BIVIC Bioinformatics

Research article
Natural computation meta-heuristics for the in silico optimization
of microbial strains

Miguel Rocha*!, Paulo Maia!, Rui Mendes!, José P Pinto!,
Eugénio C Ferreira?, Jens Nielsen4, Kiran Raosaheb Patil3 and Isabel Rocha*?

@,

BiolVled Central

Address: 'Department of Informatics/ CCTC, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal, 2IBB-Institute for Biotechnology
and Bioengineering/Centre of Biological Engineering, Universidade do Minho, 4710-057 Campus de Gualtar, Braga, Portugal, 3Center for
Microbial Biotechnology, Department of Systems Biology, Building 223, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark and
4Systems Biology, Dept. Chemical and Biological Engineering, Chalmers University of Technology, Kemivigen 10, SE-412 96, Gothenburg,

Sweden

Email: Miguel Rocha* - mrocha@di.uminho.pt; Paulo Maia - paulo.maia@di.uminho.pt; Rui Mendes - rcm@di.uminho.pt;
José P Pinto - josepedr@di.uminho.pt; Eugénio C Ferreira - ecferreira@deb.uminho.pt; Jens Nielsen - nielsenj@chalmers.se;
Kiran Raosaheb Patil - krp@biocentrum.dtu.dk; Isabel Rocha* - irocha@deb.uminho.pt

* Corresponding authors

Published: 27 November 2008 Received: 20 August 2008

BMC Bioinformatics 2008, 9:499 doi:10.1186/1471-2105-9-499

Accepted: 27 November 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/499

© 2008 Rocha et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: One of the greatest challenges in Metabolic Engineering is to develop quantitative
models and algorithms to identify a set of genetic manipulations that will result in a microbial strain
with a desirable metabolic phenotype which typically means having a high yield/productivity. This
challenge is not only due to the inherent complexity of the metabolic and regulatory networks, but
also to the lack of appropriate modelling and optimization tools. To this end, Evolutionary
Algorithms (EAs) have been proposed for in silico metabolic engineering, for example, to identify
sets of gene deletions towards maximization of a desired physiological objective function. In this
approach, each mutant strain is evaluated by resorting to the simulation of its phenotype using the
Flux-Balance Analysis (FBA) approach, together with the premise that microorganisms have
maximized their growth along natural evolution.

Results: This work reports on improved EAs, as well as novel Simulated Annealing (SA) algorithms
to address the task of in silico metabolic engineering. Both approaches use a variable size set-based
representation, thereby allowing the automatic finding of the best number of gene deletions
necessary for achieving a given productivity goal. The work presents extensive computational
experiments, involving four case studies that consider the production of succinic and lactic acid as
the targets, by using S. cerevisiae and E. coli as model organisms. The proposed algorithms are able
to reach optimal/near-optimal solutions regarding the production of the desired compounds and
presenting low variability among the several runs.

Conclusion: The results show that the proposed SA and EA both perform well in the optimization
task. A comparison between them is favourable to the SA in terms of consistency in obtaining
optimal solutions and faster convergence. In both cases, the use of variable size representations
allows the automatic discovery of the approximate number of gene deletions, without
compromising the optimality of the solutions.

Page 1 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

Background

Increasing necessity for sustainable manufacturing proc-
esses is driving a trend to replace the traditional methods
of chemical synthesis by biotechnological approaches, in
order to produce a number of valuable products, such as
pharmaceuticals, fuels and food ingredients. This, how-
ever, implies that the microorganisms' metabolism usu-
ally needs to be modified to comply with industrial
purposes, rather then to follow their natural aims like, for
example, the maximization of biomass growth.

In the last few years, within the field of Metabolic Engi-
neering, a number of tools have been developed in order
to introduce genetic modifications capable of achieving
the production of the desired products [1,2]. However,
these have still been based mostly on qualitative or intui-
tive design principles and scarcely on effective mathemat-
ical models that can accurately predict cellular behaviour.

A number of attempts have been made to model the
whole cell behaviour [3], but these models are still incom-
plete due to the lack of kinetic and regulatory informa-
tion.

Nevertheless, it is possible to predict cellular metabolism,
under some assumptions, namely considering steady-
state conditions and imposing a number of constraints
over the rates of reactions.

This is the way followed by the Flux Balance Analysis
(FBA) approach [4], where the flux over a particular reac-
tion is typically optimised using linear programming,
resulting in a value for the fluxes of all reactions in the cell.
The most usual approach, under this framework, is to
define a reaction for biomass production and to consider
this as the objective function, thus assuming that the
microbes have evolved towards optimal growth [5].

Using this technique, it is possible to predict the behav-
iour of a microorganism, both in its wild type and mutant
forms, under a number of environmental conditions. A
bi-level optimization problem can then be formulated, by
adding a layer that searches for the best mutant that can
be obtained by simply deleting a few genes from the wild
type. The idea is to force the microorganisms to produce
the desired product by selected gene deletions. Therefore,
the underlying optimization problem consists in reaching
an optimal subset of gene deletions to maximize an objec-
tive function related with the production of a given com-
pound.

A first approach to tackle this problem was the OptKnock
algorithm [6], where mixed integer linear programming
(MILP) is used to reach an optimum solution. An alterna-
tive approach was proposed by the OptGene algorithm [7]

http://www.biomedcentral.com/1471-2105/9/499

that considers the application of Evolutionary Algorithms
(EAs) in this context. Since EAs are a meta-heuristic opti-
mization method, they are capable of providing solutions
in a reasonable amount of time, although this solution
might not be the optimal one. Still its application in the
context of the yeast S. cerevisiae allowed the optimization
of an industrially important non-linear objective function
related with productivity in several processes such as the
production of succinic acid or vanillin.

OptGene proposed EAs with two alternative solution rep-
resentation schemes: binary or integer. The binary repre-
sentation is closer to the natural evolution of microbial
genomes, but is more complex and leads to solutions with
a larger number of knockouts. The integer representation
allowed for a more compact genome in the EA, encoding
only for the gene deletions. However, one of the major
limitations of this representation in OptGene is the need to
define a priori the number of gene knockouts, a parameter
that remains fixed throughout the EA's evolution.

In this work, the authors propose a set-based representa-
tion that considers a variant with variable-sized solutions
(sets of genes). This allows for the consideration of solu-
tions with a different number of knockouts (gene dele-
tions) during the optimization process, avoiding the trial
and error approach for determining the optimum number
of knockouts in a particular problem.

Under this new framework, two optimization algorithms
were developed: Simulated Annealing (SA) and Set-based
Evolutionary Algorithms (SEAs). Both search for the opti-
mum set size in parallel with the search for the optimum
set of gene deletions.

