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Abstract
Background: Causal networks based on the vector autoregressive (VAR) process are a promising
statistical tool for modeling regulatory interactions in a cell. However, learning these networks is
challenging due to the low sample size and high dimensionality of genomic data.

Results: We present a novel and highly efficient approach to estimate a VAR network. This
proceeds in two steps: (i) improved estimation of VAR regression coefficients using an analytic
shrinkage approach, and (ii) subsequent model selection by testing the associated partial
correlations. In simulations this approach outperformed for small sample size all other considered
approaches in terms of true discovery rate (number of correctly identified edges relative to the
significant edges). Moreover, the analysis of expression time series data from Arabidopsis thaliana
resulted in a biologically sensible network.

Conclusion: Statistical learning of large-scale VAR causal models can be done efficiently by the
proposed procedure, even in the difficult data situations prevalent in genomics and proteomics.

Availability: The method is implemented in R code that is available from the authors on request.

Background
The vector autoregressive regression (VAR) model is an
approach to describe the interaction of variables through
time in a complex multivariate system. It is very popular
in economics [1] but with few exceptions [2] it has not
been widely used in systems biology, where it could be
employed to model genetic networks or metabolic inter-
actions. One possible reason for this is that while the sta-

tistical properties of the VAR model are well explored [3],
its estimation from sparse data and subsequent model
selection is very challenging due to the large number of
parameters involved [4].

In this paper we develop a procedure for effectively learn-
ing the VAR model from small sample genomic data. In
particular, we describe a novel model selection procedure
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for learning causal VAR networks from time course data
with only a few time points, and no or little replication.
This procedure is based on regularized estimation of VAR
coefficients, followed by subsequent simultaneous signif-
icance testing of the corresponding partial correlation
coefficients.

Once the VAR model has been learned from the data, it
allows to elucidate possible underlying causal mecha-
nisms by inspecting the Granger causality graph implied
by the non-zero VAR coefficients.

The remainder of the paper is organized as follows. In the
next section we first give the definition of a vector autore-
gressive process and recall the standard estimation. Subse-
quently, we describe our approach to regularized
inference and to network model selection. This is fol-
lowed by computer simulations comparing a variety of
alternative approaches. Finally, we analyze data from an
Arabidopsis thaliana expression time course experiment.

Methods
Vector autoregressive model
We consider vector-valued time series data x(t) =
(x1(t),...,xp(t)). Each component of this row vector corre-
sponds to a variable of interest, e.g., the expression level
of a specific gene or the concentration of some metabolite
in dependence of time. The vector autoregressive model
specifies that the value of x(t) is a linear combination of
those of earlier time points, plus noise,

In this formula m is the order of the VAR process, L the
time lag, and c a 1 × p vector of means. The errors ∈i are
assumed to have zero mean and a p × p positive definite
covariance matrix Σ. The matrices Bi with dimension p × p
represent the dynamical structure and thus contain the
information relevant for reading off the causal relation-
ships.

The autoregressive model has the form of a standard
regression problem. Therefore, estimation of the matrices
Bi is straightforward. A special case considered in this
paper is when both m and L are set to 1. Then the above
equation reduces to the VAR(1) process

x(t + 1) = c + x(t)B + ε.  (2)

We now denote the centered matrices of observations corre-
sponding to x(t + 1) and x(t) by Xf ("future") and Xp

("past"), respectively, i.e.  and

. In this notation the ordinary least squares

(OLS) estimate can be written as

OLS = (Xp 
T Xp)-1 Xp 

T Xf.  (3)

This is also the maximum likelihood (ML) estimate
assuming the normal distribution. The coefficients of
higher-order VAR models may be obtained in a corre-
sponding fashion [3].

Small sample estimation using James-Stein-type shrinkage
Genomic time course data contain only few time points
(typically around n = 10) and often little or no replication
– hence the above restriction on VAR(1) models with unit
lag. Furthermore, it is known that for small sample size
the least squares and maximum likelihood methods lead
to statistically inefficient estimators. Therefore, applica-
tion of the VAR model to genomics data requires some
form of regularization. For instance, a full Bayesian
approach could be used. However, for the VAR model the
choice of a suitable prior is difficult [4].

