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Abstract

functional hypotheses for oligodendroglioma genetics.

Background: Solid tumors present a panoply of genomic alterations, from single base changes to the gain or loss
of entire chromosomes. Although aberrations at the two extremes of this spectrum are readily defined,
comprehensive discernment of the complex and disperse mutational spectrum of cancer genomes remains a
significant challenge for current genome analysis platforms. In this context, high throughput, single molecule
platforms like Optical Mapping offer a unique perspective.

Results: Using measurements from large ensembles of individual DNA molecules, we have discovered genomic
structural alterations in the solid tumor oligodendroglioma. Over a thousand structural variants were identified in
each tumor sample, without any prior hypotheses, and often in genomic regions deemed intractable by other
technologies. These findings were then validated by comprehensive comparisons to variants reported in external
and internal databases, and by selected experimental corroborations. Alterations range in size from under 5 kb to
hundreds of kilobases, and comprise insertions, deletions, inversions and compound events. Candidate mutations
were scored at sub-genic resolution and unambiguously reveal structural details at aberrant loci.

Conclusions: The Optical Mapping system provides a rich description of the complex genomes of solid tumors,
including sequence level aberrations, structural alterations and copy number variants that power generation of
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Background

Cancer is fundamentally a disease of genomic origin. Al-
terations in genes and regulatory elements critical to cell
cycle control lead to uncontrolled cell growth and prolife-
ration, the common signature of all cancers. Such events
can cause amplification or mutational activation of onco-
genes [1,2], deletion or mutation deactivation of tumor
suppressor genes [3,4], orientation of genes with incorrect
regulatory regions [5], gene fusion products [6], etc. As
cancers evolve, they accumulate a cascade of mutations,
ranging in size from a single nucleotide change to the gain
or loss of entire chromosomes [7]. Coupled with the
subclonal heterogeneity that is a hallmark of solid tumors
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[8-10], obtaining a complete portrait of the genetic land-
scape of human cancer remains a significant challenge.
Synergy between revolutionary genomic tools and ad-
vances in high-throughput computing has facilitated the
development of a number of methods for detecting mu-
tations. Chromosome banding and spectral karyotyping
(SKY) [11] are low-resolution techniques used to detect
large-scale chromosomal features. However, obtaining
metaphase spreads for performing a karyotype is often
difficult, especially when working with solid tumor biop-
sies and paraffin embedded, formalin fixed tissue. Fluo-
rescence in situ hybridization (FISH) and its variants are
a family of molecular cytogenetic techniques developed
to correlate specific sequences to cytogenetic observa-
tions [12]. FISH offers higher resolution (compared to
SKY) and has the advantage of not requiring metaphase
spreads, but is limited by the fact that it requires a prior
hypotheses about the locus of interest, making it unsuit-
able for discovery based research. Hybridization based
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microarray approaches, like SNP microarrays and array
comparative genome hybridization (CGH), have been ex-
tensively used to detect large scale amplifications and dele-
tions in tumor genomes [13-15], but are unable to detect
changes where there is no net gain or loss of DNA, such
as inversions and balanced translocations, which have
been shown to be an important mechanism for oncogenic
transformation [16-18]. Moreover, microarrays do not
offer structural information, necessitating follow-up exper-
iments to identify the breakpoints and sequence context
of the aberration. Microarrays are also restricted to re-
gions of the genome amenable to unique probe design,
which precludes repeat-rich regions and novel insertions
that are hotbeds of variation and mutation [19-22]. Most
commercial microarrays (except custom designed, high-
density arrays) lose sensitivity below ~50 kb, and variants,
particularly insertions, in this size range have remained
largely unexplored, especially in cancer genomes [23].

The advent of massively parallel, short read DNA
sequencing- the ‘second generation’ sequencing tech-
nologies, and their application to cancer has also accel-
erated the pace of mutation discovery. Initially applied
to targeted subsets of the genome, such as specific gene
families (e.g.: all protein kinases, or ‘kinome’) [24-27], or
all the coding sequences (the exome) [28-33], second-
generation sequencing is increasingly being used to in-
terrogate whole cancer genomes [34-40]. In theory,
second-generation sequencing of whole genomes has the
ability to discern the full range of genomic alterations.
In practice, however, more than 90% of events disco-
vered by these platforms are less than 1 kb, and are
biased towards deletions rather than insertions [23,41].
Second-generation sequencing instruments typically
generate shorter reads with higher error rates from rela-
tively short insert libraries, which present a significant
computational and bioinformatic challenge in alignment
and assembly [42]. Read-pair mapping approaches have
successfully identified point mutations and indels in can-
cer [36,38-40], but are limited by the insert size of the
DNA library to detecting base substitutions and small
indels [43] and are often confounded by repetitive re-
gions of the genome. Further, accurate prediction of the
exact breakpoints of an aberration depends on very tight
size distribution of the DNA library, which can make
library construction difficult [44]. Whole genome se-
quencing followed by de novo assembly might mitigate
some of these issues, but current assembly algorithms
tend to collapse homologous sequences, and conse-
quently dramatically under-represent repeats and seg-
mental duplications that are known to be critical
mediators of genomic rearrangement [42].

There remains a pressing need for discovery-based sys-
tems that can provide a scalable, comprehensive view of
the cancer genome in its entirety. In this study, we
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present Optical Mapping as one such system. Optical
Mapping creates high-resolution ordered restriction maps
of whole genomes through the analysis of ensembles of
single molecule restriction maps. It has previously been
used to map the genomes of microbes [45-48], plants
[49-52] and mammals [53-57]. However, this is the first
time it has been employed to analyze the genome of a
solid tumor. Optical Mapping offers several unique advan-
tages towards assembling the complex structure of a can-
cer genome. Genomic DNA isolated directly from cells is
analyzed, thereby obviating any bias introduced by ampli-
fication or cloning steps. Moreover, because the DNA is of
high-molecular weight (300 kb - >500 kb), segmental du-
plications and other repeat-rich regions of the genome are
revealed, and additionally, the structure and long-range
context of any aberration are determined. Since the re-
striction maps are made from single DNA molecules, Op-
tical Mapping effectively pieces together heterogeneous
alterations, which is especially important for tumor gen-
ome analysis, as we demonstrate in oligodendroglioma.
Oligodendrogliomas are frontal lobe tumors that are
thought to arise from oligodendrocytes, supporting brain
cells which provide myelination for neurons [58,59]. The
concerted loss of heterozygosity (LOH) of chromosome
arms 1p and 19q, observed in 50-70% of patients, is a
molecular signature of this malignancy [60]. The re-
markably high prevalence of this molecular marker sug-
gests that these regions harbor one or more tumor
suppressor genes that might play an important role in
the development of the tumor. Allelic losses of 1p/19q
have been correlated with positive response to chemo-
and radiotherapy and prolonged survival for patients
with oligodendroglioma [61]. However, it remains un-
clear whether LOH of 1p/19q is a prognostic biomarker
for a more indolent tumor subtype that has fewer un-
favorable mutations overall, rather than predictive of
treatment sensitivity [62,63]. In fact, studies have shown
that 1p/19q codeleted tumors have slower growth rates
and are more responsive to treatment than tumors with-
out the codeletion [64,65]. In order to explore each of
these possibilities, Optical Mapping was used to create
physical maps from two individual oligodendroglioma
tumor biopsies for the purpose of identifying and cha-
racterizing structural changes on a whole genome basis.

Results and discussion

Optical map construction

We used the Optical Mapping (OM) system to explore
the genomic landscape of a solid tumor. Optical Mapping
creates high-resolution physical maps of genomes through
the analysis of ensembles of single molecule ordered re-
striction maps. The tumor biopsies were disaggregated
into single cells, then run through a Percoll gradient to en-
rich for cancer cells (methods). High molecular weight
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genomic DNA was extracted directly from these cells,
stretched and immobilized in regular arrays on posi-
tively charged glass surfaces using a microfluidic device
(Figure 1A, details in methods) [66]. After deposition,
the DNA was digested with the restriction enzyme Swal.
The surface-bound restriction fragments remained in
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register, and were stained with a fluorescent dye and im-
aged by automated fluorescent microscopy (Figure 1B).
Dedicated machine vision software calculated the size,
in kilobase pairs (kb), of each fragment based on mea-
surements of integrated fluorescent intensity, resulting
in the high throughput, massively parallel generation of
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(See figure on previous page.)

