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Abstract

resistance.

Background: Several mutations were present in the genome of Streptococcus pneumoniae linezolid-resistant strains
but the role of several of these mutations had not been experimentally tested. To analyze the role of these
mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two
strains with sensitive background. We sequenced the parent mutant and two independent transformants
exhibiting similar minimum inhibitory concentration to linezolid.

Results: Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene
copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-
resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the
parent mutant leading to the overexpression of an ABC transporter (spr1021). The acquisition of these mutations
conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA
methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part
by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the
overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant.

Conclusions: Our results demonstrate the usefulness of whole genome approaches at detecting major
determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with

Background

Streptococcus pneumoniae is a Gram-positive pathogen
responsible for serious diseases such as pneumonia,
meningitis, acute otitis media and sepsis. Although vac-
cination campaigns have been useful at decreasing the
prevalence of the most frequent serotypes, the appear-
ance and spread of drug-resistant isolates not included
in the initial vaccine formulations are now threatening
our capacity at dealing with these infections [1]. The
increase in resistance to several classes of antimicrobials
due to the clonal spread of few multidrug resistant iso-
lates further worsens the situation. Fortunately, surveil-
lance studies revealed that every strains of S.
pneumoniae tested were sensitive to linezolid (LNZ)
[2-5], the first approved member of the oxazolidinone
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class of antibiotics. LNZ inhibits the formation of pro-
tein synthesis initiation complexes by binding to the
central loop segment of domain V of the 23S rRNA [6].
Recent cross-linking and crystallography experiments
further revealed that LNZ binds near the catalytic center
of the 50S ribosomal subunit and possibly interferes
with the placement of the aminoacyl-tRNA [7,8]. LNZ is
highly effective against a number of clinically important
gram-positive pathogens like Staphylococcus aureus and
its methicillin-resistant version (MRSA), enterococci and
their vancomycin-resistant versions (VRE), and S. pneu-
moniae [9]. Still, S. pneumoniae and Streptococcus oralis
isolates with reduced susceptibility to linezolid (MIC 4
pg/ml) have been already reported [10,11] and the emer-
gence of resistance is unfortunately likely.

Resistance to linezolid in gram-positive bacteria was
shown to be associated with key mutations in the
domain V of 23S rRNA or in the ribosomal proteins L3
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and L4 [12,13]. Although several mutations have been
pinpointed, the G2576T transversion in 23S rRNA
(when using the E. coli numbering system) is the most
frequently observed [14] and was shown to occur in
clinical isolates of S. aureus [13,15], S. epidermidis
[16-18], S. hominis [18], S. simulans [18] and in Entero-
cocci [19-21] resistant to linezolid. There are four to six
gene copies of 23S rRNA in most gram-positive patho-
gens, and the level of LNZ resistance as well as the fit-
ness cost usually correlates with the number of mutated
copies [22-26]. The domain V of 23S rRNA is the bind-
ing site of other translation inhibitors like chloramphe-
nicol, florfenicol and quinupristin-dalfopristin, and the
G2576T mutation was shown to confer cross-resistance
to these antibiotics. A six base pair deletion in the ribo-
somal protein L4 of S. pneumoniae isolates resistant to
chloramphenicol was also shown to be associated with
non-susceptibility to LNZ [10], and mutations in riboso-
mal proteins L3 [18,27,28], L4 [18,27,29-31] and L22
[2,18] were further observed in other LNZ-resistant
gram-positive bacteria. High levels of resistance to LNZ
were shown to be conferred by a plasmid-borne methyl-
transferase (Cfr) involved in ribosomal protection [32]
and recent outbreaks of LNZ-resistant S. epidermidis
and S. aureus have been associated with the clonal
spread of Cfr-containing strains [33-35].

Whole genome sequencing of laboratory generated
LNZ-resistant S. pneumoniae recently revealed muta-
tions in several genes, three of which (a chromosomally-
encoded methyltransferase and two ABC transporters)
were implicated in resistance to LNZ [29]. Several other
mutations were not studied. To improve our under-
standing of the role of these mutations in LNZ resis-
tance, we used a whole genome transformation
approach to reconstruct resistance. DNA extracted from
LNZ-resistant mutants was serially transformed in sensi-
tive isolates and the genomes of these transformants
were sequenced. We found that the selection of LNZ
resistance is accompanied by the acquisition of resis-
tance determinants that confer a fitness cost and of
compensatory mutations that partially alleviates the
growth defect of the resistant strains.

