines
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Predicted sensitivity to EGFR TKI

Cell Line  Experimental Sensitivity to Prediction based on analysis of Genomic signature/DLDA
EGFR TKI (erlotinib) mutational status alone (Exons 18-21)
10-genes 50-genes 180-genes

Training  A549 No v A v \

UKY-29 No v v J

H1650 Yes V V V J

PC-9 Yes v \/ x/ S

H3255 Yes v v v x/
Validation H358 Yes v v J

H460 No V V V J

H1975 No \

K562 No v v v J

A431 Yes V V V

% Correct 80% 80% 90% 90%

Predictions of EGFR TKI sensitivity are denoted for ten cell lines used in training/validation. Column 2 demonstrates experimental sensitivity to an
EGFR TKI, erlotinib (Table ). Column 3 demonstrates prediction of sensitivity using mutational status of EGFR. Columns 4—6 denote prediction of
sensitivity of the cell lines using the 10, 50, and 180 gene signatures in DLDA. V: denotes correct prediction based on experimental sensitivity to
EGFR TKI. *: Leave-a-group-out cross-validation incorrectly predicts 3 of 8 replicates of this cell line.

described above, a Sweave script has been included [see
Additional File 7].

To further assess the predictive accuracy of our model, we
analyzed a NSCLC cell line dataset assayed on Affymetrix
U133A microarrays from Girard and colleagues
(GEO#GSE4824). These data include 14 lung cancer cell
lines, of varied histologies, which were not included in
our training model-Calu.3, H1299, H157, H1648,
H2009, H2126, H820, HCC15, HCC2279, HCC4006,
HCC44, HCC78, HCC827, and HCCY5. Because NSCLC
cell lines have a broad range of sensitivity to EGFR TKI, we
chose an IC;, threshold of 2 uM to EGFR TKI as deter-
mined in Bunn et al for these 14 cell lines. Our genomic
model of EGFR TKI sensitivity correctly classified 64% of
the lines [26]. Increasing the threshold to 3 pM adds an
additional correctly predicted sample (71%).

Independent external validation on resected lung
adenocarcinomas

Given the accurate classification of the cell line data, we
hypothesized that the signature of EGFR sensitivity
should correctly classify resected tumors, and would result
in appropriate predictions of response to EGFR TKIs in
vivo. Two collections of resected adenocarcinomas, previ-
ously subjected to microarray analysis, were used to vali-
date the predictive models of 10, 50, and 180 genes.
Tumor samples obtained from H. Lee Moffitt Cancer

Center and Research Institute (Tampa, Fl) were used for
hybridization to Affymetrix U133A arrays and assayed by
immunohistochemical (IHC) methods, scoring for phos-
phorylated EGFR (pEGFR) as previously reported [27].
Since persistently activated EGFR (pEGFR) may reflect
underlying tumor reliance on EGFR and therefore sensi-
tivity to EGFR TKI [27], we explored the relationship
between classification by DLDA and pEGEFR staining. Of
the 19 tumors, 5 were either pEGFR-negative or exhibited
very low pEGFR signal (<10 on a scale of 0-300) by IHC
staining, while the remaining 14 stained with higher
intensity of pEGFR. When the Moffitt tumors were pre-
dicted by DLDA, 4, 13, and 10 tumors classified as sensi-
tive in the 10-, 50-, and 180-gene predictors respectively.
Of the tumors that classified as sensitive, 100%, 92%, and
90%, respectively displayed higher degrees of pEGFR
staining (>10). Of those tumors that were predicted to be
resistant, 33%, 66% and 44% exhibited low levels or no
pEGFR staining (<10), respectively [see Additional File 8].
Tumor classification for the three models as well as IHC
scoring is presented in Figure 3, panel A.

Because mutational status of EGFR has been shown in
select studies to correlate with tumor response to erlotinib
and gefitinib [15,28], we chose to further validate our
model on a series of resected adenocarcinomas for which
mutational status, as well as pEGFR status was known.
Adenocarcinomas from the Duke lung cancer cohort were
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Figure 3