Figure 1 An overview of the Optical Mapping system. A: Single cells, obtained from a slice of the tumor biopsy, are purified by a percoll
density gradient, then mixed with agarose and allowed to solidify in a mold, forming rectangular inserts. Prior to mapping, cells are lysed within
the insert, the DNA electrophoretically extracted, elongated and immobilized on an Optical Mapping surface by means of capillary flow through a
microchannel device. The lower half of panel A is a representative image of properly elongated DNA (long, white horizontal lines) after surface

aligned back to the reference map, and differences are identified.

digestion, stained with YOYO-1. Microchannels are 100 um wide as indicated by the scale bar (grey bar). B: Enlarged image of surface-bound
genomic DNA, digested with Swal, showing discrete restriction fragments separated by gaps. C: Automated machine vision detects DNA
molecules (pseudocolored green), and calculates the mass of each fragment (white numbers), creating ordered restriction maps (Rmaps) from
single DNA molecules (yellow bars). D and E: Strategy for constructing a genome-wide optical map starting from single molecule Rmaps. Rmaps
are first clustered on a restriction map generated in-silico from the reference sequence of the human genome by pairwise alignment. Then
consensus optical map contigs are constructed by de novo assembly of the Rmaps from a given window. Finally, the consensus map contigs are

ordered restriction maps, or ‘Rmaps, from individual
genomic DNA molecules (Figure 1C) [66]. The oligo-
dendroglioma datasets comprise close to 700,000 such
Rmaps, with an average size of greater than 400 kb
(Additional file 1). The relative order and distance be-
tween successive restriction fragments in a single mol-
ecule optical map can be used to determine the precise
location in the genome that gave rise to that molecule,
by means of pair-wise alignment against an in-silico re-
striction map [67]. The HF087 tumor dataset comprised
235,026 aligned Rmaps, corresponding to 36.92 fold
coverage of the human genome, while the HF1551
dataset comprised 167,012 aligned maps, representing
25.36 fold coverage of the human genome (Additional
file 1). In the absence of a karyotype, our assessment of
ploidy is based on optical map coverage and Affymetrix
array analysis. Both these platforms, discussed in detail in
subsequent sections, calculate chromosome copy number
relative to normal, diploid genomes, and are in agreement
that neither tumor sample is polyploid. They do, however,
display aneuploidy, due to allelic losses of specific chromo-
somes/chromosome arms (1p, 19q, 13 in HF087 and 1p,
19q, 14, 21 in HF1551), so if anything the coverage is likely
to be higher than what we reported.

The Rmaps that cluster together upon pair-wise align-
ment were then assembled into consensus optical maps
and analyzed for presence of structural variants using the
bioinformatics pipeline described in [56]. The final con-
sensus map contigs span 96.73% and 93.92% of the human
genome for tumors HF087 and HF1551, respectively.

Optical map coverage analysis

Discernment of copy number variants

Copy number was inferred from aligned coverage of
Rmaps, prior to assembly, in a manner analogous to read-
depth based methods for detecting copy number variants
from second generation sequencing data (methods).
Briefly, Rmaps were aligned to the in silico reference map,
and then partitioned into discrete windows spanning each
chromosome. These alignments were then compared to
alignments of a reference data set (comprising of a num-
ber of normal genomes) that was used to ‘normalize’ the

observed coverage. This was necessary because the num-
ber of Rmaps that align to a particular region of the ge-
nome depends, in part, on the density of restriction sites
in that region, which varies from chromosome to chromo-
some (ranging from a low of 2.5 cuts/100 kb on chromo-
some 22 to a high of 9.25 cuts/100 kb on chromosome 4).
A Hidden Markov Model (HMM) was then fitted to this
data, and copy number changes were detected (Figure 2A)
[68,69]. Optical map coverage analysis confirmed the al-
lelic loss of chromosome arms 1p and 19q in HF087 and
HF1551. The breakpoints appear to be very close to the
centromere, consistent with the proposed mechanism of
an unbalanced reciprocal translocation mediating the
LOH event [70,71]. Additionally, coverage analysis also
detected allelic loss of chromosome 13 (HF087), 14 and 21
(HF1551), which are known to be rarer events associated
with oligodendroglioma.

Solid tumor heterogeneity

The genome wide optical map of HF1551 was created using
DNA from two adjacent slices of the tumor: 446,933
(~55%) Rmaps originated from slice 1 and 202,974 (~45%)
Rmaps from slice 2 (Figure 2). Interestingly, when the
Rmaps were partitioned according to the slice they origi-
nated from, and coverage analysis was performed sepa-
rately, unique copy number profiles were obtained for each
slice. In addition to allelic losses of 1p and 19q, slice 1 also
had LOH of chromosomes 14 and 21, while slice 2 had evi-
dence of LOH of 19p (Figure 2B). Solid tumors are dynamic
aggregates of continually evolving subclones, resulting in
spatial and temporal genetic heterogeneity. Our findings
suggest that the tumor slices used for Optical Mapping
evolved from distinct cancer cell clones, and is congruent
with recent evidence of branched evolutionary tumor
growth [72-74]. Although assembly of whole genome maps
on a per slice basis was not feasible due to insufficient
depth of coverage, our results establishes proof-of-principle
of Optical Mapping to interrogate tumor heterogeneity.

Discovery of optical structural alterations
The optical consensus maps generated by map assembler
were aligned to the in silico restriction map (generated
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Figure 2 Intra-tumor heterogeneity. A: Copy number profiles, inferred from analysis of optical map coverage of tumor HF087 and HF1551. For
each panel, the x-axis is co-ordinates of the human genome (chromosome numbers are indicated at the top), and y-axis is counts of Rmaps that
align to a particular genomic interval. The grey curve plots the observed number of counts in an interval, and the red line indicates the sequence

of underlying copy number states (also called the Viterbi path). B: Copy number analysis of tumor HF1551 by slice. Slice 1 (green) has LOH of
chromosomes 1p, 19q, 14 and 21, while slice 2 (blue) has losses of chromosomes 1p and 19 only.

from build 35 human reference sequence), and by com-
parison of the order and sizing of the 219,224 restriction
fragments (fragments smaller than 0.4 kb in size were
merged) between the experimental and the reference map.
Such comparisons revealed structural variants in the ex-
perimental genome that were classified as four types: extra
cuts (EC), where the optical consensus map displays a re-
striction site that was not predicted by the reference se-
quence; missing cuts (MC), where a cut that was predicted
was not observed in the experimental map; insertions
(INS), where the size of a fragment in the consensus map
was significantly larger than its counterpart in the refer-
ence map; deletions (DEL), where a fragment in the ex-
perimental map was smaller than the corresponding
reference fragment (or missing altogether); and finally,
complex events (OTHER) involving multiple cut or size
differences (methods). Approximately a third of the ECs
and MCs represent small indels that are below the reso-
lution of Optical Mapping (~3 kb) [56]. Figure 3C shows
an example of each class of variant detected by Optical
Mapping.

