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Abstract
Background: With the advent of metabolomics as a powerful tool for both functional and
biomarker discovery, the identification of specific differences between complex metabolite profiles
is becoming a major challenge in the data analysis pipeline. The task remains difficult, given the
datasets' size, complexity, and common shifts in migration (elution/retention) times between
samples analyzed by hyphenated mass spectrometry methods.

Results: We present a Mathematica (Wolfram Research, Inc.) package MathDAMP (Mathematica
package for Differential Analysis of Metabolite Profiles), which highlights differences between raw
datasets acquired by hyphenated mass spectrometry methods by applying arithmetic operations to
all corresponding signal intensities on a datapoint-by-datapoint basis. Peak identification and
integration is thus bypassed and the results are displayed graphically.

To facilitate direct comparisons, the raw datasets are automatically preprocessed and normalized
in terms of both migration times and signal intensities. A combination of dynamic programming and
global optimization is used for the alignment of the datasets along the migration time dimension.

The processed datasets and the results of direct comparisons between them are visualized using
density plots (axes represent migration time and m/z values while peaks appear as color-coded
spots) providing an intuitive overall view. Various forms of comparisons and statistical tests can be
applied to highlight subtle differences. Overlaid electropherograms (chromatograms)
corresponding to the vicinities of the candidate differences from any result may be generated in a
descending order of significance for visual confirmation. Additionally, a standard library table (a list
of m/z values and migration times for known compounds) may be aligned and overlaid on the plots
to allow easier identification of metabolites.

Conclusion: Our tool facilitates the visualization and identification of differences between
complex metabolite profiles according to various criteria in an automated fashion and is useful for
data-driven discovery of biomarkers and functional genomics.
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Background
The identification of specific differences between metabo-
lite profiles plays a prominent role in metabolomic data
analysis and can be useful for the discovery of biomarkers
or the characterization of specific biological activities.
Hyphenated mass spectrometry methods (GC-MS, LC-
MS, CE-MS, etc.) are among the most common analytical
tools for metabolomics. Most produce large datasets that
are not easily interpretable using the software provided by
most instrument manufacturers. The common data anal-
ysis workflow, starting from raw data, usually includes the
detection of peaks, their integration, matching of corre-
sponding peaks across datasets and subsequent multivar-
iate analysis [1]. Several tools enabling automation of the
procedure are available [2-7], but the overall task still
proves challenging given the datasets' size, complexity,
common shifts in migration times between datasets, and
the need to identify metabolites. In addition, some of
these tools either provide only partial solutions (genera-
tion of integrated peak lists) or were developed for a spe-
cific type of analysis (e.g. GC-MS) and some alignment
algorithms may not be very robust when migration time
differences are large and the composition of samples is
highly variable. Moreover, automated peak picking and
integration remains an important challenge that is com-
plicated by the wide range of peak intensities, sometimes
poor separation of compounds and the resulting distorted
peak shapes, leading to multiple incorrect assignments of
differences. While visual exploration of the raw data has
been used to complement automated data analysis [8],
this often comes at the expense of convenience and versa-
tility. Direct chromatogram comparisons bypass peak
picking and integration to select areas of interest from raw
data or to locate differences between metabolite profiles
[9]. To apply direct chromatogram comparisons as a com-
plement or an alternative to the multivariate analysis of
integrated peak lists, automation of the processing of raw
data along with suitable visualization and metabolite
identification methods are desirable. With MathDAMP,
we provide a complete series of such tools, capable of pro-
viding an overall view of the differences between metabo-
lite profiles according to different criteria. The
functionality of the package is demonstrated with CE-MS
data, which is particularly challenging due to the more sig-
nificant migration time shifts, but the tools can be used
for other types of hyphenated mass spectrometry methods
as well.

Implementation
Differences between metabolite profiles in MathDAMP
are highlighted by applying arithmetic operations to all
corresponding signal intensities from whole raw datasets
on a datapoint-by-datapoint basis. To facilitate this, the
datasets are processed into rectangular matrices and nor-
malized in terms of both migration time and signal inten-

sities. The results are visualized on density plots (also
referred to as color maps or heat maps) providing a global
view of the differences between samples. The main fea-
tures of the package are briefly outlined below. A detailed
description of the implementation and usage is part of the
online documentation [10].

Preprocessing
Raw datasets are binned along the m/z dimension to a
specified resolution upon loading. Baselines may be sub-
tracted by fitting the individual electropherograms to any
user specified function (first order polynomial by default)
by robust nonlinear regression as described by Ruckstuhl
et al. [11]. However, the regression is performed in a glo-
bal fashion in our implementation. Following baseline
subtraction, noise may be removed from individual elec-
tropherograms by leveling to 0 all signal intensities falling
within a threshold. By default, the threshold is calculated
for every electropherogram as a specific multiple (5) of a
standard deviation of signal intensities from a specified
region of the electropherogram where no signals are
expected (1 – 3 min). The datasets may be smoothed by
applying predefined or user specified smoothing filters to
all electropherograms in the dataset. Additionally, the
datasets may be cropped along both the m/z and migra-
tion time dimensions.