Classification of two independent collections of resected adenocarcinomas. Panel A: Tumors samples banked at H. Lee Moffitt
Cancer Center and Research Institute were used for extraction of total RNA for probe preparation and hybridized to UI33A
arrays. IHC scoring was performed as previously described [27]. Thatched boxes represent predictions of sensitivity. Panel B:
Tumors samples banked at Duke University were used for extraction of total RNA for probe preparation and hybridized to
U133 2.0 arrays. pEGFR scoring is reported on a 4 point scale (0-3+). The presence of activating mutations within EGFR is also
reported. Sensitive predictions are represented by a thatched box.
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used for hybridization to Affymetrix U133 Plus 2.0 arrays,
and these data were imported into our models [29]. We
were able to make predictions of EGFR TKI sensitivity of
the Duke tumors using DLDA. We found that the 10-, 50-
and 180-gene predictors identified 1/6 (17%), 5/6 (83%),
and 5/6 (83%) of the tumors with EGFR mutations as sen-
sitive, respectively. Of those tumors which classified as
sensitive in the 10-, 50-, and 180-gene models, 82%, 78%,
and 77% displayed positive staining for pEGFR, respec-
tively. Of those tumors which were classified as resistant
in the 10-, 50-, and 180- gene models, 24%, 33%, and
25% displayed no pEGFR staining, respectively. Classifi-
cation of the data are shown for the Duke lung adenocar-
cinoma dataset in Figure 3, panel B.

Discussion

The EGFR TKI erlotinib was shown to result in increased
survival in previous clinical trials when used as mono-
therapy in previously treated patients with advanced
NSCLC [30]. Toxicity to erlotinib is markedly lower than
many alternative pharmacologic treatments, and would
clearly be a preferred therapeutic option if survival was
shown to be equivalent or better than treatment with
other second line agents. Since only a fraction of patients
respond to such therapy, a priori identification of respond-
ers could have a vast effect on survival. Many clinical
parameters which have been shown to correlate with
response to EGFR TKIs, including smoking history, gen-
der, ethnicity, and tumor histology. Additionally, EGFR
expression levels, phosphorylation status of EGFR, and
mutations within the kinase domain [22,28,31] also cor-
relate with sensitivity to some degree. While each of these
predictors of response result in some overlap, potential
responders to EGFR targeted therapeutics may be over-
looked. In the same vain, a significant number of patients
selected for treatment with EGFR TKI will fail therapy.
Therefore, we undertook this study with the hypothesis
that a gene expression signature of response will capture
more of the variability within the tumor and improve pre-
diction of EGFR TKI sensitivity than currently preferred
methods. Furthermore, closer examination of the genes
within this signature will allow for greater understanding
of the effects of aberrant EGFR signalling, as well as poten-
tial elucidation of new drug targets.

Using NSCLC cell lines as tumor surrogates and previous
findings as guidance, we sought to train our model by
stratifying cell lines by drug sensitivity. Three sensitive cell
lines were chosen for training data: H3255, PC9, and
H1650. A549 cell line and UKY-29 cell lines were resistant
to treatment and used for training data. The cell lines
resistant to EGFR TKI harbour K-Ras mutations while the
sensitive cell lines used in the training set all harbour
EGFR mutations, as previously reported, and this finding
is consistent with the hypothesis that K-Ras mutations
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and EGFR mutations are mutually exclusive in NSCLC
[21].

Our hypothesis is anchored in the concept that while
many factors correlate with sensitivity to EGFR inhibition,
distinct combinations of signalling pathway deregulation
may underlie the observed phenotype. Therefore, a gene
expression signature capturing this complexity may be a
more accurate predictor of response to EGFR TKI, and we
defined a gene expression signature that utilizes our
knowledge of signal transduction to model the phenotype
of sensitivity.

Approximately 1500 genes were significantly different
between our sensitive and resistant training cell lines, and
while many of these genes may be important in our phe-
notype of response, we reasoned that a significant portion
may be artifacts of two-dimensional growth and cell cul-
ture conditions. We filtered the 1500 differentially-
expressed genes based on ontological annotation, allow-
ing us to focus our signature on those genes which are
important for cell signalling and are more likely to influ-
ence response to inhibition of the EGFR signalling cas-
cade. To our knowledge, this is a novel approach to
feature selection within a predictive gene signature study.
A limitation of this approach is that genes which may con-
tribute to pharmacokinetic variability such as transporters
and metabolic enzymes would be omitted from the signa-
ture. Furthermore, markers of epithelial to mesenchymal
transition (EMT), which have been shown to correlate
with sensitivity to EGFR TKI [12,13] are not present in our
final predictive signature due to the filtering by gene
ontology. It is of note that the SAM analysis identified sev-
eral EMT genes as differentially expressed within the
1500-gene training data set, such as vimentin, E-cadherin,
and B-catenin (data not shown).