Results

The genome sequence of three independent in vitro-
selected LNZ-resistant S. pneumoniae mutants (R6M1,
R6M2 and 1974M2) previously revealed the presence of
several mutations [29], but the role in resistance had
only been studied for some of these. For a more global
understanding of the genetic variations associated with
resistance to LNZ, we studied a new resistant strain
named 1974M1 (LNZ MIC, 32 pg/ml). The transforma-
tion of high molecular weight DNA extracted from
1974M1 into S. pneumoniae sensitive strains followed
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by the selection of the transformants under LNZ pres-
sure should allow discriminating the mutations actually
involved in resistance from bystander mutations that
may have been randomly selected during the selection
process. A total of three rounds of transformation of
1974M1 genomic DNA were required to fully recon-
struct the high level LNZ resistance of 1974M1 into the
S. pneumoniae 1974 background (leading to the trans-
formant 1974T3) (Table 1, Additional File 1). We also
used a similar strategy of transforming the genomic
DNA of 1974M1 into the R6 strain but despite several
attempts we could not reach a LNZ MIC higher than 16
pg/ml (leading to the transformant R6T2) (Table 1,
Additional file 1). Considering the higher initial LNZ
MIC of 1974 compared to R6, the fold-increase in resis-
tance was the same between the last two transformants
(Table 1).

In order to identify the mutations that had been trans-
ferred to 1974T3 and R6T2, the genome sequences of
the parent mutant 1974M1 and of both transformants
were determined by 454 pyrosequencing. More than
97% of the reads of 1974M1, R6T2 and 1974T3
assembled into 90 to 115 large contigs covering more
than 98% of the genome with mean depth coverage of
20X. While we cannot exclude having missed some
point mutations, we were capable of fully reconstructing
resistance using both a whole genome approach (Table
1) and a targeted approach (see below). Of the fifteen
mutations identified in the 1974M1 mutant (Table 2),
six mutations were transferred into both 1974T3 and
R6T2 transformants (Table 2). These included the
G2576T transversion observed in the four copies of the
23S rRNA and missense mutations in the L3 and L16
ribosomal proteins. The only other 1974M1 mutation to
be transferred was a G to T transversion that specifically
occurred 29 nucleotides upstream of the start codon of
spr1021 in the 1974T3 transformant (Table 1). No spon-
taneous mutations occurred during the selection of the
transformant bacteria.

The targeted sequencing of transformants isolated at
different rounds of transformation (R6T1, R6T2 and
1974T1 to 1974T3) revealed that the acquisition of
mutations in 23S rRNA began during the first round of
transformation in both R6 and 1974 genetic back-
grounds while the mutations in the L3 and L16 riboso-
mal proteins or upstream of spr1021 only occurred
during the second and third rounds of transformation
(Table 1). The acquisition of mutations in the 23S
rRNA is a well established LNZ resistance determinant
and the serial transformation of mutated 23S rRNA
gene copies also translated into a stepwise increase in
LNZ resistance in S. pneumoniae R6 in addition to
increase cross-resistance to chloramphenicol and florfe-
nicol but not to penicillin (Table 3). We were never able
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Table 1 Chronological appearance of mutations in S. pneumoniae R6 and 1974 transformants at different levels of

linezolid resistance?.

S. pneumoniae strains/ LNZ MIC No. of colonies spr_ spr_ spr_ spr_ spr0188° spro196° spr1021°
transformants®*< (ng/ml) tested rrnaD? rrnaC® rrnaB® rrnaA?

R6 05 4 W W W w W w %

R6T1 4 M W W M W w w

R6T2 16 4 M M M M M M W

1974 1 4 W W W W W W W

1974T1 8 4 M M M w W w %

197412 16 4 M M M w W w W

197473 32 4 M M M M M M M

@ W (wild-type version); M (1974M1 version).

P R6T1 and R6T2 are first and second level transformants, respectively, of S. pneumoniae R6 transformed with genomic DNA extracted from 1974M1.
€1974T1, 197472 and 1974T3 are first, second and third level transformants, respectively, of S. pneumoniae 1974 transformed with genomic DNA extracted from

1974M1.

9 Mutant 1974M1 had a G2576T mutation in the four copies of spr_rrna23s.
€ Mutant 1974M1 had a T409C mutation in spr0188.

f Mutant 1974M1 had a A235G mutation in spr0196.

