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Abstract

interactions with proteasome family members.

Background: The wingless-Int (WNT) pathway has an essential role in cell regulation of hematopoietic stem cells (HSC).
For Acute Myeloid Leukemia (AML), the malignant counterpart of HSC, currently only a selective number of genes of
the WNT pathway are analyzed by using either gene expression or DNA-methylation profiles for the identification of
prognostic markers and potential candidate targets for drug therapy. It is known that mRNA expression is controlled by
DNA-methylation and that specific patterns can infer the ability to differentiate biological differences, thus a combined
analysis using all WNT annotated genes could provide more insight in the WNT signaling.

Approach: We created a computational approach that integrates gene expression and DNA promoter methylation
profiles. The approach represents the continuous gene expression and promoter methylation profiles with nine
discrete mutually exclusive scenarios. The scenario representation allows for a refinement of patient groups by a
more powerful statistical analysis, and the construction of a co-expression network. We focused on 268 WNT
annotated signaling genes that are derived from the molecular signature database.

Results: Using the scenarios we identified seven prognostic markers for overall survival and event-free survival.
Three genes are novel prognostic markers; two with favorable outcome (PSMD2, PPARD) and one with unfavorable
outcome (XPNPEP). The remaining four genes (LEF1, SFRP2, RUNXT, and AXIN2) were previously identified but we
could refine the patient groups. Three AML risk groups were further analyzed and the co-expression network
showed that only the good risk group harbors frequent promoter hypermethylation and significantly correlated

Conclusion: Our results provide novel insights in WNT signaling in AML, we discovered new and previously
identified prognostic markers and a refinement of the patient groups.

Background

The development of stem cells and progenitor cells into
mature functioning cells depends on, among others, the
correct functioning of the WNT signaling pathway [1,2].
As an example, Wnt3a deficiency leads in leukemia cells
to reduced numbers of long-term hematopoietic stem
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cells (HSC) and multipotent progenitors [3,4]. In Acute
Myeloid Leukemia (AML), the WNT pathway genes do
not show frequent genetic alterations but rather gene
silencing by promoter methylation [5-7]. The epigenetic
alterations plays a critical role in initiation, progression,
and maintenance of the disease phenotype. Promoter
methylation of genes in the WNT pathway (e.g., AXIN2,
SFRPI, sFRP2, sFRP4, sFRP5, DKK1, DKK3, APC, RUNX1,
SOX17, WIFI, RASSF1A, LKB1/STK11, cyclin D1, TCF1,
LEF1. CTNNBI) causes genes to be downregulated in
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their mRNA expression, thereby deregulation of the WNT
signaling. The relation between these genetic and epige-
netic factors is especially important when studying the dis-
ease phenotype, such as for patients with deregulated
WNT signaling. This is also shown in previous studies
that reported associations of promoter methylation of
WNT signaling genes with adverse prognosis [6,8].

Over the past years, genetic and epigenetic studies have,
independently from each other, provided important new
insights in the underlying pathology of Acute Myeloid
Leukemia (AML) [9-11]. AML is a heterogeneous disease
that can roughly be classified in three risk groups; good,
intermediate and the poor risk group. The good risk
group consists of patients with a translocation between
chromosome 15 and 17 (t(15;17)) or a translocation
between chromosomes 8 and 21 (t(8;21) or an inversion of
chromosome 16 (inv(16)). The intermediate risk group
consists patients with a normal karyotype, and the poor
risk group with a complex karyotype (patients more than
3 cytogenetic abnormalities). Previous studies analysed
genetic and epigenetic changes of WNT signaling genes
mostly in patients with intermediate risk [6], however,
DNA hypermethylation was found to be enriched for the
good risk group [12]. These studies however analysed a
limited number of genes in the WNT signaling pathway.
A comprehensive analysis of the relationships between
DNA-methylation and transcript expression by means of
all annotated genes of the WNT signaling pathway has not
been done.

For this study we developed a statistical approach to
model the mRNA transcript expression with DNA-
methylation abundance and applied it to a complete list
of WNT signaling genes. This allowed us to refine
groups of patients from which genes have specific pro-
moter methylation (either hypermethylated, hypomethy-
lated or not methylated at all), and gene expression
(either up regulated, down regulated or not changed in
expression), potentially important for better clinical
diagnostics. Further we provided novel insights of WNT
signaling in AML that may inspire therapeutic interven-
tions. Our integration strategy provides useful biological
interpretation for the detected prognostic markers and
for patient clustering.