At first glance, it might appear that any one of these
variants could be attributed to errors inherent in Optical
Mapping. For instance, a missing cut could be due to

incomplete digestion, an extra cut could result from spuri-
ous cutting by the restriction enzyme, or physical breakage
of the DNA molecule, and uneven staining could lead to
inaccurate estimation of fragment size. However, the high
throughput advantage of Optical Mapping allows us to
distinguish such random errors from legitimate genomic
events. Any alteration in the optical consensus map was
supported by multiple single molecule maps (Rmaps),
each representing an independent observation at that
locus. The Optical Mapping error models estimated the
statistical significance of each structural variant, after tak-
ing into account the quality and quantity of the data [56].
A total of 1081 and 1085 differences were detected in
HF087 and HF1551 respectively (Figure 3A and B). The
distribution of structural variants across the genome is uni-
form and the pattern is similar for both tumors (Figure 3A).
Variants range in size from single base differences to com-
plex genomic events spanning hundreds of kilobases
(Figure 4). Approximately 800 single base changes were
detected in each tumor, including point mutations (such as
the example depicted in Figure 4A), polymorphic SNPs
where only one allele has a Swal restriction site (referred to
as snip-SNPs [75]), and small indels that create or remove a
Swal cut site but are below the detection limit of Optical
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Figure 3 Genome-wide distribution of optical structural alterations (OSAs) detected in oligodendroglioma. A: Horizontal yellow bars,
numbered on the left, represent human chromosomes (heterochromatic regions are in grey). Tick marks depict locations of structural variants
from HF087 (red) and HF1551 (blue). B: The total number of events detected in each tumor sample, also broken down by category.
C: An example of each class of variant is shown in the inset figure.

Mapping. 179 indels with a median size of 6.6 kb were
detected in each sample (Figure 5). For comparison, the
median size of indels reported in the Database of Genomic
Variants is 2.3 kb (Figure 5, inset). ~70 complex events
were found in each tumor, including known polymorphic
loci such as the major histocompatibility complex (MHC),
giving us confidence that these results are not spurious.
Optical Mapping also discerns balanced genomic events,
where there is no net gain or loss of genomic sequence. A
putative inversion spanning 352 kb of chromosome 7 was
observed in HF087 which appears to disrupt the ZNF92
gene (Figure 4C). Finally, the largest events detected by Op-
tical Mapping include gains or losses of entire arms of
chromosomes, for example, the allelic loss of chromosome
1 illustrated in Figure 4D, and discussed in detail previously.
Intersection counts with genes, segmental duplications,
published SNPs (dbSNP build 135, http://www.ncbi.nlm.

nih.gov/projects/SNP/) and published structural variants
(Database of Genomic Variants, November 2010 release)
are shown in Additional file 2. Comprehensive breakdown
of the overlaps are shown in Additional file 3.

Optical Mapping provides a comprehensive description
of the vast and complex landscape of cancer genomes.
The ability to study the genome in its entirety, including
non-genic or repetitive regions using a single technology
minimizes ascertainment bias. As detailed in subsequent
sections, it is employed to generate a list of candidate can-
cer genes that is not hypothesis-limited, and elucidate
their structure at sub-genic resolution.

Validation of copy number and structural variants
Experimental validation: SNP array

The Affymetrix Genome Wide Human SNP 6.0 Array,
which has probes for detection of both SNPs and copy
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number variants (CNVs), was used to validate our
findings.

Both platforms concurred on the LOH of chromosomes
1p, 19q and 13, but allelic loss of chromosome 14 in
HF1551 was not detected by the Affymetrix array. The
copy number profile generated by running the HMM al-
gorithm on the maps from the first slice of tumor HF1551
was similar to that from the array, which suggests that the
DNA originated from tumor sections that were in closer
proximity.

Many of the SNP probes on the Affymetrix chip corres-
pond to Swal snip-SNPs. Hence, the array data was used
to validate ECs and MCs. We observed 100% (62/62 in
HF087, 44/44 in HF1551) concordance between the SNP
genotype and the Swal cut pattern at all overlapping cut
differences in both tumors (Additional file 4).

The copy number variants detected by the array were
also compared to Optical Mapping indels. Signal inten-
sities from the chip were normalized by global median
scaling, and copy number was assessed using several dif-
ferent algorithms (methods), relative to a reference model
file generated from the 270 HapMap samples. Though the
resolution of array CGH is much lower than Optical Map-
ping, we were able to validate 24 structural variants in
tumor HF087 and 16 in tumor HF1551 (Additional file 5).

Experimental validation: PCR

The nature of many of the structural variants, being within
repetitive portions of the genome, but detected by Optical
Mapping unfortunately precludes their comprehensive
validation by simple PCR techniques. Accordingly, we se-
lected two variants that were amenable to PCR and over-
lapped genes that may offer insights into the chemo- and
radio-sensitivity of oligodendroglioma. These loci were
then PCR amplified, cloned and sequenced (methods).

The optical map shows an EC in the PARK2 gene in
HF1551 (Figure 6A). PARK2 is a putative tumor sup-
pressor, and mutations in this gene have been reported
in multiple cancer types (detailed in ‘candidate muta-
tions’ section of this document). An 848 bp amplicon
spanning the predicted location of the EC was obtained
(Figure 6B), and Sanger sequencing proved that a G to T
transversion resulted in the creation of a new Swal restri-
ction site (Figure 6C).

We also validated an EC in tumor HF087 that occurred
in the STMN2 gene (Figure 7A). As discussed in subse-
quent sections, STMN2 regulates microtubule dynamics
and is believed to be a target of beta-catenin/TCF signal-
ling. We amplified a 1003 bp region around the putative
mutation (Figure 7B), and were able to validate the alter-
ation via sequencing (Figure 7C).



Ray et al. BMC Genomics 2013, 14:505
http://www.biomedcentral.com/1471-2164/14/505

Page 8 of 21

- T T T T T T T |._|_-_|
5 15 25 35 45 55 65 75 85100200400

Size (in kb)

55 65 75 85 100 200 400
Size (in kb)

M Tumor HF087 OSAs
B Tumor HF1551 OSAs
B Database of Genomic Variants

200 A
70000+
180 4 3 60000
§ 50000-
160 1 2 40000
o
140 g 90000;
S 20000-
(o2}
120 S 100004
[2]
5
© 100 -
[}
k]
s 80
=
60 -
40 4
20 4
5 15 25 35 45
the Database of Genomic Variants.
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Comparative validation

We also validated our findings by comparing them to
two sources- Optical Mapping data from several nor-
mal genomes, and publicly available SNP and structural
variant data. First, oligodendroglioma structural vari-
ants were compared against structural variants found
by Optical Mapping of 6 other normal human genomes
by our laboratory. This internal database includes:
(three lymphoblast-derived cell lines and a complete
hydatiform mole (dbVar study ID nstd49) [56], a
lymphocyte-derived cell line (unpublished) and an early
passage human embryonic stem cell line [55]). 80%-
90% of oligodendroglioma variants were also detected
in at least one of the normal human genomes
(Additional file 6), suggesting that such loci are poly-
morphic, and affirming the veracity of our findings.
Then, oligodendroglioma structural variants were com-
pared against variants in the Database of Genomic
Variants (DGV). The DGV is an extensive catalogue of
structural variation in normal humans, currently hold-
ing 101,923 events detected by a variety of platforms.
We observed the greatest concordance with variants
found by fosmid-end sequencing (~15%) and high
density oligonucleotide array CGH (~10%) (Additional
file 6). Finally, cut differences detected by Optical
Mapping were compared to published SNPs. Detailed
breakdown of these intersections are shown in

Additional file 3; parameters for comparisons are de-
scribed in the Methods section.

