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Abstract
The protein-protein interaction networks of even well-studied model organisms are sketchy at
best, highlighting the continued need for computational methods to help direct experimentalists in
the search for novel interactions. This need has prompted the development of a number of
methods for predicting protein-protein interactions based on various sources of data and
methodologies. The common method for choosing negative examples for training a predictor of
protein-protein interactions is based on annotations of cellular localization, and the observation
that pairs of proteins that have different localization patterns are unlikely to interact. While this
method leads to high quality sets of non-interacting proteins, we find that this choice can lead to
biased estimates of prediction accuracy, because the constraints placed on the distribution of the
negative examples makes the task easier. The effects of this bias are demonstrated in the context
of both sequence-based and non-sequence based features used for predicting protein-protein
interactions.

Background
Despite advances in high-throughput experimental meth-
ods for detecting protein-protein interactions, the interac-
tion networks for even well studied model organisms are
far from complete. In addition, high throughput assays
typically have a high rate of false positives [1]. Therefore,
there is a continuing need for computational methods to
complement existing experimental approaches.

Methods for predicting protein-protein interaction use a
variety of data sources. Sequence-based methods are usu-
ally based on the domain, motif, or k-mer composition of
the sequences. Sprinzak and Margalit [2] have noted that
many pairs of structural domains tend to appear in inter-
acting proteins, and have used this intuition to predict
interactions according to the over-representation of pairs

of domains. Domain and motif composition is also the
basis of several Bayesian network models that aim to
explain an observed interaction network in terms of inter-
actions between pairs of motifs or domains [3-5]. In the
context of kernel methods, similar kernels designed for
predicting interactions from sequence were proposed in
[6,7]. Other sequence-based methods use co-evolution of
interacting proteins by comparing phylogenetic trees [8],
correlated mutations [9], or gene fusion [10]. An alterna-
tive approach is to combine multiple sources of genomic
information — gene expression, Gene Ontology annota-
tions, transcriptional regulation, etc. — to predict co-
membership in a complex [11-13].

All the above-mentioned methods require an informed
choice of positive examples (interacting pairs of proteins)

from NIPS workshop on New Problems and Methods in Computational Biology
Whistler, Canada. 18 December 2004

Published: 20 March 2006

BMC Bioinformatics 2006, 7(Suppl 1):S2 doi:10.1186/1471-2105-7-S1-S2
<supplement> <title> <p>NIPS workshop on New Problems and Methods in Computational Biology</p> </title> <editor>Gal Chechik, Christina Leslie, Gunnar Rätsch, Koji Tsuda</editor> <note>Proceedings 1471-2105-7-S1-info.doc</note> <url>http://www.biomedcentral.com/content/pdf/1471-2105-7-S1-info.pdf</url> </supplement>
Page 1 of 6
(page number not for citation purposes)

http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2006, 7:S2
and negative examples (non-interacting pairs of proteins)
for training and assessing the performance of a classifier.
In view of the large fraction of false positive interactions
generated by high throughput methods, positive exam-
ples need to be chosen with care. These are often chosen
as interactions generated by reliable methods (small scale
experiments), interactions confirmed by several methods,
or interactions confirmed by interacting paralogs
[1,11,14,15].

Negative examples also need to be chosen with care, and
two such selection methods have been described in the lit-
erature. Because there are no "gold standard" non-interac-
tions, some authors suggest that high quality non-
interactions can be generated by considering pairs of pro-
teins whose cellular localization is different, most likely
preventing the proteins from participating in a biologi-
cally relevant interaction [11,16]. Other authors use a sim-
pler scheme, selecting non-interacting pairs uniformly at
random from the set of all proteins pairs that are not
known to interact [4,7,12,17].

In this paper, we argue that that the first method is not
appropriate for assessing classifier accuracy. In particular,
we show that restricting negative examples to non co-
localized protein pairs leads to a biased estimate of the
accuracy of a predictor of protein-protein interactions.
The basic assumption underlying the assessment of the
accuracy of a classifier is that the distribution of testing
examples reflects the intended use of the method. In the
case of predicting protein-protein interactions, a simple
uniform random choice of non-interacting protein pairs
yields an unbiased estimate of the true distribution. In
contrast, imposing the constraint of non co-localization
may induce a different distribution on the features that are
used for classification. The resulting biased distribution of
negative examples leads to over-optimistic estimates of
classifier accuracy. This bias is likely to affect results
reported in several papers [5,6,11].