9 Mutant 1974M1 had a G-29T mutation in spr1021 (the number preceded by "~ indicates the position upstream of the ATG).

to select for unique integration events of the G2576T
mutation in the 1974 background however, as it was
always acquired by the four copies of 23S rRNA at the
same time (Table 3). Nonetheless, this led to similar
fold increase in LNZ resistance than in S. pneumoniae
R6 (Table 3) and was also linked to chloramphenicol
and florfenicol cross-resistance (Table 3). The missense
mutations in the 50S ribosomal proteins L3 (spr0188)
and L16 (spr0196) of 1974M1 appear to require a speci-
fic genetic background for resistance as they were only
able to decrease LNZ susceptibility when transformed

into a strain in which the four copies of 23S rRNA were
mutated (named T-7) (Table 4) and not when trans-
formed into WT strains of S. pneumoniae R6 (Table 4)
or 1974 (data not shown).

The 23S rRNA genes and the rRNA methyltransferase
spr0333 were the only mutated genes common to
1974M1 and three other S. pneumoniae LNZ-resistant
strains described previously [29] (Figure 1). The only
other mutations acquired in common by 1974M1 and at
least one of these other mutants were a G to T transver-
sion in the promoter regions of the ATP-binding

Table 2 Common mutations found between the S. pneumoniae 1974M1 mutant and the transformants resistant to

linezolid.

Name/function of genes Locus Name® 1974M1°< T-1974T13P<4 T-R6T2P*
23S rDNA spr_rrmaD23S G2576T G2576T G2576T
23S DNA spr_rmaC23S G2576T G2576T G2576T
23S rDNA spr_rrnaB23S G2576T G2576T G2576T
23S rDNA spr_rraA23S G2576T G2576T G2576T
50S ribosomal protein L3 spr0188 T409C Y137H T409C Y137H T409C Y137H
50S ribosomal protein L16 spr0196 A235G 179L A235G 179L A235G 179L
ABC transporter ATP-binding subunit spr1021 G-29T G-29T

Conserved hypothetical/rRNA methyltransferase spr0333 G503T S768!

Sodium/hydrogen exchanger family protein spr0573 G141A T471

Conserved hypothetical protein spr0855 G25A A9T

Fibronectin-binding protein-like protein A spr0863 C617A S206!

Conserved hypothetical protein spri115 C29T T10l

Transcription antitermination factor spr1820 G38T WI13L

ABC transporter ATP-binding/membrane-spanning protein spr1885 T490G S164R

ABC transporter ATP-binding/membrane-spanning protein spr1887 G-32T

@ The S. pneumoniae loci number (spr#) are according to the annotation of S. pneumoniae R6.

® When the mutations are within coding regions, the change in amino acids is also indicated in italics.
€ In noncoding sequences, the number preceded by -’ indicates the position upstream of the ATG.

9 DNA of mutant 1974M1 transformed into 1974 (T3 represents third level transformation).

€ DNA of mutant 1974M1 transformed into R6 (T2 represents second level transformation).
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Table 3 Relationship between the mutation status at domain V of every 23S rRNA gene and the level of resistance to

linezolid and other antibiotics.

S. pneumoniae 23S rDNA status in PCR No. of spr_ spr_ spr_ spr_.  MIC MIC MIC FFC MIC PCG
strains fragment/transformant colonies rrmaD rmaC rmaB rmaA LNZ CHL (ng/ml) (ng/ml)
tested (ng/  (ng/
ml) ml)
R6 4 W w w W 05 3 1 0023
T-RG23STDNARGM? G2576T/G2576T 3 M w W W 1 6 2 0023
T-RG?3SIONARGM? G2576T/G2576T 4 M w w M 2 12 2 0023
T-RGZSIDNARGM2 G2576T/G2576T 4 M M w M 4 16 8 0023
T-RE3SIDNARGM2 G2576T/G2576T 4 M M M M 8 24 16 0023
1974 4 W w W w 1 3 2 0023
G2576T/G2576T 12 M M M M 16 24 16 0023

T-
197423SIDNATO74M1

W (wild-type version); M (1974M1 version); LNZ (linezolid); CHL (chloramphenicol); FFC (florfenicol); PCG (penicillin G).

cassette (ABC) genes spr1887 and spr1021 (Table 2, Fig-
ure 1). Of these, only the 23S rRNA and spr1021 muta-
tions were transferred to R6T2 and/or 1974T3 (Table
2). When the mutations in or upstream of spr0333,
spr1021 or spr1887 were specifically transformed into
WT backgrounds of S. pneumoniae R6 (data not shown)
or S. pneumoniae 1974 (Table 4), only the mutation
upstream of spr1021 was able to increase LNZ resis-
tance and this was correlated with its overexpression
(Table 5). Similarly to sensitive isolates, only the muta-
tion linked to spr1021 changed the LNZ susceptibility
values when transformed into the T-7 cells (Table 4).