Candidate mutations

Separation of mutational and polymorphic OSAs

The ultimate goal of our mapping efforts was to identify
genes or genomic elements that maybe important to the
biology of oligodendroglioma, with the caveat that such
‘candidates’ represent hypotheses requiring rigorous
testing to establish their functional role in tumorige-
nesis. Distinguishing between structural polymorphisms
and somatically acquired mutations is a key step to-
wards accomplishing this goal. Unfortunately, matched
normal DNA from the individuals whose tumors were
optically mapped was not available. Instead, we adopted
a stringent filtering scheme to remove putative poly-
morphisms and enrich for somatic mutations, based on
comparisons to internal and publicly available data (de-
scribed above). Parameters for these comparisons were
determined based on the Optical Mapping error model
and designed to be extremely parsimonious (methods).
As a result of these operations, we arrived at a total of
21 somatic mutations (5 genes) in HF087 and 73 som-
atic mutations (21 genes) in HF1551.Since two muta-
tions are seen in both tumors, 24 unique candidate
cancer genes were identified in oligodendroglioma
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Figure 6 Experimental validation of PARK2 mutation by PCR-
sequencing. A: EC in PARK2 gene on chromosome 6 of HF1551.
The enlarged figure shows the position of the PCR amplicon. B:
Restriction digest of the PCR amplicon. The undigested amplicon is
848 bp. Digestion with Swal restriction enzyme is expected to yield
two fragments of 577 bp and 271 bp (based on the location of the
EC in the optical map). An addition digestion was performed with
Nhel enzyme to ensure the correct amplicon was being analyzed.
The expected sizes of the Nhel fragments are 700 bp and 148 bp. C:
Sequence of the PCR amplicon showing the G > T transversion that
creates a new Swal cut site.

(Table 1). A few interesting candidate genes will be
discussed in the next section.

Candidates common to both HF087 and HF1551

Two candidate genes, NPAS3 and OSBPL3, harbored mu-
tations in both tumor samples (Figure 8). NPAS3 (neuronal
PAS domain protein 3) shows a complex event accom-
panied by a ~7 kb gain in the HF087 optical map, and a
missing cut in the HF1551 optical map (Figure 8A).
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This neuronally expressed basic helix-loop-helix tran-
scription factor has been implicated in schizophrenia
[76,77]and bipolar disorder [77], and is frequently de-
leted or inactivated in many cancers. Recently, it has
been demonstrated that NPAS3 exhibits features of a
tumor suppressor which drives late progression of ma-
lignant astrocytomas, and is a negative prognostic
marker for survival [78].

Both tumor optical maps display cut differences in the
OSBPL3 (oxysterol binding protein like-3) gene (Figure 8B).
This gene plays a vital role in cell adhesion, cytoskeletal
organization and lipid metabolism [79-81]. It is highly
expressed in B-cell associated malignancies [82,83], where
it is one of the common sites of retroviral integration [84].
An independent study that used exon sequencing to study
oligodendroglioma also found somatic mutations in
OSBPL3 [30].

Candidates observed in either HFO87 or HF1551

In the HF1551 optical map, we observe a point mutation
that creates a Swal restriction site in the PARK2 gene
(Figure 6). This gene encodes an E3 ubiquitin ligase, called
Parkin that catalyzes the ubiquitination of a variety of
target proteins for proteasome mediated degradation.
Germline mutations in PARK2 have long been known to
cause autosomal recessive juvenile Parkinson’s disease
[85-87]. More recently, PARK2 has been identified as a
tumor suppressor gene in Glioblastoma multiforme,
breast, ovary, lung, colorectal and liver cancers [28,88-94].
It encompasses most of FRAG6E, the third most active
common fragile site in the human genome [95], and
shares the characteristics of other tumor suppressors such
as FHIT and WWOX, that also occur in fragile sites.
PARK2 is frequently deleted or inactivated in cancer cell
lines and primary tumors [88,92], and concomitantly, Par-
kin expression is either significantly diminished or absent
[89,92]. Unlike classical tumor suppressors where biallelic
inactivation is necessary for oncogenesis, heterozygous
mutations in PARK2 are sufficient to confer a growth ad-
vantage during tumor development [88,92]. Restoring
Parkin expression in Parkin-deficient cell lines reduces
their profileration in vitro [92], while injection of Parkin-
deficient cells into immunocompromised mice generate
tumors in vivo [91]. Interestingly, PARK2 also mediates
chemosensitivity in breast cancer via microtubule
dependent mechanism [93,96-98].

STMN2 (stathmin-like 2) is another interesting candi-
date gene. We observe a point mutation in this gene in
tumor HF087 (Figure 7). STMN2 is a neuron specific
member of the stathmin family of small regulatory phos-
phoproteins which control cell profileration and differ-
entiation [99]. It is up-regulated in liver cancer and has
been identified as a target of B-catenin/TCF-mediated
transcription [100]. STMN2 sequesters soluble tubulin,
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Figure 7 Experimental validation of an EC in the STMN2 gene
by PCR-sequencing. A: EC in STMN2 gene on chromosome 8 of
HF087. The enlarged figure shows the position of the PCR amplicon. B:
Restriction digest of the PCR amplicon. The undigested amplicon is
1003 bp. Digestion with Swal restriction enzyme is expected to yield
two fragments of 519 bp and 484 bp (based on the location of the EC
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forming a ternary complex, inhibits microtubule assem-
bly and induces their disassembly [101]. Its highly simi-
lar, but more well-studied paralog STMNI, located on
chromosome 1p, is known to sensitize cells to anti-
microtubule drugs in glioma [102,103], breast [104,105]
and prostate cancer [106].In light of recent studies dem-
onstrating the synergistic epistasis between paralogous
genes involved in essential cellular functions and its thera-
peutic implications [107,108], we speculate that STMN1
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and STMN2 might be functionally redundant, and inacti-
vation of STMN2 might, in part, explain the treatment
sensitivity of oligodendroglioma.

In the HF1551 optical map, we see an extra cut in the
gene ZFYVE26 (zinc finger, FYVE domain containing 26).
Spastizin, the zinc finger protein encoded by ZFYVE26,
causes the neurological disorder hereditary spastic para-
plegia [109]. This gene binds to the tumor suppressor
Beclin-1 and regulates cytokinesis [110,111], and is recur-
rently mutated in breast cancer [29].

We detected a 485 kb inversion on 7q11.23 in tumor
HF1551. Hemizygous deletions spanning a 1.5-1.8 MB re-
gion of this locus cause the neurodevelopmental disorder,
Williams-Beuren (WB) syndrome [112]. However, inversion
of this region is polymorphic, and is present in ~6% of the
general population, and in ~25% of transmitting parents in
WB families [113-115]. Given the disparity in size between
the aberration detected by OM and reported instances of
the WB inversion, it is possible that the event we observe
arose de novo and is distinct from the ‘canonical’ inversion.
To test this hypothesis, we ran several targeted assemblies
on the WB region. The general strategy for this approach
was to modify the reference map in-silico to reflect our hy-
pothesized structure (Figure 9A), and then use the iterative
assembly framework described earlier to pull out individual
restriction maps and generate an optical consensus map
(methods). Since our map assembly pipeline was designed
to provide the single most conservative answer, this ap-
proach is helpful in detecting large-scale aberrations that
are significantly different from the reference sequence. Of
the eight modified reference maps we started with, the one
that reflected the canonical WB inversion/deletion did
not grow, while the one that reflected the 485 kb event
successfully generated a consensus map that spanned it
and flanked contiguous regions on chromosome 7
(Figure 9B). The optical consensus map also closes the
putative sequence gap immediately to the right of the
inversion, and in fact, approximately half of the
sequence gaps in the reference genome (NCBI, build
35) are spanned by optical consensus maps. The
inversion encompasses the genes GTF2IRD2, PMS2P5,
WBSCR16, GTF2IRD2B and NCF1, and its breakpoints
appear to disrupt the genes GTF2I and STAG3L2. In
the absence of matched normal DNA, it is impossible
to ascertain if the inversion we detected was inherited
through the germline or somatically acquired, however,
this is the first report, to the best of our knowledge, of
inversions in the WB region in the context of cancer.