Although the proof of principle of the applicability of
meta-heuristics to the problem of microbial strain design
has already been achieved [7], a thorough validation
based on the collection of sufficient data to perform statis-
tical analysis was needed.

Therefore, in this paper, we present the results obtained by
the application of the two novel methodologies to four
case studies where S. cerevisiae and E. coli are the target
microorganisms. In these cases, the objective function is
related to the production of succinic and lactic acid,
respectively. In the in silico experiments, the proposed SA
and SEAs, and also variants with fixed size solutions were
compared.

For each experiment, the algorithms were run 30 times
allowing a sufficient number of function evaluations in
each run, and the results obtained allowed not only to
perform statistical analysis and a valid comparison
between the approaches, but also to obtain a close to opti-

Page 2 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

mum family of solutions that were analyzed resembling
their biological significance.

Results

Solution representation and evaluation

The optimization problem addressed in this work consists
in selecting, from a set of genes in a microbe's genome, a
subset to be deleted in order to maximize a given objective
function, related to the microorganism's metabolism. The
first issue to address, when developing an algorithm to
tackle this task, is the encoding of the solutions.

In this work, a novel set-based representation is proposed,
where only gene deletions are represented in the solution.
Each solution consists of a set of integer values represent-
ing the genes that will be knocked out. Therefore, if the set
contains the value i, this means that the gene(s) corre-
sponding to the i-th reaction in the microbe's metabolic
model will be deleted. Each element of the set is, there-
fore, an integer with a value between 1 and the total
number of reactions, N, and no repeated elements are
allowed. Two variants of this representation can be
defined, considering either fixed or variable sized sets.

The solutions are evaluated by taking all values in the set,
and forcing the fluxes of the reactions encoded by those
genes to the value 0, thus adding new constraints to the
metabolic model. The process proceeds with the simula-
tion of the mutant. In this work, this is achieved using FBA
(see the Methods section) but other methods can be con-
sidered at this stage (e.g. MOMA [8]). The output of this
step is the set of values for the fluxes over all the reactions,
some of which are then used to compute the fitness value,
given by an appropriate objective or fitness function.

In this work, the adopted fitness function is the Biomass-
Product Coupled Yield (BPCY) [7], given by:

BPCY = %

where P stands for the flux representing the excreted prod-
uct; G for the organism's growth rate (biomass flux) and S
for the substrate intake flux.

Besides optimising for the production of the desired prod-
uct, this objective function also allows to select for
mutants that exhibit high growth rates, i.e., that are likely
to exhibit a high productivity, an important industrial
aim. The overall process of decoding and evaluating a
solution is depicted in Figure 1.

Evolutionary Algorithms
Evolutionary Algorithms (EAs) [9] are a popular family of
optimization methods, inspired in the biological evolu-

http://www.biomedcentral.com/1471-2105/9/499

tion through natural selection. These methods work by
evolving a population, i.e. a set of individuals that encode
solutions to a target problem in an artificial chromosome.
Each individual is evaluated through a fitness function
that assigns it a numerical value, corresponding to the
quality of the encoded solution. New individuals (solu-
tions) are created by the application of reproduction oper-
ators to selected parents and, since the pool of parents is
taken from the previous population using probabilities,
EAs are stochastic in nature.

The proposed set-based EA (SEA) uses the set-based repre-
sentation and defines two reproduction operators: a cross-
over and a mutation. The crossover operator is inspired on
traditional uniform crossover operators [10] and works as
follows: the genes that are present in both parent sets are
kept in both offspring; the genes that are present in only
one of the parents are sent to one of the offspring, selected
randomly with equal probabilities. The mutation opera-
tor is a random mutation that replaces an element of the
set by another, randomly generated in the allowed range
(1 to N).

In SEAs, a minimum and a maximum value for the set size
are defined. If these values are equal, the search only goes
through sets of a given cardinality. The operators comply
with this constraint by creating solutions always of the
same size. In the case of the crossover, this implies that,
when selecting the destination of the genes that are
present in only one parent, if an offspring reaches the
maximum number of elements in the set, the remaining
genes go to the other offspring.

If the maximum and minimum values of the set sizes are
different, variable-sized sets can be encoded and compete
within the same population. In this case, two additional
mutation operators are defined in order to create solu-
tions with a distinct size:

e Grow: consists in the introduction of a number of new
elements into the set, whose values are randomly gener-
ated in the available range, avoiding duplicates.

e Shrink: a number of randomly selected elements are
removed from the set.

In both cases the limits on the set size are strictly obeyed.
The Grow and Shrink mutation operators are each used
with a probability of 5% each, meaning that 10% of the
new individuals are created in this way. The remaining
ones are bred by the aforementioned crossover and muta-
tion operators with equal probabilities. In the experi-
ments reported in this work, when a variable size SEA is
used, the minimum size is set to 1 and the maximum size

Page 3 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

http://www.biomedcentral.com/1471-2105/9/499

N

Stoichiometric Model o o
vi v2 v3 va v5 V6 fluxn constraints constraints
FI 0 1 0 0 0 0\ A 0SVLS +oo 0<vl<O
1 1 0 - 0 0 1 B - 00 Y2 < 400 0<v12<0
o 1 o 0 1 o 0 ¢ -0 SV3 S 400 0<va5<0
o o 1 Y g 4 t 2 -10<va<-10 0<v349<0
o 0 o0 0 0 1 0 E
FBA
5<vn<5 0<v560<0 MOMA
\ 0 1 1 0 0 0 0 0o metabolitem /
Decoding A 4
b i
solution
. . v1=0
Fitness Evaluation
e 2=0
Individual Eitness .
" s i — - Objective | gpcy < product
Function substrate
biomass

Figure |

The process of solution decoding and evaluation. The solutions (individuals) are encoded using the proposed set-based
representation where the genes to be deleted are represented. Each individual is decoded by imposing additional constraints to
the original metabolic model. FBA is the method used to simulate the cellular behaviour that will be associated to a given fit-
ness, related with the productivity in a given interesting compound.

is set to N, thus not restricting the possible range of solu-
tions.

SEA uses a selection procedure that consists in converting
the fitness value into a linear ranking of the individuals in
the population, and then applying a roulette wheel [11]
scheme. In each generation, 50% of the individuals are
kept from the previous generation, and 50% are bred by
the application of the reproduction operators. An elitism
value of 1 is used, allowing the best individual of the pop-
ulation to be always kept.

An initial population is randomly created and the termi-
nation criterion is based on a fixed number of generations
(in this work this is calculated to achieve a given maxi-
mum number of solution evaluations). In the variable
size SEAs, the size of the sets encoded in the initial indi-
viduals is randomly set to a value between 1 and 10.