The acquisition of LNZ resistance conferred a growth
defect to the 1974M1 mutant (p < 0.01) (Figure 2A, B) and
growth kinetic experiments revealed that this was due to
several mutations associated with resistance to LNZ.
Indeed, the growth of the T-7 transformant harboring four
altered copies of 23S rRNA was retarded compared to its
1974 parent (p < 0.01), even when compared to the
1974M1 mutant (p < 0.01) (Figure 2A). This growth defect
was further enhanced by the mutation located within the
rRNA methytransferase spr0333 (p < 0.01) and by the
mutation leading to the overexpression of the ABC gene
spr1021 (Figure 2A). The fitness cost conferred by these

Table 4 Functional analysis of mutations in genes spr0188, spr0196, spr0333, spr1021 and spr1887 in resistance to

LNZ and other antibiotics in S. pneumoniae.

Strains/ Locus® No. of colonies Mutation status Mutation status MIC MIC MIC
transformants® tested 1974M1<4 Transformants®® LNZz® CHL® FFC®
(pg/ml)  (pg/ml)  (pg/ml)

R6 05 3 2
T-Re*PO188 spr0188 8 A409G Y137H A409G Y137H 05 3 3
T-RE*PO1% spr0196 T235G 179L T235G 179L 05 3 2
T-Re*F18 spr1887 G-46T G-46T 05 3 2
1974 1 3 2
T-19745P10333 spr0333 8 G626T G209V G626T G209V 1 4 4
T-19745P1021 spr1021 G-29T G-29T 2 4 4
T-1974235PNAZAME o 1inaDCBA23S G2576T G2576T 16 24 16
T-7)

T-7oPr0333 spr0333 4 G626T G209V G626T G209V 16 24 16
T-7ePr1021 spr1021 2 G-29T G-29T 32 32 32
T-7ePr1es7 spr1887 4 G-46T G-46T 16 24 16
T-7ePOT88 spr0188 4 A409G Y137H A409G Y137H 16 24 16
T-75PO188, sprO196 spr0188 A409G Y137H A409G Y137H 32 12 8

spr0196 T235G 179L T235G 179L

@ T stands for transformants; spr0188 (ribosomal protein L3); spr0196 (ribosomal protein L16); spr0333 (conserved hypothetical protein/rRNA methyltransferase)

spr1021 (ABC protein-coding gene); spr1887 (patA ABC gene).

® The S. pneumoniae loci number (spr#) are according to the nomenclature of S. pneumoniae R6.
€ In noncoding sequences, the number preceded by -’ indicates the position upstream of the ATG.
9 When the mutations are within coding regions, the changes in amino acids is indicated in italics.

€ LNZ (linezolid); CHL (chloramphenicol); FFC (florfenicol).
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R6M1

spr_rrnaC23S
spr_rrnaB23s
spr_rrnaA23s

u Spr0333b

Figure 1 Venn diagram of the mutations identified in the S. pneumoniae R6M1, R6M2, 1974M1 and 1974M2 mutants resistant to LNZ.
2 The four gene copies of 235 rRNA, © spr0333 codes for a hypothetical protein/rRNA methyltransferase, < spr1021 codes for the nucleotide-
binding subunit of an ABC protein, ¢ spr1887 codes for an ABC transporter.

1974M1
1974M2

last two mutations required a background of altered 23S
rRNA however, as their transformation failed to affect the
growth of S. pneumoniae 1974 WT (data not shown). In
contrast, we found that most 1974M1 mutations that could
not be directly linked to LNZ resistance by transformation
experiments or the mutations that failed to be transferred
to the R6T2 and 1974713 transformants acted as compensa-
tory mutations involved in increasing the growth fitness of
the 1974M1 mutant. Notably, the mutations in the genes
coding for the ribosomal protein L3 (Figure 2B) and the
mutation leading to the overexpression of the ABC gene
spr1887 (Table 5 and Figure 2A) were able to compensate
in part for the fitness cost associated with altered copies of
23S rRNA (p < 0.01). The mutation upstream of spr1887
was further able to compensate the growth defect conferred
by the mutation of the RNA methyltransferase spr0333 and
by the overexpression of the ABC gene spr1021 (p < 0.01)
(Figure 2A). Mutations can thus be involved in either resis-
tance, fitness compensation, or both.