Candidates on 1p or 19q

The concerted loss of chromosome arms 1p and 19q is a
hallmark of oligodendroglioma. Seen in 50%-70% of tu-
mors, it is believed that these regions harbor one or more
tumor suppressor genes that play an important role in the
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Table 1 Candidate cancer genes identified in oligodendroglioma

Gene symbol Gene name Entrez gene ID Location Tumor sample
ALMS1 Alstrom syndrome 1 7840 chr2,73612885,73837046 HF1551
APPLI asspégaggt‘;:‘a T:fé?gozﬁggé'rnfo':tff.ﬁgo? 26060 chr3,57261764,57307498 HF1551

ARHGAP10 Rho GTPase activating protein 10 79658 chr4,148653452,148993927 HF1551
CCDC91 coiled-coil domain containing 91 55297 chr12,28410132,28703099 HF1551
CECR2 cat eye syndrome chromosome region, candidate 2 27443 chr22,17956627,18033845 HF1551
DIAPH2 diaphanous homolog 2 (Drosophila) 1730 chrX,95939661,96724837 HFO87
EFHC2 EF-hand domain (C-terminal) containing 2 80258 chrX,44007127,44202923 HF1551
EIF1 eukaryotic translation initiation factor 1 10209 chr17,39845126,39847898 HF1551
LASS3 LAG1 homolog, ceramide synthase 3 204219 chr15,100940599,101084925 HF1551
LOC339166 uncharacterized RNA coding gene 339166 chr17,5675553,5834016 HF1551
LRRN2 leucine rich repeat neuronal 2 10446 chr1,204586302,204654481 HF1551
MYOF myoferlin 26509 chr10,95066185,95242074 HF1551
NPAS3 neuronal PAS domain protein 3 64067 chr14,33408458,34273382 HF087, HF1551
OSBPL3 oxysterol binding protein-like 3 26031 chr7,24836163,25019760 HF087, HF 1551
PARK2 Parkinson disease (autosomal recessive, juvenile) 2, parkin 5071 chr6,161768589,163148834 HF1551
PAX7 paired box 7 5081 chr1,18957499,19075360 HF1551
PHLDB2 pleckstrin homology-like domain, family B, member 2 90102 chr3,111451326,111695364 HF1551
PLEKHM3 pleckstrin homology domain containing, family M, member 3 389072 chr2,208686011,208890284 HF1551
PRKG1 protein kinase, cGMP-dependent, type | 5592 chr10,52750910,54058110 HF1551
SIPATL3 signal-induced proliferation-associated 1 like 3 23094 chr19,38397867,38699008 HFO87
STMN2 stathmin-like 2 11075 chr8,80523048,80578410 HF087
TACC2 transforming, acidic coiled-coil containing protein 2 10579 chr10,123748688,124014057 HF1551
TCEB3 transcription elongation factor B (Slll), polypeptide 3 6924 chr1,24069855,24088549 HF1551
ZFYVE26 zinc finger, FYVE domain containing 26 23503 chr14,68213236,68283306 HF1551

development of this cancer. Hence, somatic mutations on
these chromosome arms are particularly interesting. We
found putative mutations on 2 genes residing on chromo-
some 1p (TCEB3, PAX7) and 1 gene on 19q (SIPA1L3).
The roles of these genes in normal and disease states, and
the structural variants we found in them are discussed
briefly in the subsequent section.

We observe a 6.3 kb deletion that potentially ablates the
first exon of TCEB3 in tumor HF1551. TCEB3 (transcrip-
tion elongation factor B, polypeptide 3) encodes the tran-
scriptionally active subunit of the mammalian elongin
complex [116,117]. This elongation factor stimulates the
rate of transcription by suppressing the transient pausing
of RNA polymerase II on the DNA template [118]. TCEB3
is part of a multi-protein complex that functions as an
elongin-based ubiquitin ligase [119], similar to the Von
Hippel-Lindau (VHL) tumor suppressor complex, by me-
diating DNA damage induced ubiquitination and degra-
dation of polymerase II [120].

Tumor HF1551 also has an insertion in the 1p-encoded
gene PAX7 (paired box 7). The PAX genes encode a family
of transcription factors that control development within

the neural, myogenic and lymphoid lineages [121]. PAX7,
in particular, is essential for survival, proliferation and mi-
gration of myogenic progenitor cells [122], and cell fate
decisions in the developing nervous system [123]. PAX7 is
the target of a recurrent gene fusion with the forkhead
protein FKHR/FOXOL1 that is found in ~15% of patients
with alveolar rhabdomyosarcoma [121,124]. The fusion
transcript is much more abundant and transcriptionally
active than wild type PAX7 [125], suggesting that the
deregulation of PAX7 downstream target genes contribute
to tumorigenesis.

In the HF087 optical map, we observe a missing cut in
the gene SIPA1L3 (signal induced proliferation associated 1
like 3) which is located on the long arm of chromosome 19.
This gene encodes a Ras specific GTPase activating protein
that is found at epithelial junctional complexes. These com-
plexes play a crucial role in mechanical adhesion between
epithelial cells to form cellular sheets and in the
organization of actin cytoskeleton [126]. Somatic mutations
in SIPA1I3 have been discovered in cancers of the brain
[127,128], prostate [129], breast [24], ovary [32], pancreas
[130], colon [24], skin [131] and hematopoietic system [34],
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HF1551. B: OSBPL3 which harbors cut differences in both tumor samples.

but a cohesive picture of the functional role that this gene
plays in these diverse cancer types is yet to emerge.

Taken together, the candidate genes discovered by Op-
tical Mapping point to critical roles of transcriptional
control and cytoskeletal organisation in the etiology of
oligodendroglioma.

Non-genic candidates

Protein coding sequences comprise less than 2% of the hu-
man genome. The vast non-coding portion of the genome,
once believed to be junk DNA) is rife with functional ele-
ments that orchestrate the gene expression program of
cells. Recent evidence from the ENCODE (Encyclopedia of
DNA Elements) consortium indicates that as much as
80.4% of the human genome encodes a defined product
(for instance, a non-coding RNA) or displays a reprodu-
cible biochemical signature (for instance, a specific chro-
matin structure) [132]. Such signatures, either alone or in
combinations, mark genomic sequences with important
functions, such as promoters, enhancers, insulators and si-
lencers [133]. The ENCODE data sheds some light on pos-
sible functional roles of Optical Mapping candidates that
are not located within genes. A number of these candidates
are actively transcribed, for instance an EC on chromo-
some 5 of HF1551 overlaps the transcribed pseudogene
GUSBP9. Several non-genic variants occur within long
intergenic non-coding RNAs (lincRNA) coding regions
(Additional file 7). Both these classes of genomic elements
provide an additional tier of gene regulation, and contrib-
ute significantly to the transcriptional landscape of human
cancers [134,135]. Several candidates also show interesting
changes in their putative functions in cancer tissues. For
example, we observe a MC on chromosome 2 (HF087) in a

genomic region bearing a histone modification pattern
characteristic of insulators in multiple different normal cell
types, but the pattern changes to that of an enhancer in he-
patocellular carcinoma.

Optical Mapping provides a global view of the cancer
genome, free from biases introduced by cloning, amplifica-
tion or hybridization, and discovers structural variation and
mutation on a scale ranging from kilobases to megabases.
Moreover, since the platform uses high-molecular weight
DNA as analyte, the long-range context and connectivity of
each variant is preserved, potentiating meaningful interpre-
tation of candidate genes. However, Optical Mapping does
not provide single-base resolution. Point mutations or
indels spanning a few base pairs, such as the events fre-
quently observed in CIC and FUBP1 genes in 1p/19q
codeleted oligodendrogliomas, are below the lower limit of
resolution and would remain undetected (unless they create
or destroy a Swal restriction site).