Results

Analysis of prognostic markers by means of gene-state
scenarios

It has previously been shown that DNA-methylation or
gene expression levels of genes can be used as predictive
features to determine clinical outcome of AML patients
[6,8]. We speculated that patient groups can be refined
when DNA-methylation and gene expression levels of
genes are analysed in an integrated fashion. We therefore
categorized each gene in one of nine scenarios, each
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representing a unique combination of up/down/no gene
expression and hyper/hypo/no methylation of its promo-
ter region (see Methods and Figure 1A). We next
assessed whether a state of a gene is predictive for clinical
outcome for Overall Survival (OS) and Event-Free Survi-
val (EFS) using univariate (log-rank test) and multivariate
analyses (Cox’s proportional hazard ratio model) (See
method section). We used in total 344 AML patients and
marked a gene as a prognostic marker if both the univari-
ate and multivariate analysis resulted in significant differ-
ences in clinical outcome with P < 0.05 (See method
section and Additional file 1).

Re-analysis of known WNT associated prognostic markers
for leukemia

We started analysing thirteen WNT signaling genes that
are known to have important function in leukemisa, i.e.,
SFRPI1, sFRP2, sFRP4, DKK1, DKK3, APC, APC2, RUNX1,
WIF1, TCF1, LEF1, LKB1/STK11, and CTNNBI, and
could confirm on our data that LEFI [13], SFRP2 [6],
RUNXI [14], and AXIN2 have prognostic value.

AXIN2

AXIN inhibition protein 2 (AXIN2) is a well-established
readout for WNT signaling activation across various
species and has been used within the hematopoietic sys-
tem in reporter mice as readout of WNT activation[15].
We detected that the expression levels of AXIN2 sepa-
rates patients in two groups for which unfavourable out-
come is seen for patients with significant downregulated
AXIN?2 expression levels in OS (Figure 2G, Table 1) and
EFS (Additional file 2G, and 3). Note that this is irre-
spective of the DNA-methylation levels in the promoter
region of AXIN2 (ie., AXINZ’s genes-state is in scenario
8). Surprisingly, this is in contrast to solid tumours, for
instance colon carcinomas, in which high WNT signal-
ing is a risk factor.

LEF1

For lymphoid enhancer-binding factor-1 (LEFI) it was
shown that high gene expression levels are associated with
favourable clinical outcome in CN-AML [13], and thus
that downregulated expression levels are then associated
with unfavourable clinical outcome. We indeed detected
in our data that patients with significant downregulated
LEFI mRNA expression levels have an unfavourable clini-
cal outcome for OS (Figure 2A, Table 1), and EFS (Addi-
tional file 2A, and 3). In addition, the unfavourable clinical
outcome was only seen for patients that showed no signifi-
cant differences of promoter DNA-methylation of LEF1
(i.e., patients with the gene-state of LEF1 in scenario 8). In
fact, from the 97 patients with significant downregulated
gene expression levels of LEF], only 61 patients with LEF1
in scenario 8 could be marked with significant unfavour-
able clinical outcome whereas the other 36 patients (i.e.,
LEF] in scenario 5) could not.
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Figure 1 Hierarchical clustering by means of the scenarios, and Kaplan-Meier curves. Leukemia related WNT signaling genes (13 genes, 17
refseqgs) are classified in the mutually exclusive scenarios, and (A) hierarchically clustered using hamming distance and complete linkage. The
dendrogram is cut at the top level which resulted in eight distinctive clusters. Significantly enriched scenarios, cytogenetical characteristics and
molecular abnormalities are described. (B) Patients in cluster 1, and cluster 5 show significant unfavourable outcome in overall survival, and (C)
event-free survival in a univariate analysis (log-rank test), and after correcting for known prognostic markers in a multivariate analysis. The
horizontal and vertical bar plots illustrates the marginal collective distribution of the scenarios among the genes, and samples respectively.
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Figure 2 Kaplan-Meier curves for the identified prognostic genes. The Kaplan-Meier curves for overall survival illustrates the identified
prognostic markers and the patient groups based on the classification of gene scenario. (A) LEFT, (B) SFRP2, (C) RUNX1, (D) PSMD2, (E) XPNPEP2,
(F) PPARD, and (G) AXIN2. Significance for each prognostic marker is computed by comparing patients in the particular scenario versus patients in
any other scenario (black line) using a univariate (log-rank test, indicated by the P-value), and multivariate analysis (Cox's proportional hazard
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Table 1 Multivariate analysis for the identified prognostic genes for overall survival (OS)