We defined a set of 180 features which represent differen-
tially expressed genes that exhibit enrichment in signal
transduction functions between EGFR-inhibition sensi-
tive and EGFR inhibition-resistant cell lines, including a
number of previously identified oncogenes such as Src, B-
Raf, and PI3K that function downstream of EGFR activa-
tion. EGFR itself was identified as significantly deregu-
lated and is consistent with the observation that EGFR
expression may correlate with sensitivity [32].

GATHER allowed us to interrogate KEGG pathways in
analysis of the genes included in the 180-gene signature
and identified deregulation within the PI3K and MAPK
pathways between sensitive and resistant cell lines. Inter-
estingly, both of these pathways are downstream of EGFR,
providing further evidence of their importance in NSCLC.
Consistent with this finding, several subunits of PI3K were
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found highly-expressed in the EGFR TKI sensitive cells,
including both the catalytic and regulatory subunits.

Analysis of transcription factor binding elements using
GATHER also identified strong commonalities among the
genes included in the signature. The high proportion of
the genes are likely regulated by the E2F-family of tran-
scription factors and/or c-MYC/MAX transcription factors
suggesting common regulatory mechanisms may lead in
to the phenotypic difference of EGFR TKI-sensitive and -
resistant cells. Importantly, both activating E2Fs and Myc
are recognized as essential cell cycle regulators and bind to
promoters of genes important for driving cellular prolifer-
ation [33].

Many of the 180 features of our EGFR signature represent
genes, described above, that were observed to have large
differences with low variability in our system. Since our
leave-one-out cross-validation yielded a 0% misclassifica-
tion error, there may be concern that over-fitting of the
model has occurred. A full leave-one-out cross validation
(i.e. features are reselected and model parameters are
rebuilt at each iteration) is a stringent and relatively unbi-
ased estimate of the model building algorithm error
[34,35]. However, to ensure that the treatment of replicate
cell line samples as independent samples in our model
did not result in cross-validation bias, we performed addi-
tional internal validation experiments. Subsequent cross-
validation was performed in which the entire data from
each cell line was removed (features were re-selected and
weights were recalculated based on the data from only 4
cell lines, and the samples from the 5t cell line were pre-
dicted using the new model). This method of cross-valida-
tion yielded a high degree of accuracy as well in that all
cell lines predicted correctly, with the exception of 3 of 8
A549 samples (data not shown). We also constructed a
second predictive model of EGFR TKI sensitivity using bal-
anced numbers of replicates in both training classes. We
found that although 111 genes of the resulting 169-gene
model were common to the 180-gene signature the result-
ing model did not exactly replicate the classifications of
the 10-, 50-, and 180-gene models. The differences could
be due to a lack of statistical power in the second model
or by utilizing all of the replicate measurements for the
training cell lines. Thus, we may observe an artificial
increase in our statistical power by using the 180-gene pre-
dictive model of EGFR TKI sensitivity.

We assessed the ability of this model to predict additional
sets of gene expression data. To independently validate
the signature, we used DLDA to classify cell lines that were
not included in training the models. Additionally, we
assessed the variability in predictive strength using multi-
ple models. We found that predictions based on the most
statistically significant 10 or 50 genes were similar to
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those made with the full data set. However, 10-gene
model resulted in misclassification of both the UKY-29
and H1975 samples. This finding underscores the impor-
tance of including enough features in the model to
account for variability found in the biological system of
interest, a lung adenocarcinoma. Interestingly, the H1975
sample is seemingly misclassified in the 50- and 180-gene
models as well, as this cell line harbours a second muta-
tion in exon 20 that has been shown to confer resistance
to the EGFR TKI gefitinib and erlotinib [23]. Importantly,
however, recent reports have shown that the irreversible
inhibitors of EGFR such as CL-387, 785 overcome this
resistance [36]. Therefore, the double-mutant H1975 cell
line, although insensitive to gefitinib and erlotinib,
retains reliance on EGEFR signalling pathways, providing
an explanation for its classification using our models [37].
Furthermore, when compared to predictions based on
mutational status alone, the genomic predictors (50- and
180-gene models) perform better in determining a priori
sensitivity (Table 3).