Discussion
LNZ is a member of the oxazolidinone class of antibio-
tics that inhibit translation initiation by targeting the

domain V of the 23S rRNA. Although resistance to LNZ
in clinical settings is rare, and so far absent in the case
of S. pneumoniae [3,5], the analysis of LNZ-resistant
strains revealed the 23S rRNA G2576T mutation to be a
major resistance determinant. Other mutations can still
be implicated in resistance however, as described in
LNZ-resistant Enterococci, Staphylococci and S. pneumo-
niae [21,22,26,29,36]. Recent advances in DNA sequen-
cing technology make possible the study at the whole-
genome level of the genetic bases implicated in the
mode of action and resistance mechanisms of drugs
[37-42]. To pinpoint the mutations most relevant to
LNZ resistance, we sequenced a new S. pneumoniae
strain, 1974M1, and two S. pneumoniae LNZ-resistant
transformants generated by whole genome serial trans-
formation of LNZ-sensitive strains with genomic DNA
isolated from highly LNZ-resistant mutants.

We first concentrated on recurrent mutations trans-
ferred to both transformants as we hypothesized that
these would be the most likely to be responsible for
resistance. As reported in other bacterial species
[22,26,27,29], the G2576T 23S rRNA mutation is also
key for LNZ resistance in S. pneumoniae. Similarly to

Table 5 qRT-PCR to monitor gene expression after introducing a point mutation upstream of spr1021 (G-29T) and

spr1887 (G-46T) in the S. pneumoniae 1974 and T-7 lines.

Strains/transformants

Mean 1974T/1974WT
spr1021 expression ratiof

Mean 1974T/1974WT

2 b < spr1887 expression ratio® ™ ¢

T-1974°P11021 36 (04)
T-7epr1021 34 (04)
-|—775pr1021, spr1887 33 (05)
1974 1(0.2)

12 (02)
12 (02)

129 (02)
10.2)

T (transformant); WT (wild-type)
PValues represent an average of three independent experiments.
“The standard deviation is indicated in parentheses.
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Figure 2 Growth kinetics of S. pneumoniae wild-type (1974),
LNZ-resistant mutant (1974M1) and LNZ-resistant
transformants. A. Growth curves of S. pneumoniae 1974
transformed with four mutated copies of 23S rRNA alone (T-7); or
along with altered versions of spr0333 (T-7°""**%); spr1021 (T-
7°P1021y: spr1887 (T-7°°"%87) or a combination of the three (T-
76P1O333, 1021, 1887y B Growth curves of S. pneumoniae 1974
transformed with four mutated copies of 23S rRNA alone (T-7); or
along with altered versions of spr0188 T-73; spr0188 and spr0196
(T-75119); spr0188, spr0196 and spr0333 (T-7-3H16P0333): o spr0188,
spr0196 and spr1887 (T-7-°11%P1887) Data are expressed as the
mean of three independent experiments and the statistical
significance of the growth differences are indicated in the text.

Staphylococcus and Enterococci [12,21,22,26,36], the level
of resistance to LNZ in S. pneumoniae R6 correlates
with the number of mutated gene copies of 23S rRNA.
The same gene dosage effect was also observed for the
level of cross-resistance to chloramphenicol and florfeni-
col, two other translation inhibitors acting at the level of
domain V of 23S rRNA [43]. In S. pneumoniae 1974,
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the four mutated copies were always simultaneously
acquired during the targeted transformation of 23S
rRNA PCR fragments (12 colonies analyzed). Whether
this is due to strain-specific features remains to be
established.