Biological significance of candidates identified by
optical mapping
The aim of this study is to generate new hypotheses for
oligodendroglioma genetics, and as such, functional stu-
dies are beyond the scope of this paper. However, by sur-
veying publicly available data on the candidates discerned
by Optical Mapping, we can gain some insight into the
roles they might play in malignant transformation.
Moving beyond the two tumors HF087 and HF1551, we
wanted to take the candidate cancer genes and analyze
them in the context of other genome-wide studies. Most
somatic mutations in cancer cells arise due to genomic in-
stability and do not contribute to tumorigenesis. However,
mutations in genes that promote tumor development, so-



Ray et al. BMC Genomics 2013, 14:505
http://www.biomedcentral.com/1471-2164/14/505

Page 13 of 21

A
71.9 725
Chr7 (Mb) : |

73.0 736 74.4

$€g dUpSu a1 ey e Ty W
genes  eomm 1 B mewm Tl Wi W

B left flank

<

L =7 TR = T e —
reference map | B ) g gy O 1 | | s 7 | |IF| (Ll [85.043] ql||--|l|---\|I|F-l|-|ll.--
I I 1

1
hypothesis reference map o T s

1
/ i

iterative assembly

inversion

left flank right flank

right flank

3

< >
L L 2d0dd L6790 T 88.94 [0 1L 6a.63 Tel.u2 [ g9.24 L [l 9.72068.00 QT L1 [ LI [T L1 1 [oacdollorzi] Jaz6 11 ] 7649 [ad.40 ]

| 7712 "B0.24 o |

Figure 9 Strategy for assembling the ~500 kb inversion in the Williams-Beuren region in HF1551. A: Construction of the modified,
‘hypothesis’ reference map for directed assembly. The map has a ~500 kb inversion in the center, flanked on either side by 500 kb of sequence
that agrees with the reference map. B: After 8 iterations of map assembly, an optical consensus map is obtained that spans the hypothesized
reference, and has multiple Rmaps that bridges across both left and right breakpoints.

= mrr— e

called ‘driver’ mutations tend to be recurrent. To assess
the extent of recurrence of our candidates across a large
number of samples, we used the Catalog of Somatic Muta-
tions in Cancer (COSMIC). The COSMIC database is a
comprehensive archive of somatic mutations in human
cancer, combining manually curated data from scientific
literature and the output from the Cancer Genome Project
[136,137]. 10 genes from our list of candidates had muta-
tion frequencies (number of unique mutated samples di-
vided by the total number of unique samples) greater than
10%, with the top hits being MYOF (19.1%), CECR2
(18.8%) and ZFYVE26 (18.7%). Mutation frequencies for
all the candidate genes are listed in Table 2.

Since cells can employ a number of mechanisms to
compensate for loss or mutational inactivation of genes,
a more direct way of assessing the functional role of a
given candidate gene is to analyze changes in its pattern
of expression between normal and disease states. Array
based expression profiling of tumors HF087 and HF1551
was performed by Fine et. al. [138], and is publicly avail-
able through the NCBI GEO database [139], accession
GSE4290. Differential expression analysis carried out
using the EBarrays algorithm [140] shows that 5 genes

(NPAS3, STMN2, ZFYVE26, PHLDB2 and PLEKHMS3)
from our list of 24 candidates is significantly up or down-
regulated (p-value 1E-03 or less). A complete list of differ-
entially expressed genes can be found in Additional file 8.
To assay for functional effects in an even larger population
of tumors, we queried for changes in expression of our
candidate genes in REMBRANDT, a database of molecular
data on brain tumors (National Cancer Institute, 2005,
REMBRANDT home page https://caintegrator.nci.nih.
gov/rembrandt/, accessed 13™August 2012). The results
are reported for each gene as the number of oligodendro-
glioma samples in the database that are differential expres-
sion by at least two-fold (Additional file 9). All but 3 of
our candidate genes were differentially expressed in at
least 10 tumor samples. Congruent with the previous ana-
lysis, NPAS3, STMN2, ZFYVE26 and PHLDB2 are the
most frequently deregulated candidate genes.

Finally, we asked what biological processes and path-
ways are significantly enriched or depleted in our list of
candidates. This can identify fundamental cellular mech-
anisms that contribute to cancer development. As a
whole, these candidate genes are enriched for proteins
involved in cytoskeletal organization (p-value =0.00223,
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after correcting for multiple testing, Ontologizer [141]).
Our candidate genes are also significantly enriched for
microRNA binding targets (p-values between 0.0144-
0.0198 after correcting for multiple testing, WebGestalt
[142]). Approximately half of the over-represented sites
have been associated with binding of cancer-related
microRNAs [143], underscoring the importance of post-
transcriptional control of expression in oligodendroglioma.

While these results are not a direct indicator of aber-
rant function, this is a demonstration that Optical Map-
ping results can be expanded to clinical samples and
used to create direct functional hypotheses.

Conclusions

We have applied Optical Mapping to explore the genomic
landscape of solid tumor oligodendroglioma. ~2100 dis-
crete structural variants have been discovered, ranging in
size from single base changes to loss of entire chromo-
somes. The structure of each alteration has been elucidated
at sub-genic resolution, while retaining the long-range con-
text of the event. 94 somatic mutations have been identi-
fied, 24 of which affect genes. These novel candidate cancer
genes provide focused, testable hypotheses for follow-up
functional investigation. We believe that Optical Mapping
provides a comprehensive, high-resolution description of
the complex and disperse genomes of solid tumors.

Methods

Selection of tumors

The tumors used in this study originated from the tissue
bank at the Hermelin Brain Tumor Center/Department of
Neurosurgery, Henry Ford Hospital (provided by Dr. Oliver
Bogler). Freshly resected tumors were snap frozen in liquid
nitrogen in the operating room. Samples were sectioned
in a guillotine in frozen condition, and adjacent pieces
prepared for Optical Mapping and for re-review by a
neuropathologist.

The tumor samples selected for Optical Mapping had to
meet two criteria. First, they needed to conform to the 1p/
19q paradigm of treatment sensitivity. LOH status was
assessed by quantitative PCR of microsatellite markers
along chromosomes 1p and 19q (data not shown). Second,
they needed to have a high proportion of cancer cells as
opposed to normal cells. The percentage of tumor cells
present in each biopsy was estimated by MIB-1 antibody
staining of an adjacent section (data not shown). The
MIB-1 antibody recognizes the Ki-67 antigen, which is a
cell proliferation marker. For the most part, mitotic activ-
ity is absent in the adult brain, so the measurement of the
Ki-67 cell proliferation marker can be used to judge tumor
aggression and composition [144,145]. The two samples
chosen for this project, HF087 and HF1551, satisfied both
these criteria. Table 3 provides relevant clinical informa-
tion for each tumor.
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Extraction of high molecular weight DNA from solid
tumor biopsies

The tumor was sectioned into 1-2 mm slices under sterile
conditions in a cell culture hood. Each slice was treated
with 0.8% type IV collagenase (Sigma-Aldrich, St. Louis,
MO) in PBS (Phosphate buffered saline, Life Technologies,
Carlsbad, CA) for 15 minutes at 37°C. The tumor tissue
was mechanically disaggregated into a homogeneous sus-
pension by repeated pipetting. The cells were pelleted by
centrifugation at 1,000 RPM with a Beckman GS-6R cen-
trifuge (Beckman Instruments, Fullerton, CA), and then
resuspended in 1X HBS (Hanks Balanced Salts, Life Tech-
nologies, Carlsbad, CA) in order to lyse red blood cells.
Cell debris and HBS were removed by centrifugation at
1,000 RPM. Finally, the pellet was rinsed three times with
35 mL of PBS, and resuspended in 0.5 mL of PBS.

A three layer Percoll gradient was employed to enrich
for cancer cells, and minimize stromal contamination
[146]. First, a 100% solution was made by using 9 parts
Percoll (Sigma-Aldrich, St. Louis, MO) and 1 part 10X
HBS, which was subsequently diluted with PBS to prepare
10%, 30%, and 50% solutions. The gradient was prepared by
layering 2 mL of 50% Percoll, 2 mL of 30% Percoll, and 1
mL of 10% Percoll in a 15 mL Falcon tube. The single cell
suspension was then carefully layered on top, and the gradi-
ent was spun at 1,000 RPM for 10 minutes. Studies have
shown that cellular debris and non-viable cells are unable
to penetrate the 30% layer, while lymphocytes pelleted at
the bottom of the tube. The 30% layer, containing viable
cells, was carefully removed, rinsed three times with 10 mL
of PBS and then resuspended in PBS at a final concentra-
tion of 1X10” cells/mL. Next, this cell suspension was
mixed 1:1 (v/v) with 1.6% low gelling temperature agarose,
poured into a mold and cooled to 4°C so that the agarose
solidified to for gel inserts (each ~100 pL in volume).