The simpler selection scheme — choosing negative exam-
ples uniformly at random — also has potential pitfalls:
because the interaction network is not complete, the set of

negative examples can be contaminated with interacting
proteins. This contamination, however, is likely to be very
small: it has been estimated that the number of interac-
tions in yeast is well below 100,000 [1,18], a number
which is 0.25 percent of the total number of protein pairs
in yeast. This effect is likely to be much smaller than the
contamination of even high-quality positive examples;
moreover, our results show that a support vector machine
classifier is resistant to even higher levels of label contam-
ination.

Results
In this paper we postulate that testing a classifier of pro-
tein-protein interactions on negative examples composed
of pairs of proteins that are not co-localized results in a
biased assessment of classifier accuracy. In order to test
this hypothesis we need to define "co-localization." We
do this using the subcellular localization component of
the Gene Ontology (GO). GO keywords are becoming the
standard in annotating gene products [20]. These key-
words are arranged in a hierarchical manner in a rooted,
directed acyclic graph, where keywords lower in the hier-
archy represent more specific terms. Therefore, one can-
not say that two proteins are not co-localized simply
because they don't share the exact same GO terms. As a
similarity measure between two GO terms we use the neg-
ative log of the fraction of genes annotated with the lowest
common ancestor of the two terms. This similarity was
introduced as a similarity measure on a hierarchy in [21],
used in the context of GO annotations in [22], and used
in a kernel in [7]. Using this measure of similarity allows
us to generate parameterized sets of negative examples
characterized by a maximum degree of similarity allowed
between their GO cellular compartment annotations.

Perhaps the simplest way to predict protein-protein inter-
actions is to represent pairs of proteins by a set of genomic
features that reflect how likely they are to interact. Exam-
ples of features that were used for this task are similarity
of GO process and GO function annotations, correlation
of gene expression, presence of similar transcription factor
binding sites in the upstream region of the genes, partici-
pation in common regulatory modules and so on [11-13].

Table 1: The dependence of ROC scores of several variables on the co-localization threshold for the MIPS/DIP interaction data. The 
variables are: GO process similarity, GO function similarity, and correlations between microarray data under various environmental 
conditions [19]. For each threshold we computed the average ROC scores for 10 drawings of the negative examples. The standard 
deviation is shown in parentheses.

threshold GO process GO function microarray

1.00 0.81 (0.001) 0.64 (0.002) 0.64 (0.005)
0.50 0.82 (0.001) 0.65 (0.004) 0.64 (0.003)
0.20 0.82 (0.002) 0.66 (0.005) 0.65 (0.005)
0.10 0.83 (0.002) 0.66 (0.005) 0.66 (0.003)
0.04 0.83 (0.001) 0.67 (0.004) 0.66 (0.004)
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Table 1 illustrates that as we vary the upper bound on the
allowed similarity between the cellular compartment
annotations of pairs of proteins in the negative examples
(called the co-localization threshold in what follows), GO
function and process annotations, and microarray data
become more predictive of protein-protein interactions,
as measured using the ROC score (the area under the
receiver operating characteristic curve). This observation
is not surprising. Consider, for example, biological proc-
ess annotations. Interacting proteins often participate in
similar processes. Conversely, negative examples that are
not co-localized will be less likely to participate in similar
biological processes, making this variable more predictive
of interaction. A similar argument holds for the GO func-
tion annotations and gene expression correlations. Note
that GO function annotations are less predictive than the
process annotations because interactions are often
required for carrying out a particular process, whereas pro-
teins that carry out the same function can do so in differ-
ent contexts, not requring interaction.

Using non-co-localized negative examples can lead to a
bias when using sequence-based features as well. In this

case the features are pairs of sequence features, e.g., motifs
or k-mers that belong to a pair of protein sequences. Such
a kernel was used in [6,7] with a support vector machine
(SVM) classifier. The dimensionality of the feature space
of these kernels is very high, and in fact, the method
doesn't use an explicit representation of the features. For
the sequence-based features we show the existence of the
bias incurred by using non-co-localized negative exam-
ples by showing that the accuracy of a classifier depends
on the co-localization threshold of the negative examples
on which the method was tested. Figure 1 illustrates the
increase in classifier accuracy as the co-localization thresh-
old is decreased. This effect is much larger than the varia-
bility that results from the randomness in the choice of
negative examples and the cross-validation (CV) estimate:
the standard deviation of the ROC score on 10 drawings
of the negative examples was 0.003, and the variability
between different runs of CV is even lower. We can
explain the higher accuracy for low co-localization thresh-
old by the fact that the constraint on localization restricts
the negative examples to a sub-space of sequence space,
making the learning problem easier than when there is no
constraint.