Normalization
Sample datasets are normalized to a reference dataset (e.g.
one of the sample datasets) on a pairwise basis. For the
purpose of the dataset alignment along the migration
time dimension, a representative set of peaks is picked
from all datasets using a modified Douglas-Peucker algo-
rithm as described by Wallace et al. [12]. Raw migration
times are used for all calculations. Using this approach,
individual electropherograms are segmented into parts
determined by strategic points. Initially, only the end-
points of an electropherogram are set to be the strategic
points. Additional strategic points are assigned recursively
to a datapoint in the electropherogram with the biggest
orthogonal distance from a line connecting two neighbor-
ing strategic points. This distance must be above a speci-
fied threshold to avoid picking noise-related peaks.
Vertical distance instead of an orthogonal distance is used
in our implementation for the assignment of new strategic
points. Strategic points with two neighboring strategic
points having a smaller signal intensity are selected as
peaks. The corresponding migration times may then be
calculated as centroids from datapoints falling within a
specified vicinity (time range) of the selected strategic
points. The alignment of datasets along the migration
time dimension is achieved by dynamic time warping
(DTW) with an explicitly specified time shift (warping)
function as described previously [13]. Any mathematical
function can be specified as the time shift function. Opti-
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mal parameters for the time shift function are calculated
for all sample datasets by combining dynamic program-
ming (DP) and global optimization methods. The param-
eters of the time shift function are optimized to achieve
the lowest sum of DP scores from all corresponding elec-
tropherograms. The DP scores are calculated by setting the
partial scores to the distance between the two peaks of a
subproblem (or a gap penalty value). The optimized time
shift function is then used to rescale the timescale on the
sample dataset (Figure 1). Signal intensities are adjusted
to compensate for the compression or expansion of the
peaks during time warping and thus conserve their areas.
All electropherograms in the aligned sample datasets are
interpolated and timepoints identical to those in the ref-
erence dataset are selected.

A standard library table (a list of m/z values and migration
times for known compounds) may be aligned to the refer-
ence dataset using the same procedure. The aligned stand-
ard library table can later be used to annotate the plots or
for the automatic localization of the peaks of the internal
standard as described below.

Signal intensities in the sample datasets may be normal-
ized according to a specified list of normalization coeffi-
cients (e.g. originating from the sample weights).
Additionally, the signal intensities may be normalized
according to the peaks of the internal standard. These
peaks are then integrated in all datasets after alignment.
The location of the peak of the internal standard in the ref-
erence dataset may be either specified explicitly or it may
be extrapolated from the aligned standard library table. In
the latter case, the user specifies only the name of the com-
pound to serve as the internal standard.

Result datasets
Following dataset normalization, various forms of direct
comparisons may be performed to find differences
between two or multiple datasets. Arithmetic operations
or statistical tests are then applied to all corresponding sig-
nal intensities. The resulting dataset(s) has the same struc-
ture and dimensions as the compared datasets. Any
processed, normalized, or result dataset can be easily
exported as text or in binary format using Mathematica's
built-in data export functionality.

To compare two datasets, the simplest way to highlight
differences between them is to subtract the corresponding
signal intensities (absolute difference). Alternately, divid-
ing this difference by the larger of the two signal intensi-
ties provides a measure of the relative difference.
Multiplying the corresponding signal intensities of the
absolute and relative difference results highlights differ-
ences significant in both absolute and relative terms
(absolute × relative difference). 

Outlier signals within a group of datasets may be located
by calculating z-scores or by quartile analysis. A specified
number of outliers may be removed from a set of corre-
sponding signal intensities prior to z-score calculation.
This limits the disproportionate influence of eventual out-
liers on the mean and standard deviation of the set which
may lead to undesirably low z-score values. The result for
the quartile-based analysis, an alternative to z-scores, is
calculated as a difference between a specific signal inten-
sity value and the third quartile (if it is smaller than the
value) or the first quartile (if it is greater than the value) of
the corresponding set, divided by the interquartile range.
The result is set to 0 if the value lies between the first and
the third quartile.

To compare two groups of replicate datasets, averaged
datasets for both groups are calculated after normaliza-
tion and these are used to generate the absolute, relative,
and absolute × relative difference results. Additionally, t-
scores are calculated for all groups of corresponding signal
intensities. The resulting dataset may be used to directly
identify the differences or to filter the absolute × relative
result to remove statistically less significant differences
(Figure 2).