We carefully selected the cell lines used as a validation set
to ensure that our model was predictive of EGFR TKI sen-
sitivity and not mutational status alone. The H358 aden-
ocarcinoma cell line harbours a K-Ras mutant and no
EGFR mutations, yet our predictor and data of others [13]
identify this cell line as sensitive to EGFR inhibition. Fur-
thermore, the A431 cell line was not derived from a lung
adenocarcinoma, has both wildtype EGFR and K-Ras alle-
les, and is exquisitely sensitive to EGFR inhibition. How-
ever, K562 cell line is derived from a CML blast crisis
patient, is wild-type for both EGFR and K-Ras, and is
highly resistant to EGFR TKI. All three of these cell lines
classify correctly and consistently among the 10-, 50-, and
180-gene predictors.

To strengthen confidence in our 180-gene model, we
tested an independently derived set of NSCLC cell line
microarray data that thus far is unpublished (Girard, GEO
# GSE4824). Our signature correctly classified 64-71% of
the cell lines, depending on ICs, threshold selection of
resistance to EGFR TKI as determined in Bunn et al [26].
Of the four cell lines from the Girard set that were incor-
rectly predicted using our model, two were not of adeno-
carcinoma origin-H1299 (large cell carcinoma) and H157
(squamous cell carcinoma). Our predictor of sensitivity
was trained using cell lines of adenocarcinoma origin and
may then be more accurate when using similar data. That
said, utilizing additional training data from cell lines of
varied NSCLC histologies will likely improve the model
for clinical use.

Finally, we assessed the ability of the predictive models to
classify lung adenocarcinoma tumors. In the absence of
clinical outcome or survival data from a prospective trial,
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we identified two datasets to which reasonable proxies for
EGEFR signalling and TKI sensitivity were available. These
data included a set of 19 adenocarcinomas for which
phosphorylated EGFR (pEGFR) was assessed using THC
and a set of 40 adenocarcinomas for which both pEGFR
and EGFR mutational status was assessed. Classification
based on 50 or 180 genes remained relatively constant
demonstrating robust predictive power. Furthermore,
classification of the tumors using 50- and 180-genes mod-
els identify a majority of the pEGFR positive samples in
both datasets, as well as capturing 5 of 6 EGFR mutants in
the Duke tumor dataset.

We identified several tumors in both the Moffitt and Duke
datasets that demonstrate no detectable expression of
PEGFR but classify as EGFR TKI sensitive using the predic-
tive gene expression model. It is possible that IHC analysis
is less sensitive than classification using the gene expres-
sion profile and is also dependent on sections stained and
phospho-specific antibody used. That said, the tumors
harbouring low levels of pEGFR predicted to be sensitive
to EGFR TKI might possess deregulation of parallel signal-
ling pathways that result in a gene expression phenotype
that closely resembles activation of EGFR, and accord-
ingly, these patients classify as sensitive to EGFR TKI.

We classified 83% (5/6) of the Duke cohort that were
EGFR mutants as sensitive to EGFR by gene expression sig-
nature. While the predictor seems to have misclassified
one tumor that harbors mutant EGFR, we note that others
have reported that cell lines with activating EGFR muta-
tions are also insensitive to EGFR TKI, and our predictive
models may have identified a tumor that will not respond
to treatment [10]. Additionally, in non- Japanese popula-
tions screened by EGFR mutational status prior to treat-
ment with gefitinib, the response rate among those
patients with either deletion or point mutation of EGFR
was found to be 75% suggesting that mutation of EGFR is
not sufficient for EGFR TKI sensitivity [38]. Thus, our
tumor classifications accommodate the proportion of
responders found in previous studies and while our
approach may exceed those findings, future validation
depends on comparing classification to response in a clin-
ical study.

Because we did not have the EGFR TKI response data for
the Moffitt and Duke tumor specimens, we used pEGFR
staining and mutation status as surrogates for EGFR sig-
nalling, as described above. Combining both of the tumor
data sets, our predictor of EGFR TKI sensitivity suggests
that 80% of the tumors may be sensitive. Previous studies
found that nearly 50% of patients with advanced stage IV
NSCLC who had previously received cytotoxic chemother-
apy had clinical benefit with EGFR TKI defined as either
overt tumor response (shrinkage) or stable disease [1].
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Since all the Moffitt and Duke tumors were of adenocarci-
noma histology, a known clinical predictor of benefit to
EGFR TK], it is possible that the genomic predictor may
accurately classify sensitivity in this group of tumors. It is
also unclear the difference in EGFR TKI sensitivity
between early stage lung cancers and widely metastatic
cancers that have previously received cytotoxic chemo-
therapy. Studies are underway that address the sensitivity
of early stage lung cancers to EGFR TKI. True assessment
of the accuracy of our gene expression profiles to predict
sensitivity of lung cancers to EGFR TKI will require pro-
spective testing in patients.