The inserts were treated with 0.5 mg/mL proteinase K
(Bioline USA, Taunton, MA), 100 mM EDTA pH 8.0
(Sigma-Aldrich, St. Louis, MO), 0.5% N-lauroylsarcosine
(Sigma-Aldrich, St. Louis, MO) and incubated at 55°C
overnight to lyse the tumor cells and degrade cellular pro-
teins [45,147-150]. Embedding cells in agarose inserts
eliminates shear induced breakage of genomic DNA mole-
cules upon lysis [151].

Prior to use, the gel inserts were rinsed in TE twice for 1
hour and then a third time overnight to remove the deter-
gent and excess EDTA. DNA was electrophoretically
extracted by applying a cycle of 100 V for 30 seconds
and -100 V for 6 seconds.

Generation of single molecule optical maps

Optical Mapping surfaces were prepared as described
earlier [152]. Briefly, acid-cleaned glass coverslips (22 x
22 mm, Fisher's Finest, Fisher Scientific) were treated
with a mixture of N-trimethoxylsilylpropyl-N,N,N-
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Table 2 Mutation frequencies of candidate cancer genes
(COSMIC database)

Gene symbol No. of samples No. of unique Mutation
with mutations samples frequency
STMN2 3 517 0.580270793
EIF1 1 91 1.098901099
LRRN2 10 522 1.915708812
PAX7 15 748 2005347594
PRKG1 21 545 3.853211009
ARHGAP10 9 229 3930131004
PARK2 10 204 4.901960784
OSBPL3 " 206 5.339805825
APPLI 9 161 5590062112
TCEB3 7 97 7.216494845
CCDC91 8 97 824742268
EFHC2 11 131 8396946565
TACC2 30 312 9.615384615
NPAS3 13 114 11.40350877
CERS3/LASS3 12 104 1153846154
SIPATL3 12 102 11.76470588
DIAPH2 19 143 1328671329
PLEKHM3 4 26 1538461538
PHLDB2 17 108 15.74074074
ALMS1 28 165 16.96969697
ZFYVE26 35 187 18.71657754
CECR2 16 85 18.82352941
MYOF 22 115 19.13043478

LOC339166 0 0 -

trimethylammonium chloride and vinyltrimethoxysilane
(Gelest, Morrisville, PA) rendering a positive charge to
the surface. Genomic DNA, mixed with a sizing stand-
ard, was elongated via capillary flow in a microfluidic
device [66], and immobilized by electrostatic interac-
tions with the positively charged surface, creating arrays
of stretched, biochemically accessible substrates. The
surface was then washed with TE (10 mM Tris—HCI, 1
mM EDTA, pH8.0) twice, equilibrated with digestion
buffer (NEB buffer 3), then incubated with the restric-
tion endonuclease Swal (New England Biolabs, Beverly,
MA), which cleaves the genomic DNA at its cognate
site. Since the elongated DNA molecule is under slight
tension, upon cleavage its ends relax, creating a 1-2 mi-
cron gap, readily detected by microscopy. The resulting
restriction fragments remain adsorbed to the surface,
aided by a polyacrylamide overlay, and hence retain their
order creating, in essence, a barcode from each genomic
DNA molecule. Restriction fragments were then stained
with the DNA intercalating dye YOYO-1 (0.2 uM in f-
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mercaptoethanol/TE, Life Technologies, Carlsbad, CA)
and imaged by automated fluorescence microscopy.

The images were collected on an Optical Mapping
workstation, which consists of Zeiss 135M inverted micro-
scope (Carl Zeiss, Thornwood, NY), illuminated by 488
nm argon ion laser (Spectra Physics, Santa Clara, CA)
equipped with 63X oil immersion objective. Fully auto-
mated image acquisition software, referred to as Channel
Collect [66], takes multiple overlapping images to span the
entire length of each microchannel. The images were ana-
lyzed by custom machine vision software, called Path-
finder, which identifies DNA molecules on the surface and
calculates the size of each restriction fragment based on
integrated fluorescence intensity measurements relative to
a sizing standard. Previous studies have shown that inte-
grated fluorescence intensity scales with fragment mass,
and is independent of stretch of the DNA molecule. The
end result of these operations is the high throughput, mas-
sively parallel generation of single molecule ordered re-
striction maps, or optical maps, containing information
about both the size and order of its restriction fragments.

Pipeline for optical Map assembly and identification of
structural variants

The analytical framework for assembly of optical maps is
analogous to sequence assembly. First, our pipeline auto-
matically aligned optical maps against a Swal restriction
map created in silico from the human genome reference se-
quence (NCBI build 35) via SOMA (Software for Optical
Map Alignment) using gapped global pair wise alignment
[56,67]. SOMA uses a scoring function that assigns penal-
ties for differences in the optical map and the reference
map, including missing or extra restriction sites, or differ-
ences in the size of the fragments that could represent in-
sertions or deletions. The parameters of SOMA were set so
that we are accurately aligning the molecule to the correct
location, but loose enough for allow for a small number of
differences that result from the mutations or polymor-
phisms present in the genome. The aligned maps were then
partitioned into smaller bins (1 Mb windows spanning
across each chromosome, with 500 kb overlap between ad-
jacent windows) based on their location. The optical maps
in each bin were assembled into optical consensus maps by
a map assembler program, using a Bayesian inference algo-
rithm [153]. Because some structural polymorphisms and
mutations represent large-scale changes from the reference
map, an iterative assembly process was used for the analysis
of human data sets. The consensus map constructed in the
previous step was used in place of the reference for seven
more iterations of alignment and assembly, after which it
was aligned to the reference sequence using SOMA. Using
this strategy, Rmaps harboring major alterations that
preclude alignment to the reference were gradually
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Table 3 Clinical information on the tumors analyzed by Optical Mapping

Tumor sample Histology Histology code LOH status MIB Index (%) Patient age Patient sex
HF087 Oligodendroglioma ol LOH 5-7% 65 Female
HF1551 Atypical Oligodendroglioma ol LOH 4-13% 30 Female

O II: Grade II; LOH: loss of heterozygosity.

incorporated into the consensus map, extending it into re-
gions that contain more complex rearrangements.

Lastly, the pipeline automatically performed analysis that
tabulated structural variants using the final consensus map
to the reference (derived from NCBI build 35 of the human
genome [56]) and identified five classes of differences:
missing cuts, extra cuts, insertions, deletions, and ‘other’
(multiple cut and/or size differences) across each cancer
genome. Each of these differences, which are largely struc-
tural variants, has to satisfy certain statistical and empirical
criteria. These parameters have been detailed in Teague
et al. [56]. The only difference being the indel calling
threshold, which was increased to a 13% change relative
to the reference, with a 4.5 kb minimum.

Additionally, each structural variant was manually cu-
rated to ensure that the most conservative decision has
been made at every locus. The genomic locations of the
variants were converted to NCBI build 37 co-ordinates
using the Batch Coordinate Conversion (liftover) tool
from the University of California Santa Cruz Genome
Browser [154] (http://genome.ucsc.edu).

Optical map coverage analysis

Variations in depth of coverage of optical maps aligned by
SOMA across the genome can be used to detect copy
number alterations. Intuitively, if a region of the tumor
sample has increased (or decreased) copy number relative
to the ‘normal’ reference genome, more (or less) maps will
originate from it on an average. This is formalized as de-
scribed. Pair-wise alignments of optical maps to an in silico
reference were summarized by a single number (midpoint)
representing location. These locations were modeled as re-
alizations of a non-homogeneous Poisson process. The
non-homogeneity arises from the fact that the likelihood of
a map aligning to a genomic region depends on the density
of restriction sites, and was accounted for using alignment
data from a normal genome, which are used to define ran-
dom intervals with counts that follow a negative binomial
distribution. These counts were then modeled by a Hidden
Markov Model, incorporating spatial dependence in the
data and allowing more natural estimation of certain pa-
rameters [68,69].