Simulated Annealing

Simulated Annealing (SA) [12] is an optimization algo-
rithm where a single solution evolves by successive small
changes (mutations) to achieve an approximation to the
global optimum. Better solutions are always accepted and
local optima are avoided by the fact that SA allows worse
solutions to replace the current one with a certain proba-
bility that decreases over time. This probability is control-
led by the value of a parameter, denoted as temperature
given the fact that SA is loosely inspired by the annealing
process used in many different areas (e.g. in metallurgy or
PCR reactions) where the system initially at a high tem-
perature, is slowly cooled so that the system at any time is
approximately in thermodynamic equilibrium.

In optimization, the current state is a solution to the prob-
lem and its fitness value states for the system's energy. The
current solution is represented using similar encoding

Page 4 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

schemes as the ones used in the EAs. This allows SA to be
applied for instance to problems with binary, integer or
real variables. In this work, we developed an SA with the
set-based representation previously explained in the con-
text of the SEA.

At each step, the algorithm works by creating a new solu-
tion from the current one, using mutation operators. The
SA variant developed in this work allows the use of a com-
bination of mutation operators, similar to the ones
described for the EAs, each with a given probability. When
a new solution is created and evaluated, the difference
between the previous and the new fitness values is com-
puted (AE). A better solution is always accepted, while a
worse one is only accepted with a probability given by the
Boltzmann factor:

AE

placcept]=e T

The temperature T is initialized to T, and it is decreased
according to a given cooling schedule that represents how
this value decreases along the algorithm. The entire proc-
ess is repeated until the temperature is sufficiently low.
For each temperature value, a number of iterations are
performed, sufficient to give a good sampling statistics.

The main configuration parameters of the SA are the ini-
tial and final temperatures, the number of iterations per-
formed at each temperature and the cooling schedule
used. The choice of these parameters is of paramount
importance to the performance of the algorithm. If the
initial temperature is too low or the cooling schedule is
not slow enough, the optimization process may become
stuck in a local optimum. On the other hand, if the initial
temperature is too high, the cooling is too slow or the
number of iterations per temperature is too high, the algo-
rithm wastes a potentially large amount of computational
time searching for solutions.

The cooling schedule used in this work is among the most
popular ones, where the temperature decreases exponen-
tially, according to the following equation:

Ty =0T,
where o is a scale parameter (0 < a < 1).

To ensure that the cooling schedule is sufficiently slow,
the parameter o should be given values close to the unity.
The choice of initial (T) and final temperatures (7) is
problem dependent and its definition poses serious prob-
lems. Indeed, it is easier to think in terms of the objective
function values (fitness landscape) than in terms of values

http://www.biomedcentral.com/1471-2105/9/499

for the temperature. Thus, the following auxiliary param-
eters were defined:

e AE, - The difference in energy that corresponds to an
acceptance probability of worse solutions of 50%, at the
beginning of the run;

* AE; - The difference in energy that corresponds to an
acceptance probability of worse solutions of 50%, at the
end of the run;

e trials - The number of iterations per distinct temperature
value;

e NFEs — The number of function evaluations.
Using these parameters, the initial temperature, the final

temperature and the scale parameter were computed
using the following equations:

T, = - AE(
log0.5
AE
log0.5

log Ty —log T
a=ep (NFEs)

trials

The advantage of using AE, and AE;is that it allows the
user who approximately knows the fitness landscape of
the problem to automatically define the temperatures by
reasoning over the values of the objective function. Fur-
thermore, by supplying the number of function evalua-
tions instead of the scale parameter o enables the
comparison with other optimization approaches.

As in the EA, two variants of this representation can be
defined, considering fixed or variable sized sets. In the
fixed-size alternative, the previously defined random
mutation operator is used. In variable-sized representa-
tions, the two additional mutation operators (Grow and
Shrink) are also used, each with a probability of 25%,
meaning that half of the new individuals are created in
this way.

In brief, the SA algorithm searches for the optimal set of
gene deletions by exploring the whole search space (all
combinations of gene knockouts) in a stochastic manner,
where the probability of accepting a non-optimal search
direction is high in the beginning and very low or zero in
the end. The probability of accepting a non-optimal direc-
tion allows the algorithm to avoid the local optimal solu-
tions. Thus, the algorithm can find combinations of gene

Page 5 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

deletions which individually may not necessarily lead to
the improved production.

An overview of the major steps in the SEA and SA algo-
rithms is provided in Figure 2.

Greedy algorithm

A greedy algorithm was devised to provide a baseline
comparison with the more elaborate optimization
approaches. This algorithm tries to explore the search
space efficiently, by combining local search (the explora-
tion of the neighbourhood of known solutions) and
exhaustive search. The exhaustive search starts with the
wild type and proceeds with an increasing number of
knockouts. When a solution that improves over the wild
type one is found, local search is used to recursively
improve it by adding knockouts. When no further
improvements can be obtained with this local search pro-
cedure, exhaustive search is resumed. The details on the
implementation of this algorithm are given in the Meth-
ods section.

Pre-processing and post-processing

Typically, in microbial genome-scale models, the number
of variables (fluxes over metabolic reactions) is quite high
(hundreds or even a few thousands) and therefore the
search space is very hard to address by the optimization
algorithms. Thus, every operation that gives a contribu-
tion to reduce this number, without compromising the
quality of the solutions, greatly improves the convergence
of the methods used.

In this work, a number of operations were implemented
in order to reduce the search space, being described in the
Methods section.

Case studies

Four case studies were used to test the aforementioned
algorithms. The first considers S. cerevisiae and the aim is
to produce succinic acid, while the remaining considers E.
coli and the production of lactic acid (in aerobic and
anaerobic conditions) and succinic acid. All use glucose as
the main substrate.

Succinic acid is a chemical used as feedstock for the syn-
thesis of a wide range of other chemicals with several
industrial applications. Succinic acid and its derivatives
have been used as common chemicals to synthesize poly-
mers, as additives and flavouring agents in foods, supple-
ments for pharmaceuticals, or surfactants. Currently, it is
mostly produced through petrochemical processes that
can be expensive and have significant environmental
impacts. Succinic acid, therefore, represents an important
case study for identifying metabolic engineering strategies
[13]. In fact, the knockout solutions that lead to an

http://www.biomedcentral.com/1471-2105/9/499

improved phenotype regarding the production of succinic
acid are not straightforward to identify since they involve
a considerable number of interacting reactions.

Lactic acid and its derivatives have been used in a wide
range of food-processing and industrial applications like
meat preservation, cosmetics, oral and health care prod-
ucts and baked goods. Additionally, as lactate can be eas-
ily converted to readily biodegradable polyesters, it is
emerging as a potential material for producing environ-
mentally friendly plastics from sugars [14].