Conclusion

The gene expression signature of EGFR TKI sensitivity
exhibits strong biological relevance as it encompasses
many members of the EGFR signalling cascade. The pre-
diction of sensitivity to EGFR inhibitors using DLDA
models was accurate and robust within the cell line data.
Furthermore, the DLDA predictive models suggest
improved prediction of EGFR TKI sensitivity of human
lung adenocarcinomas compared to single biomarkers
alone. Clearly the next step in assessing the ability of this
signature to improve upon existing methods must be
determined in a clinical trial. We anticipate that use of
gene expression predictors could advance patient-targeted
therapy in this area.

Methods

Cell Culture

A549 cells were grown in RPMI 1640 (Invitrogen) with 2
mM L-glutamine containing 10% fetal bovine serum
(FBS) (BioWest), 1.5 g/L sodium bicarbonate, 4.5 g/L glu-
cose, 10 mM HEPES, and 1mM sodium pyruvate (Whit-
taker). H460 and UKY-29 cell lines [39] were generous
gifts from Dr. Val Adams and Dr. John Yannelli, respec-
tively, (University of Kentucky) and grown in DMEM
(Invitrogen) + 10% FBS. H3255 cells were a gift from Dr.
Frederick Kaye (NCI/Naval Medical Oncology, Betheseda,
MD) and were grown in ACL4 media as described previ-
ously [5]. K562 cells were a gift from Dr. Rina Plattner
(University of Kentucky) and were cultured in suspension
in RPMI 1640 and 10% FBS. Human cancer cell lines
H1650, H1975, PC9, H358 and A431 and grown as
described [20,27].

Cell line RNA isolation and Microarray Analysis

Cells were grown to subconfluence and passaged every
three days. On the second day after passage, cell were har-
vested from a 150 mm plate and lysed in Trizol (Invitro-
gen). Total RNA was isolated and used for probe
generation and hybridization to Affymetrix U133A DNA
microarrays. Signal intensity values generated from
Affymetrix MAS v5.0 software was used for statistical anal-
ysis, described below. Independent replicates of A549 (n
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= 8), UKY-29 (n = 3), H3255 (n = 3), PC-9 (n = 5), and
H1650 (n = 6) were generated by using sequential pas-
sages of the cell populations. These replicates were treated
as independent samples by the subsequent algorithms to
identify differentially expressed genes and build the dis-
criminatory training model. One replicate of each A431,
H358, H460, H1975, and K562 was used for validation of
the training model and a single replicate of each of the
training lines omitted from the original models. The
microarray data are available on maduk.uky.edu [see
Additional File 1].

Tumor Acquisition and Microarray Analysis

Duke cohort: After appropriate informed consent and
Duke IRB approval, the analysis used an initial cohort 91
tumor samples obtained from patients with early stage
(Ia/Ib, IIa/IIb and Illa) NSCLC. From the resected lung
specimens, percentage tumor content and histologic type
of each tumor was ascertained before RNA extraction. Of
the 91 RNA samples, 89 were of sufficient quality for gene
expression analysis. Of the 89 samples, 40 were clearly
identified as adenocarcinoma. Gene expression data was
generated using an Affymetrix U133 2.0 plus array and
processed as described previously [29]. The Affymettrix
data for these samples is deposited on GEO under acces-
sion number GSE3141. EGFR mutational status (for exon
19 deletion and L858R) was determined using previously
described techniques [4].

Moffitt cohort: Patients undergoing surgical resection of
adenocarcinoma of the lung were consented to have
tumor tissue stored and banked through a University of
South Florida IRB approved protocol. Processing of the
samples was performed as previously described [40]. The
microarray data for the 180 probe sets used for classifica-
tion are available [see Additional File 8].