The acquisition of 23S rRNA G2576T mutations con-
ferred a biological cost to the S. pneumoniae 1974M1
mutant (Figure 2). Reduced fitness is a frequent out-
come associated with antibiotic resistance [44] and the
acquisition of mutations in the primary targets of fluor-
oquinolones (gyrA) [45,46] and B-lactams (penicillin-
binding proteins) [47,48] were also shown to confer a
growth defect in S. pneumoniae resistant mutants. Com-
pensatory mutations occurring either within the genes
responsible for resistance or at distinct sites were shown
to increase the fitness of the resistant strains, and can
even help in achieving higher levels of resistance [49].
Mutations in 50S ribosomal proteins have been observed
in LNZ-resistant strains of S. pneumoniae and S. aureus
[10,27,28,50-52] and the selection of a Y137H mutation
in the L3 ribosomal protein (spr0188) of 1974M1 is con-
sistent with the reduced LNZ susceptibility previously
reported to be conferred by the F147L mutation in ribo-
somal protein L3 of S. epidermidis (which corresponds
to amino acid 137 in S. pneumoniae) [51]. This muta-
tion failed to directly translate into enhanced levels of
LNZ resistance when transferred into R6 WT cells
(Table 4) however, although it seems to be implicated in
resistance when L16 is mutated and in a context where
23S rRNA is mutated at position G2576T (Table 4). In
addition, these mutations are also able to compensate
for the growth defect conferred by the 23S rRNA
G2576T mutation (Figure 2). Crystallographic studies of
the 50S ribosomal subunit have shown that several ribo-
somal proteins contain extensions approaching 23S
rRNA bases near the peptidyltransferase center (PTC),
and a critical subset of these proteins includes the L3
and L16 proteins [53,54]. Although they are not part of
the PTC per se, mutations at residues close to the PTC
in L3 and L16 ribosomal proteins could still be impli-
cated in releasing constraints associated with the acqui-
sition of the unfavorable G2576T 23S rRNA mutation
by altering the conformation and/or stability of the PTC
through changes in second- and third-shell interactions.
This could explain the frequent acquisition of ribosomal
protein mutations following selection of resistance to
LNZ in different bacterial species [3]. The L3 and L16
mutation together conferred increased sensitivity to
chloramphenicol and florfenicol however (Table 4),
which could be explained by distinct 23S rRNA binding
sites compared to LNZ [55].

The selection of a single nucleotide mutation leading
to the overexpression of the ABC protein spr1887
(Table 5) in S. pneumoniae LNZ-resistant mutants was
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shown to confer a small but significant increase in the
level of resistance to LNZ [29]. Interestingly, we showed
here that the increased expression of spr1887 was also
able to compensate for the fitness cost conferred by a
number of LNZ resistance determinants, including major
resistance mechanisms like mutations in 23S rRNAs and
more specific ones like mutations in the rRNA methyl-
transferase spr0333 (Figure 2). The genome of S. pneu-
moniae encodes several ABC proteins, some of which
were shown to be involved in drug resistance [56-58]. As
mutations at the primary target site (23S rRNA) may lead
to excessive concentrations of free LNZ, the cell might
require to increase the expression of ABC efflux systems
like spr1887 [56,57] to expel the excess of LNZ. Indeed,
the decay of antibiotics was shown to generate degrada-
tion products displaying potential biological activities and
to be detrimental to the strains having acquired primary
resistance determinants [59].

Conclusions

The parent mutants had more mutations than the trans-
formants (Table 1), which suggests that long term step-
by-step selection and growth may require additional
mutations or that spurious neutral changes are occur-
ring during the selection of resistance. The mutations
identified here fully account for the level of LNZ resis-
tance of the mutant and some were found to compen-
sate for a fitness cost. The combination of whole
genome transformation and sequencing used here was
useful for highlighting mutations playing a dual role in
LNZ resistance and fitness compensation.

Methods

Bacterial strains, growth conditions and MIC
determinations

The R6M1, R6M2, 1974M1 and 1974M2 LNZ-resistant
mutants have respectively been generated from the
avirulent S. pneumoniae strain R6 and the serotype 14 S.
pneumoniae clinical isolates CCRI-1974 as described
previously [29]. The genome sequence of these strains
was available which facilitated our approach of whole
genome transformation and sequencing. Transformants
are described in Tables 1, 2, 3 and 4. Pneumococci were
grown in brain heart infusion broth (BHI, Difco) supple-
mented with 0.5% yeast extract, or in blood agar con-
taining 5% defibrinated sheep’s blood. Cultures were
incubated for 16-24 hours in a 5% CO, atmosphere at
37°C. The minimal inhibitory concentration (MIC) of
drugs was determined by E-test (AB Biodisk) or micro-
dilution. The microdilution assays were performed
according to the guidelines of the Clinical and Labora-
tory Standards Institute (CLSI). The MIC was recorded
as the lowest dilution showing no growth. All MIC mea-
surements were done at least in triplicate.
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High molecular weight DNA transformation