Variables P-value HR 95% Cl-low Cl-high
Overall survival
LEFT (scenario 8) 0.00642 158 1.14 2.19
CEBPA“™ 0.00214 033 0.16 067
FLT3™ B 0.00025 177 130 240
NPMT*P 0.00005 051 037 0.71
WBC count®, x 10°/L 0.00886 1.00 1.00 1.00
Age® 0.00005 102 101 103
Overall survival
SFRP2 (scenario 2, 8) 0.00091 2.00 133 3.00
CEBPAI™ 0.00160 032 0.16 0.65
FLT3™ B 0.00007 187 137 255
NPMI* P 0.00006 052 038 0.71
WBC count®, x 10°/L 0.00470 1.00 1.00 101
Age® 0.00007 102 101 1.03
Overall survival
RUNXT (scenario 3) 0.03768 138 1.02 1.88
CEBPA®™™ 0.00308 0.34 017 0.69
FLT3™ B 0.00023 178 131 241
NPM1* P 0.00004 051 037 0.71
WBC count®, x 10°/L 001106 1.00 1.00 1.00
Age’ 0.00007 102 101 103
Overall survival
PSMD2 (scenario 5, 6) 0.00220 0.60 043 0383
CEBPA®™™ 0.00130 031 0.15 063
FLT3™ B 0.00006 187 138 255
NPMTH B 0.00160 059 042 082
WBC count®, x 10°/L 0.00270 1.00 1.00 101
Age® 0.00009 102 101 103
Overall survival
XPNPEP (scenario 1) 0.00200 156 118 207
CEBPA®™™ 0.00084 030 0.15 0.60
FLT3™ B 000130 166 122 226
NPMTT B 0.00020 055 040 075
WBC count®, x 10%/L 0.01190 1.00 1.00 1.00
Age® 0.00015 102 101 103
Overall survival
PPARD (scenario 4, 6) 0.00063 052 036 0.76
CEBPA®™ 0.00075 0.29 0.14 0.60
FLT3™ B 0.00011 183 135 248
NPMTT B 0.00084 057 041 079
WBC count®, x 10%/L 0.00360 1.00 1.00 101
Age’ 0.00001 102 101 103
Overall survival
AXIN2 (scenario 8) 0.0038 1.79 121 2.66
CEBPA™ 0.0009 030 015 061
FLT3™ B 0.0003 177 130 240
NPMTT B 0.0003 055 040 076
WBC count®, x 10%/L 0.0100 1.00 1.00 1.00
Age® 0.00004 102 101 103

Cox proportional hazard model for multivariable analyses of prognostic markers for overall survival. Analyses included 344 AML patients. Abbreviations: HR,
hazard ratio; Cl, confidence interval; o CEBPA%Ub/e-mutation syarys versus CEBPA™, B FLT3'™ versus no FLT3™® mutation, B NPM1™" versus NPM1*!, 6 WBC count
higher than 20 x 10%/L versus lower than 20 x 10%/L, $ Age is used as continuous variable.
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SFRP2

For the secreted frizzled-related protein 2 (SFRP2) it has
previously been shown that DNA hypermethylation of
the promoter region is associated with unfavourable
clinical outcome [6]. In our data, we also detected sig-
nificant unfavourable clinical outcome for patients with
promoter hypermethylated SFRP2 (Figure 2B) but these
patients also showed downregulated expression levels of
SFRP2 (i.e., patients with SFRP2 in scenario 2). In addi-
tion to that, unfavourable clinical outcome was also
seen for patients with solely downregulated expression
levels of SFRP2 (i.e., patients with SFRP2 in scenario 8).
These two patients groups were therefore combined in
our approach, as described in the method section (OS:
Figure 2B, Table 1 and EFS: Additional file 2B, and 3).
RUNX1

Runt-Related Transcription Factor is a tumor suppressor
in myeloid neoplasms, and mutations in RUNX1I are pre-
viously associated with unfavourable outcome in CN-
AMLs [14,16]. In addition, it was previously demonstrated
that inhibition of RUNXI activity could be a promising
therapeutic strategy for AMLs with leukemogenic fusion
proteins [17].We detected significant unfavourable clinical
outcome in OS (Figure 2C, Table 1), but not for EFS
(Additional file 2C, and 3), for patients with DNA hyper-
methylation but without significant differences of gene
expression levels of RUNXI (i.e., patients with RUNX1 in
scenario 3). Thus we show that not all patients with DNA
hypermethylation have poor survival; it also depends on
the gene expression levels.