An F ratio (one-way ANOVA) is used to find differences
between multiple groups of replicated datasets. The F
ratio, t-score, z-score, and quartile-based result datasets
may be smoothed to suppress signals resulting from indi-
vidual coinciding noise-related signal intensities. Details
and template notebooks for the differential analysis
approaches described above are part of the online docu-
mentation [10]. Additionally, any custom function to
process corresponding signal intensities from datasets
under comparison may be defined to highlight any differ-
ence or any pattern of interest.

Visualization
The sample datasets and the results of differential analyses
are visualized using density plots. The axes represent the
migration time and m/z values. Peaks appear as color-
coded spots characteristic of the signal intensity (Figure
2). Multiple datasets may also be interlaced into each
other so that electropherograms corresponding to the
same m/z value appear next to each other on density plot
(parallel plot) allowing to simultaneously explore the
whole profiles. For any of the different types of results,
plots displaying overlaid electropherograms for time
ranges adjacent to the candidate differences can be gener-
ated in a descending order of significance to facilitate vis-
ual inspection and identification of false positives (Figure
3). The aligned standard library table may be used to place
annotation labels directly on the density plots and electro-
pherograms to allow easier identification of metabolites
(Figure 2, 3).
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Peak picking and migration time alignmentFigure 1
Peak picking and migration time alignment. (a) Visualization of the position of peaks picked from cation datasets 
acquired by CE-TOFMS. The data originates from a previous analysis of mouse liver extracts after treatment with acetami-
nophen [13]. (b) The peak sets were aligned to the peak set from Sample 1 using the alignment procedure described in the 
main text. The function derived by Reijenga et al. [14] for the normalization of migration times in CE was used as the time shift 
function.
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Comparison of two groups of replicate datasetsFigure 2
Comparison of two groups of replicate datasets. Visualization of an absolute × relative difference result between the 
averages of two groups of replicate cation datasets (n = 4). The result was further filtered as described in the main text with a 
t-score threshold of 3.71 (corresponding p = 0.01 when comparing two groups of four replicate values). The initial t-score 
dataset was smoothed by applying a moving average filter (window size 9) prior to filtering the absolute × relative result. Red 
color indicates signals with higher levels in Set 2, blue color indicates signals with lower levels in Set 2. The underlying datasets 
originate from previous work [13].
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Visualization of candidate differences as extracted ion electropherogramsFigure 3
Visualization of candidate differences as extracted ion electropherograms. Overlaid electropherograms from 
aligned and normalized datasets corresponding to the vicinities of the 20 most significant differences in the dataset shown in 
Figure 2. The underlying datasets originate from previous work [13].
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Results and discussion
Preprocessing
The binning of raw datasets along the m/z dimension
facilitates their processing into a rectangular matrix for-
mat. For datasets with high resolution along the m/z
dimension (such as those originating from TOF instru-
ments), binning provides a significant decrease in size and
resolution suitable for visual inspection. Choosing a
wider bin size may, however, lead to an undesirable dilu-
tion of weak signals in noise. This can be overcome by first
performing the baseline subtraction and noise removal on
datasets binned using a narrow binning window. The
resulting datasets may then be binned to a resolution suit-
able for visual inspection.

Normalization
A representative set of peaks is picked from the datasets for
the purpose of migration time alignment. We modified
the peak picking algorithm described above to use the
maximum vertical distance from the line connecting two
neighboring strategic points as a criteria for a new strategic
point. This was done to avoid the necessity to normalize
the migration time scale and the signal intensity scale
prior to peak picking. However, by using the vertical dis-
tance, many datapoints within a peak fulfill the criteria of
being above the vertical distance threshold. Excessive stra-
tegic point selection is suppressed by specifying a mini-
mum distance between neighboring strategic points. The
minimum distance is, by default, set to a quarter of a typ-
ical peak width so that the excluded time window in the
vicinity of strategic points corresponding to the peak top
and to the peak base partially or almost completely over-
lap.

Results of the migration time normalization/alignment
are shown in Figure 1. As can be seen, the migration time
shifts are significant between the original samples and the
trend toward larger shifts with increasing migration time
is apparent (Figure 1a). The quality of the overall align-
ment procedure can be seen in Figure 1b. The quality of
the alignment is rather uniform over time. Isolated sym-
bols do not correspond to misaligned peaks but rather to
peaks higher than the peak picking threshold present only
in certain datasets.

The alignment procedure described above proved robust
to the presence of a large number of non-corresponding
peaks between two aligned datasets. A small number of
corresponding peaks picked from the datasets proved suf-
ficient to find the optimal parameters of the time shift
function. Given the robustness of the alignment proce-
dure, missing peaks or erroneous peak picking do not sig-
nificantly affect the quality of the alignment.