Here, as a both computationally and statistically efficient
alternative, we propose to apply James-Stein-type shrink-
age, a method related to empirical Bayes [5,6]. This proce-
dure has the advantage that it is computationally as
simple as OLS, yet still produces efficient estimates for
small samples.

Following [6,7] we now review how an unconstrained
covariance matrix may be estimated using shrinkage. In
the next section we then show how this result may be used
to obtain shrinkage estimates of VAR coefficients.

Assuming centered data X for p variables (columns) the
unbiased empirical estimator of the covariance matrix is

. For small number of observations S is

known to be inefficient and also ill-conditioned (singu-
lar!) for n <p. A more efficient estimator may be furnished
by shrinking the empirical correlations rij towards zero

and the empirical variances vi against their median. This

leads to the following expressions for the components of
a shrinkage estimate S*:
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with

and

The particular choice of the shrinkage intensities  and

 is aimed at minimizing the overall mean squared

error.

Shrinkage estimation of VAR coefficients
Small sample shrinkage estimates of VAR regression coef-
ficients may be obtained by appropriately substituting the
empirical by the shrinkage covariance. More specifically,
we need to proceed as follows:

1. We combine the centered observations Xp and Xf
into a joint matrix Φ = [XpXf]. Note that F contains
twice as many columns as either Xp or Xf.

2. Next, we consider the (n - 1) multiple of the empiri-

cal covariance matrix, S = ΦTΦ, noting that S contains
the two submatrices S1 = Xp 

T Xp and S2 = Xp 
TXf. This

allows to write the OLS estimate of VAR coefficients as

OLS = (S1)-1S2.

3. We replace the empirical covariance matrix S by a
shrinkage estimate.

4. From S* we determine the submatrices  and 

which in turn allow to compute the estimates

Shrink = ( )-1 .

By decomposing S* using the SVD or Cholesky algorithm

it is possible to reconstruct pseudodata matrices  and

. The above algorithm may be interpreted as OLS or

normal-distribution ML based on these pseudodata.

VAR network model selection
The network representing potential directed causal influ-
ences is given by the non-zero entries in the matrix of VAR
coefficient. For an extensive discussion of the meaning
and interpretation of the implied Granger (non)-causality
we refer to [8].

As Shrink is an estimate it is unlikely that any of its com-
ponents are exactly zero. Therefore, we need to statistically

test whether the entries of Shrink are vanishing. However,
instead of inspecting regression coefficients directly, it is
preferably to test the corresponding partial correlation
coefficients: this facilitates small-sample testing and addi-
tionally allows to accommodate for dependencies among
the estimated coefficients [9].

Specifically, consider in the VAR(1) model the multiple
regression that connects the first variable x1(t + 1) at time
point t + 1 with all variables x1(t),...,xp(t) at the previous
time point t,

If in this equation the roles of xk(t) and x1(t + 1) are
reversed,

the partial correlation between the two variables is the
geometric mean of the corresponding regression coeffi-

cients, times their sign, i.e. [10].

Once the partial correlations in the VAR model are com-
puted, we use the "local fdr" approach of [11] to identify
significant partial correlations, similar to the network
model selection for graphical Gaussian models (GGMs)
of [9]. Note that unlike in a GGM the edges in a VAR net-
work are directed.

We point out that recently two papers have appeared
describing related strategies for VAR model selection. As
in our algorithm the strategies pursued in both [12] and
[13] also consist in choosing the VAR network by selecting
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the appropriate underlying partial correlations. However,
the key advantage of our variant of VAR network search is
that it is specifically designed to meet small sample
requirements, by using shrinkage estimators of regression
coefficients and partial correlation, and due to the adap-
tive nature (i.e. the automatic estimation of the empirical
null) of the "local fdr" algorithm [11].

Results and discussion
Simulation study
In a comparative simulation study we investigated the
power of diverse approaches to recovering the true VAR
network. We simulated VAR(1) data of different sample
size, with n varying between 5 and 200, for 100 randomly
generated true networks with 200 edges and p = 100
nodes. The 200 nonzero regression coefficients were
drawn uniformly from the intervals [-1; -0.2] and [0.2; 1].