Several microorganisms have been used to commercially
produce lactic acid [15], such as Lactobacillus strains. How-
ever, those bacteria also have undesirable traits, such as a
requirement for amino acids and vitamins which compli-
cates acid recovery. E. coli has many advantageous charac-
teristics as a production host, such as rapid growth under
aerobic and anaerobic conditions and simple nutritional
requirements. Moreover, well-established protocols for
genetic manipulation and a large knowledge on this
microbe's physiology enable the development of E. coli as
a host for production of optically pure D- or L-lactate by
metabolic engineering [16,17].

Although reported work have been focused on the anaer-
obic production of lactic acid, it is in principle possible to
develop aerobic processes, since the carbon overflow in E.
coli towards acetic acid in aerobic conditions can be
diverted to the production of lactate. The main advantage
of such a process is that, since E. coli reproduces much
faster in aerobic conditions, it should be possible to
improve the productivities when compared with anaero-
bic processes.

The genome-scale stoichiometric models used for S. cere-
visiae and E. coli were developed by [18,19]. The details of
each model are given in Table 1.

Experiments

A systematic set of experiments was conducted to evaluate
the performance of the proposed SEA and SA algorithms.
These were applied to the four case studies, using both
their fixed and variable size variants. In the fixed-size case,
several alternatives for the cardinality of the set (k) were
considered, being used the following values for k: 2, 4, 6,
8, 10, 12 and 20. The experimental setup is given in the
Methods section.

The full set of results can be found in the additional files
1 to 3, including a set of statistics calculated over the 30
runs performed in each scenario, the set of knockouts in
the overall best solutions and also the frequencies of
occurrence of each gene deletion in the results of each

Page 6 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499 http://www.biomedcentral.com/1471-2105/9/499

EA Initialization SA

> Selection Add Perturbation
parents [mutation]
\ 4
Recombine

i
individual
mutation i

offspring Solution Acceptance

"
Reinsertion factor

A Y

. 4 i
Population h Individual)
| 1] 12 | 45 | | 560 | Indiv 1
| 23] 48 | 223 | | 689 |Indiv2 | 23 | 48 l 223 I | 689 ‘
| a4] 43 | 123 | | 567 | In.;ivx
. J \. J
\ Decoding & Evaluation /
next If (trial > maxTrials)
generation NO Max NO decrease temperature

Function
Evaluations?

Best Solution
|1 IIE |45 IB49|__. |560I

Figure 2

Comparison of the EA and SA algorithms. A scheme illustrating the major steps of the EA and SA algorithms developed
in this work. Each individual represents a set of genes/reactions to be deleted from the model. The task is to find one or more
individuals that are predicted to have high yield or productivity (in general, any flux phenotype). The prediction of the flux phe-
notype is based on optimality principles of metabolic networks such as Flux Balance Analysis.

Page 7 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

Table I: Statistics of the genome-scale models used in the case
studies

S. cerevisiae E. coli
Number of fluxes 1104 1075
Number of metabolites 825 761
Number of fluxes after pre-processing 460 549
Number of variables in the optimization 268 301

The details on the original models are given, together with the
statistics of the models after the pre-processing steps.

optimization scenario. The analysis of these results will be
conducted in the next section.

Discussion

Reaching the optimum solution size

In Figure 3, a summary of the main statistics regarding the
objective function (i. e. best result, mean, median and
quartiles over the 30 runs) obtained for both algorithms
(fixed and variable size variants) is plotted. The plots
make clear the improvement of the results when the value
of k increases (higher means and lower variability), until
an optimum level is reached.

The variable size alternatives are normally able to find
results of the same quality of the best values of k, therefore
being able to automatically discover good values for this
parameter. Therefore, the use of the variable size alterna-
tive allows the user to save a considerable amount of time
in computation.

Also, one important feature in this problem is the ability
to find good solutions with the minimum number of gene
deletions, since this will make easier its implementation
in the lab. In Table 2, the average size of the best solutions
found by the variable size variants of the SEA/SA are
shown. It is important to note that the size of the solu-
tions for each algorithm is computed from the best solu-
tions found in each run that undergo a simplification
process (explained in the Methods section, post process-
ing methods).

From the values on this table and the results shown in Fig-
ure 3, it is clear that the variable size variants do not return
solutions with very large sets of knockouts, when com-
pared to the fixed size approaches. Indeed, it seems that
these solutions only "grow" during the evolution in SEA/
SA if the new knockouts provide fitter solutions.

Comparison between the performance of the algorithms
To provide a baseline result for the comparison between
the algorithms, the greedy algorithm described before was

http://www.biomedcentral.com/1471-2105/9/499

applied to the four case studies. The termination criterion
was to perform 5 million function evaluations (100 times
the value used in the SEA/SA). The results are given in
Table 3.

The results confirm that the optimization problems are
quite difficult to solve, since in most case studies the
greedy algorithm cannot find good results. The exception
is the E. coli, lactate, anaerobic case study that seems an
easier task. The difficulty of the case studies is also visible
in the small number of runs where the best solutions are
found, both by the SEA and the SA (see additional file 1).
This fact leads to an important conclusion regarding the
use of these stochastic methods: it is normally necessary to
run SEA or SA multiple times to guarantee that a good
solution is achieved.

Regarding the comparison of the SEA/SA with the greedy
algorithm, both the SEA and SA perform a quite efficient
exploration of the search space, since although conduct-
ing only 1% of the number of solution evaluations, they
are able to obtain much better results.

Comparing the performance of the SEA and SA algo-
rithms, they seem to be at a very similar level, in most
cases with overlapping confidence intervals. When com-
paring the variable size variants of both algorithms, the SA
seems to be more reliable, showing good results in all case
studies and smaller variability across the 30 runs.

Two additional features that are important when compar-
ing meta-heuristic optimization algorithms are the com-
putational effort required and the convergence of the
algorithm to a good solution. The computational burden
of the alternatives compared (SEA and SA) is approxi-
mately the same, since the major computational effort is
devoted to fitness evaluation and the same number of
solutions is evaluated in each case. A typical run of each
algorithm for the case studies presented will take approx-
imately one hour in a regular PC.

Regarding the convergence of the algorithms, a plot of the
evolution of the objective function along the generations
of the SA and SEA is given in Figure 4. The case study
regarding E. coli production of succinic acid is taken as an
illustrative example and the variable size variants were
selected. It is clear from this plot that the SA converges
faster than the SEA, obtaining high quality results earlier
in the runs. This is the case also in the remaining case
studies, although the results are not shown. Thus, SA
allows a reduction in the computation time needed to
achieve a useful solution.