An iterative two-step alignment procedure proved benefi-
cial for datasets with significant time shifts between corre-
sponding peaks. To achieve a good alignment, a small gap
penalty value is desirable to limit the number of non-cor-
responding peaks that are close enough in corresponding
electropherograms to fall within the gap penalty and thus
affect the alignment. However, when a small gap penalty
is used for the alignment of datasets with large time shifts,
the optimization procedure may not find the region of
convergence to the global optimum. Therefore, a bigger
gap penalty value is used first to generate an approximate
alignment. The second alignment is then performed with
a smaller gap penalty value starting with the parameters of
the time shift function obtained from the primary approx-
imate alignment. The DTW implementation of Math-
DAMP employs explicit time shift function specification.
Generic time shift functions (such as polynomials or
splines) may be specified for dataset alignment. Alter-
nately, time shift functions incorporating a priori knowl-
edge about the expected time shifts, as for example
migration time normalization function for CE [14], may
be used. Using explicit time shift functions provides the
ability to control the flexibility or the rigidity of time
warping. This may prove beneficial for some applications
as improvement of alignment results of unconstrained
DTW [15], by introducing rigid slope constraints, was
reported [16]. Additionally, other existing alignment algo-
rithms [5,17-20], that could also be implemented in
MathDAMP, may hold advantages for specific applica-
tions.

As described above, the method to identify differences in
profiles is not based on integrated peak lists and thus
avoids common quantitative errors introduced by this
task. It is important to realize that the described peak pick-
ing is used only for the purpose of alignment which as we
described is very robust to possible peak picking errors.

Data visualization
The density plot visualizations provide an overall intuitive
view of the differences between samples (Figure 2). Peaks
appear as colored spots of intensity corresponding to the
magnitude of the differences between samples/groups. As
described above, multiple alternative approaches for
highlighting a difference of interest are available. Since
different approaches may possess different strengths and
weaknesses, evaluating them in parallel decreases the
chance of missing an important difference.

The proper alignment of the datasets is a necessary prereq-
uisite to obtain clear results. Misaligned peaks can lead to
ambiguous signals on the density plots (e.g. appearing as
doublets of opposite polarity red-blue) but these fortu-
nately can be ruled out as false positives by visually
exploring the overlaid electropherograms of the top can-
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didate differences (Figure 3). The confirmation plots are
thus an essential and easy way to identify false-positive
signals since at this point there are no simple means to
automate this process. Specific sources of ambiguous sig-
nals and possible ways to suppress their occurrence, as
well as potential strengths and weaknesses of alternative
approaches, for different kinds of differential analysis, are
described in more detail in the respective example note-
books which are part of the online documentation [10].

The ability of MathDAMP to identify specific differences
in complex metabolite profiles has been successfully dem-
onstrated, leading to the discovery of a biomarker for liver
oxidative stress [13] as well as facilitating enzyme activity
detection and discovery in known and non-characterized
proteins using non-targeted CE-MS analysis of complex
substrate cocktails [21]. Overall, the MathDAMP tools can
be seen as complementary to other methods that make
use of integrated peak lists to find differences in profiles
using downstream multivariate analysis. While both
approaches may have limitations, MathDAMP can con-
siderably simplify differential analysis of metabolite pro-
files that are very similar and is very robust to widely
varying migration times and irregular peak shape.

Conclusion
The MathDAMP package is capable of highlighting differ-
ences between complex metabolite profiles according to
various criteria in an automated fashion. Since the whole
(preprocessed and normalized) raw datasets are com-
pared, the possibility of loss of information (e.g. due to
common but unavoidable mistakes in peak picking or
peak identification) is limited. MathDAMP differs from
most other existing tools by combining very robust migra-
tion time normalization with a point-by-point approach
to the identification of differences in profiles, facilitates
the identification of metabolites, and provides multiple
different ways in which data and differences in profiles
can be visualized and analyzed. Moreover, the open archi-
tecture of the MathDAMP modules allows user to adjust
multiple options to fit particular purposes or type of ana-
lytical method and offers extensive customizability for
any user willing to manipulate the Mathematica code and
potentially quickly implement any desirable new features.
The current release does not provide quantification of
compounds per se, something that is planned for future
development. However, it is especially well-suited to
highlight subtle differences between complex metabolite
profiles.

Availability and requirements
• Project name: MathDAMP

• Project home page: http://mathdamp.iab.keio.ac.jp/

• Operating system(s): Platform independent

• Programming language: Mathematica

• Other requirements: Mathematica 4.2 or higher

• License: free

Abbreviations
CE – capillary electrophoresis

DP – dynamic programming

GC – gas chromatography

LC – liquid chromatography

MS – mass spectrometry

TOFMS – time-of-flight mass spectrometry
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