In addition to the shrinkage procedure we estimated
regression coefficients by ordinary least squares (OLS)
and by ridge regression (RR). All these three regression
strategies were applied in conjunction with the above VAR
model selection based on partial correlations, with a cut-
off value for the "local fdr" statistic set at 0.2 – the recom-
mendation of [11]. As a fourth method we employed L1
regression [14] (LASSO) to estimate VAR regression coef-
ficients. Note that in the latter instance there is no need for
additional model selection, as the LASSO method com-
bines shrinkage and model selection and automatically
sets many regression coefficients identically to zero.

In the simulations we ran OLS only for n > 100, as for
small sample size the corresponding empirical covariance
matrix is singular and consequently the OLS regression is

ill-posed. The penalty for the LASSO regression was cho-
sen as in [15]. The regularization parameter in RR was
determined by generalized cross validation [16]. Unfortu-
nately, even GCV turned out to be computationally
expensive, so that for RR we conducted only 10 repeti-
tions, rather than the 100 considered for the other meth-
ods.

The results of the simulations are summarized in Figure 1.
The left box shows the positive predictive value, or true
discovery rate of the four methods. This is the proportion
of correctly identified edges in relation to all significant
edges. Our proposed shrinkage algorithm is the only
method achieving around 80% positive predictive value
regardless of the sample size. Note that this is exactly the
theoretically expected value, given the specified "local fdr"
cutoff of 0.2. In contrast, the RR and LASSO methods per-
form remarkably poor at small sample size, with much
lower true discovery rates. For medium to large sample
size the OLS estimation dominates RR, LASSO and the
shrinkage approach. This is easily explained by the fact
that OLS has no parameters to optimize and that it is
asymptotically optimal. However, it is bothering that for
both the RR and the OLS approach the false discovery rate
appears not to be properly controlled. Finally, for large
sample size the Stein-type estimator appears to be prone
to overshrinking, which leads to an increase of false posi-
tives.

The relative performance of the four approaches to VAR
estimation can be further explained by considering the
relative amount of true and false positive edges (Figure 1,
middle and right box). The shrinkage method generally
produces very few false positives. In contrast, the RR and

Relative performance of the four investigated methods for learning VAR networks in terms of positive predictive value (true discovery rate) and the number of true and false edgesFigure 1
Relative performance of the four investigated methods for learning VAR networks in terms of positive predictive value (true 
discovery rate) and the number of true and false edges. The thin dotted line in the middle box at 200 corresponds to the true 
number of edges in the simulated networks.
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LASSO methods lead to a large number of false edges,
especially for small sample size. This is particularly pro-
nounced for the LASSO regression, as can be seen in the
differently scaled inlay plot contained in the right box of
Figure 1, indicating that the penalty applied in the L1
regression may not be sufficient in this situation. In terms
of the number of correctly identified edges the RR and
shrinkage approach are the two top performing methods.
However, even though RR finds a considerable number of
true edges even at very small sample size, this has little
impact on its true discovery rate because of the high
number of false positives.

In summary, the simulation results suggest to apply for
small sample size the James-Stein-type shrinkage proce-
dure, and for n > p the traditional OLS approach.

Analysis of a microarray time course data set
For further illustration we applied the VAR shrinkage
approach to a real world data example. Specifically, we
reanalyzed expression time series resulting from an exper-
iment investigating the impact of the diurnal cycle on the
starch metabolism of Arabidopsis thaliana [17].

We downloaded the calibrated signal intensities for
22,814 probes and 11 time points for each of the two bio-
logical replicates from experiment no. 60 of the NASCAr-
rays repository [18]. After log-transforming the data we
filtered out all genes containing missing values and whose
maximum signal intensity value was lower than 5 on a
log-base 2 scale. Subsequently, we applied the periodicity
test of [19] to identify the probes associated with the day-

Directed VAR network inferred from the Arabidopsis thaliana dataFigure 2
Directed VAR network inferred from the Arabidopsis thaliana data. The solid and dotted lines indicate positive and negative 
regression coefficients, respectively, and the line intensity denotes their strength. For annotation of the nodes see the Supple-
mentary Information, Table 1. The color code of the nodes is explained in the main text.
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night cycle. As a result, we obtained a subset of 800 genes
that we further analyzed with the VAR approach.