An additional analysis was performed in order to better
understand the reasons why the SA seems to perform bet-
ter. The first was a study of one of the best solutions found

Page 8 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499 http://www.biomedcentral.com/1471-2105/9/499

S NN [AALES [=1 o NN [AALES [

5
. .
X . ’
o A
¢ b
- — .
=, “
- Vi v A 7 v |
- ool oactale F& ool actale S8
- = -
_ —_—
= . .
;
2 y
-'.
/ .=
- - - .
- . - - . . -
» v (» v /
Seanrane = ol anae B Sraerane = ol anale S8
))
% %
- -
P2 P2
;
‘. -
> ¥ g v S
S LI LR LA B L S S LI TR LA B L
& .
& P
- L
= P s
y . N —_— = o —
— = S —
—_—— -
- — -
’ -
= =
7 v M. 7 v [

Figure 3

Boxplots with the results obtained by the SA and SEA. The eight graphs (one for each case study and algorithm SA or
SEA) show a set of boxplots (one for each value of the k, the number of knockouts, and one for the variable size variant) with
the following statistics: best value (maximum), quartiles, median and minimum value; the mean value is also shown as a blue dot
(or a red dot in the case of the variable size). All values are calculated over the 30 runs for each scenario.

Page 9 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

Table 2: Size of the best solutions obtained by the variable size
SEA/SA

CASE STUDY SEA SA
S. cerevisiae, succinate, aerobic 38 17
E. coli, lactate, aerobic 8.7 9

E. coli, lactate, anaerobic 3 3.6
E. coli, succinate, aerobic 15 16

This table shows the average number of knockouts in the solutions
obtained by the variable size variants of SEA and SA. Only the best
solutions found over the 30 runs are considered.

for the E. coli, succinate case study and its partial solutions
(solutions with a subset of the knockouts included in the
original solution). The aim was to understand how the
algorithms build the final solution from smaller ones,
along evolution, using mutation and/or crossover opera-
tors. The result of this analysis is displayed in Figure 5.

A look into the figure shows that in most cases the solu-
tions with more knockouts can be obtained by adding one
or two knockouts to smaller solutions. This leads to the
insight that the crossover operator is probably redundant
in this process. To test this hypothesis, an EA only with
mutation operators was tested (only the variable size var-
iant was tested in this study). The results for this algorithm
are given in additional file 4, and its analysis shows that
they are quite similar to the ones obtained by the SEA with
crossover. Thus, the crossover operator does not seem to
be profitable in terms of the EA's performance, at least in
these case studies. This is probably due to the lack of
building blocks (subsets of two or more knockouts that
are associated with a good fitness) that can be combined
to achieve better solutions. To study if there are case stud-
ies where this could happen remains as interesting further
work.

It should be noticed that, although EAs have performed
worse, their application in this field should still be consid-

http://www.biomedcentral.com/1471-2105/9/499

ered as, when compared with SA, they allow an easier par-
allelization of the computation given their population
based nature. This represents an important advantage
when algorithms with heavy computational demands are
compared.

Analysis of the solutions

A thorough analysis of the solutions obtained is out of the
scope of this paper, but it should be pointed out that some
of the knockouts obtained are unlikely to have a biologi-
cal meaning (with a view point of either in vivo implemen-
tation or viability of the resulting strains). The very large
number of knockouts required for the best solutions for
succinate production in both yeast and E. coli are un-real-
istic to realize in reality (see Table 4 and Supplementary
File 2).

Furthermore, some of the knockouts obtained are related
with fluxes associated with transport reactions that are not
necessarily enzyme catalyzed or belong for example to
nucleotide pathways. Although these reactions are not
included in the set of essential genes validated experimen-
tally [19], it is possible that the removal of the corre-
sponding genes will originate non-viable mutants or that
the mutation will not contribute to increase the produc-
tion of the target compound. For most of the cases, how-
ever, even in silico, such mutations contribute very slightly
to the objective function value. These results emphasise
the need of analysing the solutions in the context of addi-
tional biological information before lab implementation.
Nevertheless, analysis of the connection between these
mutations and the objective function may help to gain
insight into the bottlenecks for the production of the
desired compounds.

Interestingly, if the solutions obtained are compared with
real implementation of knockout mutants, as is the case of
succinate production with E. coli, for which there are sev-
eral works published, for example [20], where a penta-
mutant is described, the best solutions obtained by the
algorithms are quite different from the ones imple-
mented, although in some cases the reactions to be elimi-

Table 3: Results obtained by the greedy algorithm for the case studies

CASE STUDY BPCY of best solution Number of knockouts
S. cerevisiae, succinate, aerobic 0.03260 23
E. coli, lactate, aerobic 0.00000 -
E. coli, lactate, anaerobic 0.25527 3
E. coli, succinate, aerobic 0.07779 3

This table shows the results obtained by the greedy algorithm. The first column shows the details on the case study (organism, desired product,
conditions); the second column states the value of the objective function (BPCY) and the last column the number of knockouts, both obtained for

the best solution found.

Page 10 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

000 005 0.10 0.15 020 025 030 035

» 2
@ — SA
£ --- SEA
b —

T T T T T T

0 10000 20000 30000 40000 50000

Evaluations

Figure 4

Convergence plot of SA and SEA. Convergence plot of
the SA and SEA algorithms (variable size variant) in the case
study with E. coli production of succinate (x-axis represents
the number of function evaluations; y-axis plots BPCY values)

nated belong to the same pathways. Comparing our
results with the work described in [20], the penta-mutant
described there was not reached by our algorithms, a situ-
ation that is easily explained by the fact that one of the
genes deleted (icd) is de facto an essential gene in the sto-
ichiometric model of E. coli used, since its deletion leads
to zero growth. Furthermore, the simulation of the tetra-
mutant obtained (excluding icd) only produces succinate
in silico if the oxygen uptake is constrained, which is con-
sistent with what is described in [20] regarding pyruvate
accumulation for this mutant. In fact, the strategy used in
[20] is partly based on diverting the overflow in glycolysis
from acetate to succinate. Since the stoichiometric model
does not accurately predict the overflow phenomenon in
E. coli, it is difficult to obtain such strategies using our
algorithms. This analysis emphasises the importance of
using reliable stoichiometric models with these algo-
rithms. Although for E. coli the model used has been vali-
dated for many different situations, there are clearly still
some discrepancies between simulation results and real-
ity, namely concerning essential genes. It would be inter-
esting to know if the mutants obtained in silico based on
our approaches perform better or worse than the ones
based on empirical knowledge of the metabolic pathways.
Some of the obtained knockouts point to changes in the
citrate cycle, either by the deletion of succinate dehydro-
genase or fumarase, which is also consistent with some of

http://www.biomedcentral.com/1471-2105/9/499

the approaches used in [20]. In the case of yeast, the sug-
gested strategies also include deletion of succinate dehy-
drogenase, which is the main succinate consuming
reaction under aerobic conditions. Since yeast can grow
without flux through this reaction, the coupling of the
objective function (succinate production) to the growth is
achieved by suggesting the deletion of other pathways. For
example, deletion of THR1 necessitates production of
Threonine (an essential amino acid) via the glyoxylate
cycle where Succinic acid is produced.