High molecular weight genomic DNA was extracted
from the LNZ-resistant 1974M1 mutant using the
Wizard Genomic DNA Purification Kit (Promega)
according to the manufacturer’s instructions. All pneu-
mococci strains were made competent as follows. Bac-
teria were cultured at 37°C in C+Y medium pH6.8 [60]
until an optical density at 600 nm (ODgqgg) of 0.12. The
cells were then concentrated tenfold and resuspended in
C+Y media (pH 7.9) with 10% glycerol and frozen at
-80°C in 100 pl aliquots. For transformation experi-
ments, the cells were thawed on ice and resuspended in
9 volumes of C+Y media (pH 7.9). The cells were stimu-
lated with 200 ng/ml of competence stimulating pep-
tide-1 at 37°C for 10 minutes. The stimulated
competent cells were exposed to approximately 2 pg/ml
genomic DNA and incubated at 30°C for 1 hour, fol-
lowed by 2 hours at 37°C. One-hundred microliters of
stimulated cells were then plated on CAT agar supple-
mented with 5% sheep blood and the appropriate con-
centration of LNZ.

Whole-genome sequencing

Genomic DNAs were prepared from mid-log phase cul-
tures of S. pneumoniae strains using the Wizard Geno-
mic DNA Purification Kit (Promega) according to the
manufacturer’s instructions. The genomes of the
1974M1 mutant and the 1974T3 and R6T2 transfor-
mants were sequenced using the massively parallel
sequencing 454 Life Sciences GS-FLX systems (Roche).
Genome sequencing, assemblies and comparative ana-
lyses were performed at the McGill University Genome
Quebec Innovation Center (http://gqinnovationcenter.
com/index.aspx). The R6T2 and 1974T3 sequences pro-
duced an assembly of 22x and 23x coverage and an
aggregate genome size of 2025687 bp and 1995497 bp,
respectively. Whenever possible, the order and orienta-
tion of assembled contigs was done in accordance with
the genome assembly of S. pneumoniae R6 (accession
number NC_003098). Mutations deduced from mas-
sively parallel sequencing were confirmed by PCR ampli-
fication and conventional DNA sequencing. The
sequencing data has been deposited at the NCBI under
the accession [BioProject: 73475].

RNA isolation and qRT-PCR

Total RNA was isolated from bacterial cells grown to
mid-log phase in BHI using the Qiagen RNeasy Mini
Kit (Qiagen) according to the manufacturer’s instruc-
tions. Genomic DNA contamination was shunned by
digesting samples with DNase I (Ambion). The quality
and integrity of the starting RNA material were assessed
with a 2100 BioAnalyzer and RNA 6000 Nano chips
(Agilent). The quality of the RNA was further
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determined by amplification of housekeeping gene. The
cDNAs were generated from total RNAs using the
Superscript II reverse transcriptase (Invitrogen) and ran-
dom hexamers according to the manufacturer’s instruc-
tion. Real-time quantitative RT-PCR assays were carried
out in a BioRad Cycler using SYBR Green I (Molecular
Probes). The reactions were carried out in a final
volume of 20 pl containing specific primers and iQ
SYBR Green Supermix (Bio-Rad). All real-time qRT-
PCR data were normalized according to the amplifica-
tion signals of the 16S rRNA.

Growth curves and fitness cost determination

The turbidity of S. pneumoniae strains grown on blood
agar plates was adjusted to 0.5 McFarland units. For
each strain, a 1 ml aliquot of 0.5McFarland suspension
was inoculated into 99 ml of BHI broth and incubated
at 37°C under a 5% CO, atmosphere. Bacterial growth
was monitored by recording the ODgqq at intervals of 1
hour for a total period of 16 hours. Differences in
growth rates were measured by Analysis of Variance for
statistical significance using the prism software.

Additional material

Additional file 1: Whole genome transformation and resistance
reconstruction in Streptococcus pneumoniae. Figure S1 is a figure
describing the strategy to reconstruct resistance to LNZ by using serial
whole genome transformation in S. pneumoniae R6 and 1974.
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ribosomal ribonucleic acid; WT: wild-type
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