We note that a tacit assumption of the VAR model is that
time points are equidistant – see Eq. 1. This is not the case
for the Arabidopsis thaliana data which were measured at 0,
1, 2, 4, 8, 12, 13, 14, 16, 20, and 24 hours after the start of
the experiment. However, as the intensity of the biological
reactions is likely to be higher at the change points from
light to dark periods (time points 0 and 12), one may
argue that assuming equidistant measurements is justifia-
ble at least in terms of equal relative reaction rate.

A further implication of the VAR model (and indeed of
many other graphical models) is that dependencies
among genes are essentially linear. This can easily be
checked by inspecting the pairwise scatter plots of the cal-

ibrated expression levels. For the 800 considered Arabidop-
sis thaliana genes we verified that the linearity assumption
of the VAR model is indeed satisfied.

Subsequently, we estimated from the replicate time series
of the 800 preselected genes the regularized regression
coefficients and the corresponding partial correlations,
and identified the significant edges of the VAR causal
graph as described above. We found a total number of 7,
381 significant edges connecting 707 nodes. In Figure 2
we show for reasons of clarity only the subnetwork con-
taining the 150 most significant edges, which connect 92
nodes. Note that this graph exhibits a clear "hub" connec-
tivity structure (nodes filled with red color), which is par-
ticularly striking for the node 570 but also for nodes 81,
558, 783 and a few other genes (for annotation of the
nodes see the Additional File 1).

Undirected GGM network inferred from the Arabidopsis thaliana data using the algorithm of [7; 9]Figure 3
Undirected GGM network inferred from the Arabidopsis thaliana data using the algorithm of [7; 9]. The solid and dotted lines 
indicate positive and negative partial correlation coefficients, respectively, and the line intensity denotes their strength.
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As the VAR network contains directed edges it is possible
to distinguish genes that have mostly outgoing arcs, which
could be indicative for key regulatory genes, from those
with mostly ingoing arcs. In the graph of Figure 2 node
570, an AP2 transcription factor, and node 81, a gene
involved in DNA-directed RNA polymerase, belong to the
former category, whereas for instance node 558, a struc-
tural constituent of ribosome, seems to be part of the lat-
ter. Node 627 is another hub in the VAR network, which
according to the annotation of [17] encodes a protein of
unknown function. Another interesting aspect of the VAR
network is the web of highly connected genes (encircled
and colored yellow in the lower right corner of Figure 2)
which we hypothesize to constitute some form of a func-
tional module.

Finally, we note that the VAR network visualizes influ-
ences of the genes over time, hence a VAR graph can also
include directed loops and even genes that act upon them-
selves. In contrast, the GGM graphs discussed in [7,9] vis-
ualize the partial correlation with no time lag involved.
For comparison, we display the GGM graph for the Arabi-
dopsis thaliana data in Figure 3. As expected, both graphs
share the same structure (main hubs and the module of
highly connected genes): if one node influences another
in the next timepoint with a constant regression coeffi-
cient (VAR-model), they also tend to be significantly par-
tially correlated in the same time point (GGM-model).
However, using a GGM it is not possible to infer the causal
structure of the network.

Conclusion
We have presented a novel algorithm for learning VAR
causal networks. This is based on James-Stein-type shrink-
age estimation of covariances between different time
points of the conducted experiment, that in turn leads to
improved estimates of the VAR regression coefficients.
Subsequent VAR model selection is conducted by using
"local fdr" multiple testing on the corresponding partial
correlations.

We have shown that this approach is well suited for the
small sample sizes encountered in genomics. In addition,
the approach is computationally very efficient, as no com-
puter intensive sampling or optimization is needed: the
inference of the directed network for the Arabidopsis thal-
iana data with 640, 000 potentially directed edges takes
about one minute on a standard desktop computer. While
we have illustrated the approach by analyzing a micro-
array expression data set, it is by no means restricted to
this kind of data – we expect that our VAR network
approach performs equally well for similar high dimen-
sional time series data from metabolomic or proteomic
experiments.

The current algorithm employs a fixed "one step ahead"
time lag. One strategy to generalization to arbitrary time
lags may be to consider functional data – see, e.g., [20,21].
This would have the additional benefit to suitable deal
with non-equally spaced measurements, a common char-
acteristic of many biological experiments.
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