Looking again at additional file 1, the fact that among the
30 runs multiple solutions are found with close to opti-
mum objective function values is an interesting feature,
meaning that, especially for "difficult" case studies, there
are many combinations of knockouts that give good solu-
tions. More generally, it has been experimentally shown
that many different and non-intuitive combinations of
genetic modifications can lead to product enhancement
(for example, see [21]). Many of the effects of genetic
changes on the desired objective function are due to
kinetic and regulatory effects apart from the stoichiometry
which is the area of focus in this study.

Interestingly, our results point out that even stoichiomet-
ric model leads to several distinct solutions. This variety is
due to the large possible operating space of the cellular
metabolic pathways [22,23]. The number of alternative
solutions will thus be a function of the number of elemen-
tary flux modes that span the desired range of design and
biological objective functions. Since, in general, it is diffi-
cult to account for the kinetic and regulatory information
in the genome-scale models, the variety of the solutions
generated from our approach can serve as a compendium
of hypotheses that can be subsequently manually
screened based on the available regulatory and kinetic
data about the systems under investigation. Regulatory
and kinetic constraints are difficult to explicitly incorpo-
rate into the genome-scale models due to their non-linear
nature and lack of reliable estimates of in vivo kinetic
parameters and metabolite concentrations. The produc-
tivity and flux data available in literature for certain
mutants can nevertheless be used to impose additional
constraints on the models. The ability of the here pro-
posed algorithms to rapidly and effectively search large
solutions space provide us new opportunities to handle
more complex problems where some of the available reg-
ulatory information can be incorporated into the fitness
function.

We also here note that the strategies generated by our
algorithm inherently exploit the robustness of the net-
work in face of multiple knock-outs [24]. The alternative
strategies (including non-optimal strategies) can be classi-
fied into two broad categories: i) strategies where two sets

Page 11 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

http://www.biomedcentral.com/1471-2105/9/499

— 1-Fum 2 - SUCFUMt
3- ORNDC 4 - ADPT
5-PUNP1 6 - GND
7 -THD2 8- GHMT2
9-GLYCL 10- PFL

2] s [7] (2]2]e]7]2)

+1

(1 [z [+ e 7]s] b=wi]z]e]7]e]w])

. S RN Clalalslole -

0
~

w!

+1 A
—p{ 1 | 2 [4 [6] 7] 2]u] FRETOY T [NV T W O T

+1

+1

—e{ 1 [2 [6 [7]8] 9 [w0][n [‘112[315[7[5]10[11}

+1

K=10

K=11

Figure 5

» 1 [2 [3 [7]] s 1] [1[2]4[5[5[7[9]1;]

-—

p2 p1
[2 [3]s] 72]&]o [1]n]
Gl el lels sl o] jmpmmm—

L LS [T T R R (R v ;o e ;e -
"11214[51517is[9[10];1}” —
Clilelel:lel lalolupm

[112]3]4‘5[6[718110[11”

(2] 2]3]a]s]e]z7]a]o]w]ule

Analysis of the best solution and partial solutions for the E. coli, succinate case study. One of the best solutions
found for the E. coli, succinate case study was analyzed. All sub-solutions, i.e. solutions with a sub-set of the original gene dele-
tions, were evaluated. The best ones for each set size are shown in the figure. Possible ways to reach a solution are shown (in
black, grow mutations; in red, crossover operations).

Page 12 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

Table 4: Best overall mutants obtained for each case study

http://www.biomedcentral.com/1471-2105/9/499

CASE STUDY BPCY List of knockouts

S. cerevisiae, succinate, aerobic 0.05398 PGII_I, PGII_2, FBPI, PDC6, ADH4, SDH3_2, AAHI_I, URHI_I, U30_, MET3, ALD4_2, GSHI,
Ul103_, YERO53C, CTPI_I*

E. coli, lactate, aerobic 0.39850 ALCD19, DRPA, GLYCDx, F6PA, TPI, LDH_D2, EDA, TKT2, LDH_D-

E. coli, lactate, anaerobic 0.25527 FRD3, GART, ADHEr *

E. coli, succinate, aerobic 0.35785 MALS, ORNDC, FUM, GLYCL, GHMT2, ADPT, DCYTD, DUTPDP, URIDK2r, NTD8, PUNPI,

THD2, GND, PFL, SUCFUMt *

This table shows the list of knockouts in the best solution found in all the runs of both algorithms. In the rows marked with *, other solutions with
the same BPCT exist; the one with less knockouts was selected (see Additional file 2 for the complete list)

of deletion targets that are interchangeable due to their
close (or identical) biochemical relation, and, ii) bio-
chemically different strategies leading to similar objective
function values.

One clear example from the first category is SDH3_1 and
SDH3_2 targets found for the improvement of succinate
productivity in yeast. These two are biochemically cou-
pled reactions. In fact, both of these reactions are cata-
lyzed by the same Sdh3 protein complex. Similar example
is two reactions in the respiratory chain, FRD3 (fumarate
reductase) and NADH8 (NADH dehydrogenase) which
were found as part of two different deletion strategies for
the improvement of lactate in E. coli under anaerobic con-
ditions. For the same objective function under aerobic
conditions, acetate kinase (ACKr) and phospho-
transacetylase (PTAr) distinguishes two solutions
obtained for 6 deletion search. The product of both of
these reactions is Acetyl phosphate, albeit obtained via
different substrates.

One example of the second category (biochemically dif-
ferent strategies that lead to the desired product forma-
tion) is illustrated in two proposed gene deletion sets:
[SUCD4, ENO, PGK, HSK] and [SUCD4, GHMT2, THD2,
GND)] identified in the Succinic acid case study for E. coli.
Apart from SUCD4 (succinate dehydrogenase) the rest of
the genes span different parts of metabolism: Glycine and
serine metabolism, Oxidative phosphorylation and Pen-
tose phosphate cycle in the first set; and Threonine and
lysine metabolism and Glycolysis in the second set.

Conclusion

The development of efficient and accurate modelling and
optimization methods in Metabolic Engineering has a
considerable impact in Biotechnology, leading to substan-
tial economical gains in areas such as the production of
pharmaceuticals, fuels and food ingredients.

In this work, a contribution to this arena was provided by
the development of Evolutionary Algorithms and Simu-

lated Annealing that are able of reaching near optimal sets
of gene deletions in a microbial strain, in order to maxi-
mize the production of a given product. An important
novel feature of this work was the introduction of set-
based representations that made use of variable size sets of
gene deletions. This allows the automatic definition of the
optimum number of gene deletions, in parallel with the
search for the best knockouts.