Affymetrix genome wide human SNP array 6.0

DNA was prepared for hybridization using the Blood
and Cell Culture Kit (Qiagen, Valencia, CA), starting
from frozen cells (HF087), or tumor tissue (HF1551),
disaggregated into single cells as described previously.

The HF087 cells were derived from the same slice used
for Optical Mapping. However, since the same was not
available for HF1551, a slice adjacent to the one used for
mapping was used.

The DNA was digested with Nspl and Styl restriction
enzymes and ligated to adaptors that recognize the 4 bp
overhangs. A generic primer that anneals to the adaptor
sequence was then used to amplify adaptor-ligated DNA
fragments, under PCR conditions optimized to preferen-
tially amplify fragments in the 200 to 1,100 bp size range.
The amplified DNA was then fragmented, labelled, and
hybridized to a Genome-Wide Human SNP 6.0 Array (ex-
periments were performed by the DNA Facility at the
Carver College of Medicine, University of lowa). Data ana-
lysis was performed using Genotyping Console 2.0
(Affymetrix, Santa Clara, CA). CNVs were called using ei-
ther the Affymetrix algorithm (with default parameters)
or five different algorithms (GLAD, Circular Binary Seg-
mentation, Fused Lasso, Gaussian Model with Adaptive
Penalty, Forward-Backward Fragment Annealing Segmen-
tation) from CGHweb (http://compbio.med.harvard.edu/
CGHweb/) [155]. Only CNV calls made by two or more
algorithms were considered for comparison.

Parameters for comparing oligodendroglioma structural
variants

To other optical mapping datasets

Only variants of the same type were compared to each
other, e.g.: MCs from HF087 were compared to MCs from
lymphoblast cell line GM15510. Intersection ‘windows’ were
set based on the type of OSA (100 bp for MCs, 4200 bp for
ECs and 0 bp for INS, DEL and OTHER) and are reflective
of the error processes inherent to each type of event.

To published SNPs and structural variants

Published SNPs were compared against Optical Mapping
cut differences using 100 bp or 3000 bp windows for
MCs and ECs, respectively.

Structural variants from the latest (November 2010)
release of the Database of Genomic Variants [156] were
divided into two categories on the basis of their size.
Events smaller than 3 kb were compared to ECs and
MCs, since ~1/3" of indels that are below the lower
limit of detection for Optical Mapping manifest them-
selves as cut differences [56]. Events larger than 3 kb
were compared to INS, DEL and OTHER variants using
a 0 bp intersection window.
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PCR validation

Template for PCR was prepared by whole genome amplifi-
cation of tumor DNA using the REPLI-g Mini kit (Qiagen
Inc,, Valencia, CA) as per the protocol provided by the
manufacturer. Pooled normal DNA from 6 individuals
(Promega Corporation, Madison, WI) was used for control
reactions. Primers were designed using freely available soft-
ware Primer 3 Plus [157]. PCR reactions were performed
using reagents from the Expand Long Template PCR Sys-
tem (Roche Applied Science, Indianapolis, IN) following
the protocol supplied by the manufacturer. PCR reactions
were digested with appropriate restriction enzymes to es-
tablish that the correct region had been amplified. The
amplicon was then cloned in E. coli using the TOPO TA
Cloning Kit (Invitrogen, Carlsbad, CA), plasmid DNA was
purified using the Qiagen Plasmid Mini Kit (Qiagen Inc.,
Valencia, CA), and sequenced using Sanger biochemistry.

Targeted assemblies on Williams-Beuren

chromosomal region

The Swal in-silico restriction map from the Williams-Beuren
region on chromosome 14 was modified to reflect one of
eight alterations: 4 possible inversions, each with unique
start/end locations and spans (including the ‘canonical” inver-
sion), and 4 possible deletions, each with unique start/end
locations and sizes (including the ‘canonical’ deletion). These
modified in-silico maps were subjected to 8 rounds of itera-
tive assembly, using the collection of HF1551 Rmaps, with
the same parameters as the genome-wide assembly. The
results were manually curated to rule out assembly errors.

Ethics statement
This study was approved by the Institutional Review
Board of the University of Wisconsin-Madison.

Availability of supporting data

All structural variation calls and analysis are contained
within the additional files.

Additional files

Additional file 1: Basic attributes of oligodendroglioma datasets. This
spreadsheet describes the two optical maps in detail. Column A lists specific
characteristics associated with each step of constructing the map. Columns

B and C lists its values for tumor HF087 (column B) and HF 1551 (column C).

Additional file 2: Overlap (counts) between oligodendroglioma
structural variants and genes, segmental duplications, SNPs, and
variants reported by other investigators. This table lists counts of
structural variants from oligodendroglioma that intersect with genes,
segmental duplications, SNPs, and events from the Database of Genomic
Variants (DGV). Column A specifies the genomic element; columns B and H
indicate total counts for HF087 and HF1551 respectively; Columns C-G and
I-M shows overlap counts by variant class. Variants from the DGV are divided
based on size into those over 3 kb and those under then 3 kb, then further
by study. Variants less than 3 kb are compared to optical map EC and MCs,
while those over 3 kb are compared to INS, DEL and OTHER.
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Additional file 3: Detailed description of intersections between
oligodendroglioma structural variants and genes, SNPs, variants
from the Database of Genomic Variants and other normal human
optical maps. This spreadsheet provides a detailed breakdown of the
overlap between Each row in the spreadsheet shows an optical map
difference (column A), it's location (columns B-D), and genes (column E),
variants from the Database of Genomic Variants (column F, G), snip-SNPs
(column H), and structural variants from other Optical Mapping datasets
(columns I-N) that overlap with it. The number is parenthesis after each
column header indicates the intersection window.

Additional file 4: Experimental validation of oligodendroglioma ECs
and MCs by SNP array. This table lists cut differences found in HF087
and HF1551 (column A), their location (columns B-D), type (column E),
the SNP genotype corresponding to it (column F) and whether it agrees
with the optical map (column G).

Additional file 5: Experimental validation of oligodendroglioma
indels. This table lists indels found in HF087 and HF1551 (column A),
their location (columns B-D) and whether it is validated by a given copy
number algorithm (columns E-J).

Additional file 6: Oligodendroglioma structural variants and their
intersection (counts) with variants detected in six other normal
human optical maps. This table lists counts of structural variants from
oligodendroglioma that intersect with variants found in other normal human
genomes that have been analyzed by Optical Mapping. Column A specifies
the genomic element; columns B and H indicate total counts for HF087 and
HF 15571 respectively; Columns C-G and I-M shows overlap counts by variant
class. Only variants of the same category are included in the comparison.

Additional file 7: Non-genic candidates found in
oligodendroglioma and functional elements from ENCODE that
intersect them. Column A lists identifiers for candidate loci that do not
occur within a gene, their locations (columns B-D), overlapping
transcripts found by GENCODE (column E), and predicted genomic state
in different cell types (columns F-N). The cell types in red font are cancer
cell lines. Different genomic states are color-coded as per ENCODE
website, and is detailed in the key.

Additional file 8: Differentially expressed genes in GEO dataset
GSE4290, analyzed by Ebarrays, p = 1E-03. Entrez gene identifer
(column A), gene symbol (column B), gene name (column C), cellular
location (column D) and molecular function (column E) of all differentially
expressed genes in GEO dataset GSE4290.

Additional file 9: Number of oligodendrogioma samples in
REMBRANDT database where a given candidate gene is up or down
regulated by at least 2 fold. This table lists candidate genes identified
through Optical Mapping (column A), and the number of
oligodendroglioma samples in the REMBRANDT database where that
gene is up or down regulated by at least two fold (column B).
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