The dependence of prediction accuracy, quantified by the area under the ROC/ROC50 curves, on the co-localization threshold used to choose negative examplesFigure 1
The dependence of prediction accuracy, quantified by the area under the ROC/ROC50 curves, on the co-localization threshold 
used to choose negative examples. Enforcing the condition that no two proteins in the set of negative examples have a GO 
component similarity that is greater than a given threshold (the co-localization threshold) imposes a constraint on the distribu-
tion of negative examples. This constraint makes it easier for the classifier to distinguish between positive and negative exam-
ples, and the effect gets stronger as the co-localization threshold becomes smaller. All methods are SVM-based classifiers 
trained using different kernels on two interaction datasets. Results are computed using five-fold cross-validation, averaged over 
five drawings of negative examples. The spectrum kernel method uses pairs of k-mers as features; the motif method uses the 
composition of discrete sequence motifs, and the non-sequence method uses features such as co-expression as measured in 
microarray experiments, similarity in GO process and function annotations etc. We performed our experiment on two yeast 
physical interaction datasets: the BIND data is derived from the BIND database; the experiments using the non-sequence data 
were performed on a subset of reliable interactions that are found by multiple assays in BIND; DIP/MIPS is a dataset of reliable 
interactions derived from the DIP and MIPS databases.
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In our experiments we used sets of negative examples
characterized by the similarity of the localization annota-
tions of two proteins. To see the relevance of our results to
other published work, we need to establish a relationship
between our co-localization threshold, and criteria used
elsewhere. The data of [11] is used in several studies of
protein-protein interactions. They considered five very
broad cellular compartments (cytoplasm, mitochon-
drion, nucleus, plasma membrane, and secretory pathway
organelles). Four of these have corresponding nodes in
the cellular compartment part of GO. The average GO
similarity between these compartments ranges from 0.002
to 0.36, and is 0.13 on average. At this level of the co-
localization threshold our results show a strong effect.

Discussion
There are many pitfalls in designing machine learning
experiments (see [23] for an example in the context of fea-
ture selection). Design of experiments in the field of bio-
informatics, where various sources of data are often
correlated, requires special care to make sure no informa-
tion on the testing example labels leaks to the representa-
tion of the training examples. In this paper, we illustrated
a phenomenon where, by constraining the distribution of
negative examples, the classification problem becomes
easier. Although choosing negative examples as pairs of
proteins that are localized to different cellular compart-
ments creates high-quality negative examples, it also
makes them easier to distinguish from interacting pro-
teins. In the case where the data is characterized by fea-
tures such as similarity of GO process or function
annotations, constraining the distribution of the compo-
nent similarity has a direct effect on the distribution of the
GO process annotation.

In the case of the sequence-based classifiers, the improve-
ment in classifier performance is the result of constraining
the negative examples to a smaller region of sequence-
space. We see a difference between the behavior of the
motif/pfam kernels and the spectrum kernel: the results
with the spectrum kernel are more strongly affected by the
distribution of negative examples. We believe that this dif-
ference is the result of the greater flexibility of the spec-
trum kernel, which allows it to fit arbitrary training sets.
The motif/pfam kernels, by contrast, use features that are
more biologically relevant, so cannot be biased as much
as the spectrum kernel. The gold standard negative exam-
ples of [11] were not only constrained by lack of co-local-
ization; they also demanded that both pairs of proteins
have GO annotations in both the function and process
components. This constraint would likely increase classi-
fier accuracy even further.

The reader may suspect that the improvement in classifier
accuracy when constraining the negative examples to be

non-co-localized may be the result of higher quality neg-
ative examples. To address this concern we performed the
following experiment to test the effect of changing the
labels of a small fraction of the negative examples. We
considered the MIPS/DIP dataset with the spectrum ker-
nel, and negative examples chosen with a co-localization
threhsold of 0.1. We divided the dataset into two parts:
training data (80%), test data (20%), and flipped the
labels of 2% of the negative examples, a fraction likely to
be much higher than the level of contamination under a
choice of unconstrained selection of negative examples.
SVMs were trained on both flipped and unflipped ver-
sions of the data. The average ROC (ROC50) scores for 10
draws of the data were 0.874 (0.361) for the unflipped
data, and 0.871 (0.356) for the flipped data. This experi-
ment illustrates that SVMs can easily handle a larger
amount of noise in the negative examples than is expected
in the actual data. Thus, the effect shown above is not a
result of better quality negative examples.

Without being aware of the bias in using gold standard
non-interactions, one may think, looking at a couple of
papers that describe methods for predicting protein pro-
tein interactions from sequence [5,6], that the problem is
well addressed by these methods. However, this is not the
case: the good performance is in fact a result of the biased
selection of negative examples, and prediction of protein-
protein interactions from sequence is a difficult problem
that can still be considered unsolved.