A systematic statistical validation of the algorithms was
conducted, where those were tested, in several variants, in
four case studies that dealt with the production of succinic
and lactic acid by the bacterium E. coli and the yeast S. cer-
evisiae.

A number of features can be introduced and/or improved
in this work. These include other algorithms for simula-
tion and distinct objective functions. Regarding the
former, an alternative algorithm for simulating mutants'
phenotype is the MOMA algorithm that was proposed by
[8], where it is assumed that knockout metabolic fluxes
undergo a minimal redistribution with respect to the flux
configuration of the wild type. It would also be very inter-
esting to consider an objective function capable of taking
into account the number of knockouts of a given solution
and the cost of its experimental implementation.

One other area of future work is the development of
multi-objective optimization algorithms that are able to
provide in a single run, not only a single solution but
rather a whole set of distinct trade-offs between the two
goals: maximizing biomass and maximizing the desired
product.

Methods

Flux Balance Analysis

The Flux Balance Analysis approach is based on a steady
state approximation to concentrations of the internal
metabolites, which reduces the corresponding mass bal-
ances to a set of linear homogeneous equations. For a net-

Page 13 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

work of M metabolites and N reactions, this is expressed
as:

where v; corresponds to the rate of reaction j, or to the jt
metabolic flux and the stoichiometric coefficient, S,
stands for stoichiometric coefficient of metabolite i in

reaction j.

For most metabolic networks, the number of fluxes is
greater than the number of mass balance constraints,
resulting in an underdetermined system.

Besides these stoichiometric constraints, thermodynamic
and capacity constraints can be added as inequalities:

a;Sv;< B]-,

] i=1,..M

FBA allows the detailed examination of the model via the
use of linear programming to determine the optimal flux
distributions using a specified linear objective function:

Maximize Z
N

Subject to ZSijv]- =0, i=1..M
j=1

a;<v;<B;, j=1..N

For metabolic applications, the linear objective function
(2) to be maximized or minimized can correspond to dif-
ferent objectives ranging from a particular metabolic engi-
neering design objective (for example, optimization of a
metabolite production) to the maximization of cellular
growth. Since studies in several different organisms have
demonstrated that their metabolic networks have evolved
for the optimization of the specific growth rate under sev-
eral carbon source-limiting conditions, the most com-
monly used objective function is the maximization of the
biomass formation reaction rate.

Greedy algorithm: detailed description

This algorithm is based on the evaluation of a pre-defined
maximum number of solutions that are obtained in the
neighbourhood of the best ones found and by using
exhaustive search when no local search can be performed.
The main steps are the following:

1. A list L of solutions to explore is created, initially con-
taining one single element: the wild type solution, i.e. a
solution with an empty set of knockouts.

2. While the maximum number of solutions has not been
evaluated, one of the following steps is performed:

http://www.biomedcentral.com/1471-2105/9/499

2.1. Local search. If L is not empty, the solution s in its head
is removed from L. All solutions in the neighbourhood of
s are explored by local search (the neighbourhood of a
solution is the set of all possible solutions obtained by
adding one gene deletion to the original set of knock-
outs). The solutions that improve over the original one are
added to the list such that their neighbourhoods can be
further explored.

2.2. Exhaustive search. If L is empty, the next solution from
an exhaustive search process is taken. Solutions are
obtained starting with the wild type and proceeding to all
solutions with 1 knockout, 2 knockouts, and so on. If
there is an improvement over the wild type solution, this
solution is added to the head of the list; else the algorithm
proceeds to the next solution.

Pre-processing and post-processing methods
The pre-processing operations performed to simplify the
genome-scale metabolic model were the following.

¢ Detection of reactions for which the fluxes, given the
constraints of the linear programming problem, cannot
exhibit values different from 0. For every reaction in the
model, two linear programming problems are solved: the
first is defined by setting the flux over that reaction as the
maximization target, while for the second the same varia-
ble is minimized. If both problems have an objective
function of 0, the variable is removed from the model.

¢ Detection of equivalent variables, i.e. pairs of fluxes that
are constrained to have the same value by the linear
model. These are directly identified from the S matrix
coefficients. Each group of equivalent variables is replaced
by a single variable.

e Discovery of essential genes that cannot be deleted from
the microorganism's genome. As these genes should not
be considered as targets for deletion, the search space for
optimization is reduced. For each gene in the microbe's
genome, a linear programming problem instance is
defined, setting the corresponding flux to 0, while maxi-
mizing the biomass flux. After running the Linear Pro-
gramming algorithm, if the resulting biomass flux is zero
(or near zero) the gene is marked as essential. The biolog-
ical meaning of this fact is that the microbe is unable to
survive when the gene is absent. It should be noted that,
unlike the previous ones, this process does not imply any
changes in the model, but produces information that is
useful for the optimization algorithms. The list of essen-
tial genes can be manually edited to include genes that are
known to be essential in vivo, but not in silico.

¢ [dentification of fluxes that are not associated with any
genes, like the ones related with external metabolites and
exchange fluxes that represent transport reactions. These

Page 14 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

are not allowed to be knocked out, since generally this
would not have a biological meaning,.

Additionally, at the end of each SA/SEA run, the best solu-
tion goes through a simplification process. This is
achieved by identifying all gene deletions that contribute
to the fitness of the solution, removing all deletions that
keep the objective function unaltered. The aim of this step
is to keep only the necessary knockouts, given that the
practical implementation of a gene deletion is both time
consuming and costly.

Implementation details

The implementation of the proposed algorithms was con-
ducted in the Java programming language by the authors.
In the implementation of the FBA algorithm, the GNU
linear programming package (GLPK - http://
www.gnu.org/software/glpk/) was used to run the simplex
algorithm.

Experimental setup of the SEAISA algorithms

The population size for SEA was set to 100. In all cases, a
run of SA/SEA terminated when 50000 function evalua-
tions were performed. The SA used AE, = 0.005, AE, = 5E-
5 and trials = 50. For each experimental setup the process
was repeated for 30 runs and the mean and 95% confi-
dence intervals were calculated.

Availability

The source code of the implementation is made available
in the project's web site, together with all instructions and
requirements for software installation, as well as example
files for a sample model and configuration files both for
EA and SA algorithms.

More details:

¢ Project name: Natural Computation Algorithms for In
Silico Metabolic Engineering

e Project home page: http://sysbio.di.uminho.pt/supp
material.php

e Operating system(s): Platform independent
e Programming language: Java
e License: GNU-GPL, version 3

Authors' contributions

MR, IR, RM, KP and JN were involved in the conception of
the algorithms. MR, RM, PM and JPP were involved in the
implementation of the algorithms and software tools. IR,
KP and ECF proposed and prepared the case studies and
validated the results. MR, IR, KP and RM helped to draft

http://www.biomedcentral.com/1471-2105/9/499

the manuscript. All authors were involved in the analysis
of the results, read, reviewed and approved the final man-
uscript.