DNA Content Analysis

Cell lines were plated to 6 cm dishes in 10% media. Cells
were starved in 0.5% media for 24 hours before treatment
with 1 uM erlotinib (provided by Genentech, South San
Francisco, CA) or DMSO for 72 hours. Floating and adher-
ent cells were collected by trypsinization and centrifuga-
tion. Cell pellets were washed in 1 x phosphate-buffered
saline (PBS) and fixed in 70% ice-cold ethanol. Pellets
were washed in 1 x PBS,1% bovine serum albumin (BSA),
and resuspended in 1 x PBS, 1% BSA, 50 ug/ml propid-
ium iodide (Roche), and 0.5 mg/ml RNase A (Sigma) at
4°C. Cells were sorted by fluorescence activated cell sort-
ing (FACS) (University of Kentucky core facility). Data
was analyzed using ModFit LT (Verity Software, Topsham,
ME). Apoptosis was recorded as the integrated sub-G,
peak.
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K-Ras and EGFR Sequencing

Actively growing cells were scraped into 1 x phosphate
buffered saline (PBS) and pelleted by brief centrifugation.
The cell pellets were lysed in 100 mM Tris HCI, pH 8.5; 5
mM EDTA; 0.2% SDS; 200 mM NacCl and 100 ug/mg pro-
teinase Kin a 500 ul volume at 55 ° C for several hours and
the debris was pelleted by high speed centrifugation.
Genomic DNA was precipitated from the supernatant,
and the nucleic acid pellet was resuspended in 10 mM
Tris-HCI, 1 mM EDTA. K-Ras exons 1 and 2 and EGFR
exons 18-21 were independently sequenced as previously
described [23,41].

Gene Selection

EGEFR TKI-sensitive and resistant cell line expression data
was filtered to remove probesets with less than 6 'present'
calls (<1/2 smallest n) between groups. Probesets with no
single unique sequence by BLAST alignment were
removed from the list [43]. The remaining genes were
compared using Significance Analysis for Microarrays
(SAM) [24]. Those genes which were determined to be dif-
ferentially expressed between sensitive and resistant cell
lines were annotated using GATHER [42,43]; and only
those genes which annotated to signal transduction at
level 4 (GO:0007165) were included in the discriminant
analysis. Duplicate genes (i.e. different probesets which
annotate to the same gene) were filtered by removing the
least significant probeset(s) as determined by a 2-sample,
equal variance t-test. The method of gene selection is
described elsewhere [see Additional File 2].

Diagonal Linear Discriminant Analysis

The genes in the final dataset were ordered by p-value in a
two sample equal variance t-test. Diagonal linear discrimi-
nant analysis (DLDA) was performed using the top 10,
top 50, and the complete gene signature (180 genes) in
order to assess the stability and robustness of the model.
A leave-one-out cross validation and external validation
was performed on additional cell lines and adenocarcino-
mas. Adenocarcinomas hybridized to U133 Plus 2.0
arrays were filtered to remove genes not present on the
U133A chip and mean chip intensities were standardized
to the complete training data set. A Sweave script is
included that carries out the DLDA analysis [see Addi-
tional File 7].
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Additional File 1

Inventory of Affymetrix U133A microarray data as available on http://
maduk.uky.edu All training and validation sets are listed. At the MADUK
home page, choose Public Login and 'PENNIB' as the experimenter to
access all Affymetrix files.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-289-S1.xls|

Additional File 2

Sheet 1: Probesets excluded from the analysis because they did not align
to a single transcript in a BLAST alignment analysis, as determined by
Girard et al, manuscript in preparation.Sheet 2: SAM output, with
parameters for analysis. These were probesets which were included in the
subsequent GO analyses to determine deregulated signal transduction
genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-289-S2 xls|

Additional File 3

Genes 51-180 of the gene signature of EGFR TKI sensitivity. For each
gene, the Affymetrix probe ID, gene name, gene description, and p-value
are given.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-289-S3.doc]

Additional File 4

KEGG Pathway analysis of the 180 gene signature via GATHER.
Genes contained under each significant pathway map are given.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-289-84.doc]

Additional File 5

TRANSFAC analysis of the 180 gene signature via GATHER. Signifi-
cant transcription factor binding sites and genes containing them are
given.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-289-S5.doc]

Additional File 6

Diagonal linear discriminant analysis of NSCLC cell lines using an
equally balanced predictor.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-289-S6.doc]

Additional File 7

Sweave scripts (. TEX and .RNW), PDF file describing contents of Sweave
script, and . TXT files (training and validation data).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-289-87.zip|
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Additional File 8

Affymetrix U133A microarray data for the 180 probesets used for the
DLDA models to classify the Moffitt tumors. MAS v5.0 values and
present/absent calls are available for each tumor.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-7-289-S8 xls]
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