Methods
Positive Examples
We focus on prediction of physical interactions in yeast
and use interaction data derived from several sources.
These interactions are used as positive examples when
training our classifiers.

• Data from BIND [24]. BIND includes published interac-
tion data from high-throughput experiments as well as
curated entries derived from published papers. Using
physical interactions yields a dataset comprised of 10,517
interactions among 4233 yeast proteins (downloaded July
9th, 2004). Selecting interactions that were verified by
multiple experimental assays yields a dataset of 750
trusted interactions. We used all the interactions for train-
ing, but assessed the performance only on trusted interac-
tions.

• A curated set of high quality interactions from MIPS and
DIP [25,26], also used in [5]. This set contains MIPS inter-
actions that were annotated as physical interactions
derived from small scale experiments, DIP interactions
from small scale experiments, and DIP interactions veri-
fied by multiple experiments, for a total of 4838 interac-
tions.
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In both cases we avoided using interactions that were val-
idated by interacting paralogs in yeast to define trusted
interactions, since those are likely to be easier to predict
using the sequence-based methods. We eliminated self-
interactions from each dataset, since many of the features
we use are based on measures of similarity between the
two proteins, e.g., gene expression correlation, and simi-
larity of GO annotations.

Negative Examples
We compared two methods for choosing negative exam-
ples in this paper:

• Random pairs of proteins that are not known to physi-
cally interact.

• Parameterized sets of negative examples were chosen as
random pairs of protein that are not known to physically
interact, such that the similarity of their GO cellular com-
partment annotations is below some threshold.

In each case the number of negative examples was chosen
to be equal to the number of positive examples in the
dataset.

Support Vector Machines
The support vector machine (SVM) [27] is a classification
method that provides state-of-the-art performance in
many domains including bioinformatics [28,29]. SVMs
access the data only through the kernel function which
defines the similarity between data objects. This allows
the use of SVMs even when an explicit vector-space repre-
sentation of the data is not available, but a kernel function
is provided. This is the case for one of the kernels used in
this work, where a kernel between two pairs of sequences
is defined (see below and [6,7]).

Figures of merit
In this paper we evaluate the accuracy of a trained classi-
fier using two metrics. Both metrics — the area under the
receiver operating characteristic curve (ROC score), and
the normalized area under that curve up to the first 50
false positives, the ROC50 score — aim to measure both
sensitivity and specificity by integrating over a curve that
plots the true positive rate as a function of the false posi-
tive rate. The motivation for using both metrics is pro-
vided for example in [7].

Pairwise kernels

The kernels proposed in the literature for handling
genomic information, e.g., sequence kernels such as the
motif and spectrum kernels presented below, provide a
similarity between two sequences, or more generally, a
similarity between a representation of two proteins.
Therefore, such kernels are not directly applicable to the

task of predicting protein-protein interactions, which
requires a similarity between two pairs of proteins. Thus,

we want a function K((X1, X2), ( , )) that returns the

similarity between the proteins X1 and X2 compared to the

proteins  and . We call a kernel that operates on

individual genes or proteins a genomic kernel, and a kernel
that compares pairs of genes or proteins a pairwise kernel.
Two recent papers proposed an approach for converting a
genomic kernel into a pairwise kernel [6,7]. They define
the kernel

K((X1, X2), ( , )) = K'(X1, ) K'(X2, ) + K'(X1,

) K'(X2, ),  (1)

where K'(·, ·) is any genomic kernel. The intuition
behind the kernel is that for the pair (X1, X2) to be consid-

ered similar to ( , ), X1 needs to be similar to  and

X2 needs to be similar to  (the first term) or X1 is similar

to  and X2 is similar to  (the second term). The fea-

ture space for this kernel is a vector space of (sym-
metrized) pairs of features from the underlying genomic
kernel.

Sequence kernels

We use two sequence kernels in this work: the spectrum
kernel [30] and the motif kernel [31]. The spectrum kernel
models a sequence in the space of all k-mers, and its fea-
ture space is a vector of counts of the number of times
each k-mer appears in the sequence. For the motif kernel
we use discrete sequence motifs, representing a sequence
in terms of a motif composition vector that counts how
many times a discrete sequence motif matches the
sequence. To compute the motif kernel we used discrete
sequence motifs constructed from the eBlocks database
[32]. Yeast ORFs contain occurrences of 17,768 motifs out
of a set of 42,718 motifs. For both kernels we used a nor-
malized linear kernel in the space of k-mer/motif counts:

.
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Data and code related to this work are available at: http:/
/noble.gs.washington.edu/proj/sppi. All the classification
experiments were performed using the PyML machine
learning library available at http://pyml.sourceforge.net.
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