Additional material

Additional file 1

The complete results of the SEA and SA for the four case studies. For
each case study the details on the organism, the target product and the
conditions are given in the header. In each table, the algorithm (SA or
SEA) and the maximum number of allowed knockouts k (VS stands for
variable size) are given. For each configuration the mean, the confidence
interval and the best value of the objective function (BPCY) obtained over
the 30 runs are provided. Furthermore, the number of runs where the best
solution was reached is also shown.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-499-S1 xls]

Additional file 2

The list of the best solutions found by each algorithm and configura-
tion. For each case study, algorithm (SA/SEA) and configuration (value
of k) the fitness of the best solution and the corresponding list of knockouts
is given. Alternative optimum solutions are provided when applicable.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-499-S2 xls]

Additional file 3

The complete results of the gene frequencies analysis. For each case
study, algorithm (SA/SEA) and configuration (value of k) the frequency
of the presence of each particular gene knockout within the set of near-
optimal is given. The set of solutions used in this case is built from the set
with the best solutions from each run, keeping the ones that are within 1%
of the best overall solution (over the 30 runs). A global frequency for all
values of k is calculated.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-499-S3 xls]

Additional file 4

The results of EA with only mutation operators. For each case study and
algorithm (SA/SEA) the results are shown in a way similar to the ones in
additional file 1.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-499-S4 xls]

Acknowledgements

The authors wish to thank the Portuguese Foundation for Science and
Technology for the support through projects ref. POSC/EIA/59899/2004
and ref. POCI/BIO/60139/2004.

References

. Stephanopoulos G, Aristidou A, Nielsen J: Metabolic engineering San
Diego: Academic Press; 1998.

2. Nielsen J: Metabolic Engineering. Applied Microbiology and Biotech-
nology 2001, 55:263-283.

3. Tomita M: Whole-cell simulation: a grand challenge of the
21st century. Trends in Biotechnology 2001, 19:205-210.

Page 15 of 16

(page number not for citation purposes)

BMC Bioinformatics 2008, 9:499

20.

21.

22.
23.

24.

Kauffman KJ, Prakash P, Edwards |S: Advances in flux balance
analysis. Curr Opin Biotechnol 2003, 14:491-496.

Ibarra RU, Edwards JS, Palsson BO: Escherichia coli K-12 under-
goes adaptive evolution to achieve in silico predicted optimal
growth. Nature 2002, 420:186-189.

Burgard AP, Pharkya P, Maranas CD: OptKnock: A bilevel pro-
gramming framework for identifying gene knockout strate-
gies for microbial strain optimization. Biotechnology and
Bioengineering 2003, 84:647-657.

Patil KR, Rocha I, Forster], Nielsen J: Evolutionary programming
as a platform for in silico metabolic engineering. BMC Bioinfor-
matics 2005, 6:308.

Segre D, Vitkup D, Church GM: Analysis of optimality in natural
and perturbed metabolic networks. Proceedings of the National
Academy of Sciences of the United States of America 2002,
99:15112-15117.

Michalewicz Z: Genetic Algorithms + Data Structures = Evolution Pro-
grams Springer Verlag; 1996.

Syswerda G: Uniform crossover in Genetic Algorithms. In Proc.
3rd Intl Conference on Genetic Algorithms 1989 San Mateo: Morgan
Kaufmann:2-9.

De Jong K: An analysis of the Bahavior of a Class of Genetic Adaptive Sys-
tems PhD thesis: University of Michigan; 1975.

Kirkpatrick S, Gellatt CD Jr, Vecchi MP: Optimization by Simu-
lated Annealing. Science 1983, 220:671-680.

Lee SY, Hong SH, Moon SY: In Silico metabolic pathway analysis
and design: succinic acid production by metabolically engi-
neered Escherichia coli as an example. Genome Informatics 2002,
13:214-223.

Hofvendahl K, Hahn-Hagerdal B: Factors affecting the fermenta-
tive lactic acid production from renewable resources. Enzyme
and Microbial Technology 2000, 26:87-107.

John RP, Nampoothiri KM, Pandey A: Fermentative production of
lactic acid from biomass: an overview on process develop-
ments and future perspectives. Applied Microbiology and Biotech-
nology 2007, 74:524-534.

Chang DE, Jung HC, Rhee JS, Pan JG: Homofermentative produc-
tion of D- or L-lactate in metabolically engineered
Escherichia coli RRI. Appl Environ Microbiol 1999,
65(4):1384-1389.

Zhou SD, Causey TB, Hasona A, Shanmugam KT, Ingram LO: Pro-
duction of optically pure D-lactic acid in mineral salts
medium by metabolically engineered Escherichia coli
W3110. Applied and Environmental Microbiology 2007, 69:399-407.
Forster], Famili I, Fu P, Palsson BO, Nielsen J: Genome-scale
reconstruction of the Saccharomyces cerevisiae metabolic
network. Genome Res 2003, 13:244-253.

Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-
scale model of Escherichia coli K-12 (iJR904 GSM/GPR).
Genome Biology 2003, 4:R54.

Lin H, Bennett GN, San KY: Genetic reconstruction of the aer-
obic central metabolism in Escherichia coli for the absolute
aerobic production of succinate. Biotechnol Bioeng 2005,
89:148-156.

Alper H, Miyaoku K, Stephanopoulos G: Construction of lyco-
pene-overproducing E. coli strains by combining systematic
and combinatorial gene knockout targets. Nature Biotechnololy
2005, 23:612-616.

Klamt S, Stelling J: Combinatorial complexity of pathway anal-
ysis in metabolic networks. Mol Biol Rep 2002, 29:233-236.
Stelling J, Klamt S, Bettenbrock K, Schuster S, Gilles ED: Metabolic
network structure determines key aspects of functionality
and regulation. Nature 2002, 420:190-193.

Deutscher D, Meilijson |, Kupiec M, Ruppin E: Multiple knockout
analysis of genetic robustness in the yeast metabolic net-
work. Nature Genetics 2006, 38:993-998.

http://www.biomedcentral.com/1471-2105/9/499

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 16 of 16

(page number not for citation purposes)

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Solution representation and evaluation
	Evolutionary Algorithms
	Simulated Annealing
	Greedy algorithm
	Pre-processing and post-processing
	Case studies
	Experiments

	Discussion
	Reaching the optimum solution size
	Comparison between the performance of the algorithms
	Analysis of the solutions

	Conclusion
	Methods
	Flux Balance Analysis
	Greedy algorithm: detailed description
	Pre-processing and post-processing methods
	Implementation details
	Experimental setup of the SEA/SA algorithms

	Availability
	Authors' contributions
	Additional material
	Acknowledgements
	References