Taken together, by re-analysing known WNT associated
markers, we could re-establish the prognostic role of a
number of these markers in AML patients, but we also
illustrate that patient groups could be refined by using an
integrative analysis of gene expression and DNA-methyla-
tion profiles. A comparison of our results with the use of
only gene expression profiles, we detected that only SFRP2
showed significant associations with OS and EFS, i.e,,
downregulated expression levels (scenario 2, 5 and 8) are
associated with unfavourable clinical outcome compared
to the upregulated expression levels (scenario 1, 4 and 7,
additional file 4A, B). The use of solely DNA-methylation
profiles did not result in significant associations with clini-
cal outcome, i.e., hypermethylation (scenario 1, 2 and 3)
versus hypomethylation (scenario 4, 5, 6).

Detection of novel WNT associated prognostic markers
for leukemia

In addition to the WNT signaling genes that are known to
have important functions in leukemia, we also analysed
the 268 WNT signaling genes annotated in the molecular
signature database (see Methods). We speculated that
novel prognostic markers could be identified by using the
refined gene-state scenarios. Three additional genes
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(PSMD2, XPNPEP2, and PPARD) showed significant dif-
ferences in OS and EFS.

PSMD2

The proteasome non-catalytic subunit is previously
identified as a potential therapeutic target in lung ade-
nocarcinomas [18]. For PSMD2 we detected significant
favourable OS (Figure 2D, Table 1) and EFS (Additional
file 2D, and 3), for patients with a promoter hypomethy-
lation and downregulated gene expression levels (i.e.,
patients with the PSMD2 gene-state in scenario 5). In
addition, favourable clinical outcome was also seen for
patients with solely promoter hypomethylation (i.e.,
patients with the PSMD2 gene-state in scenario 6).
These two patients groups were therefore combined in
our approach.

XPNPEP2

Patients were detected with significant unfavourable
clinical outcome for OS (Figure 2E, Table 1) and EFS
(Additional file 2E, and 3) if the promoter of gene X-
Prolyl Amino peptidase 2 was DNA hypermethylation
and the expression was upregulated (i.e., patients with
XPNPEP2 in scenario 1).

PPARD

The third independent prognostic marker that we
detected is Peroxisome Proliferator-Activated Receptor
Delta (PPARD). We detected significant favourable
clinical outcome for OS (Figure 2F, Table 1) and EFS
(Additional file 2F, and 3), among patients with hypo-
methylated levels and without significant change of
gene expression levels (i.e., patients with XPNPEP2 in
scenario 6). In addition, favourable clinical outcome was
also seen for patients with promoter hypomethylation
and upregulated gene expression levels (i.e., patients
with the PSMD?2 gene-state in scenario 4). These two
patients groups could therefore be combined.

Taken together, by analysing methylation and expres-
sion data together we could associate three more WNT
signaling genes with prognostic relevance, enforcing the
role of WNT signaling in leukemia. A comparison of
the integrative results with the use of only gene expres-
sion profiles revealed that only XPNPEP2 was signifi-
cantly association with OS and EFS in univariate and
multivariate analysis, i.e., upregulated expression levels
(combined scenario 1, 4 and 7) are associated with unfa-
vourable clinical outcome compared to the upregulated
expression levels (combined scenario 2, 5 and 8, addi-
tional file 4C, D). On the other hand, the use of solely
DNA-methylation profiles showed significant associa-
tions with clinical outcome for PSMD2 (additional file
4E, F), and PPARD (additional file 4G, H) by a compari-
son of hypermethylation (combined scenario 1, 2 and 3)
versus hypomethylation (combined scenario 4, 5, 6). For
both cases, promoter hypermethylation is associated
with unfavourable outcome.
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Hierarchical clustering of AML patients based on gene-
state scenarios revealed grouping of patients that are
associated with clinical outcome

It has been shown previously that patients with two or
more hypermethylated WNT genes are associated with
unfavourable survival compared to patients with zero or
one hypermethylated WNT genes [8]. We therefore
asked ourselves whether we can improve the subtyping of
patients based on the patterns of multiple WNT signaling
genes. We hierarchically clustered the patients, using the
13 WNT signaling genes that are previously associated
with leukemia, with a hamming distance over the gene-
state description and complete linkage (Figure 1A). Eight
clusters are detected in total from which four clusters
showed enrichment with known cytogenetic or molecular
abnormalities, and three patient clusters showed enrich-
ment with DNA hypermethylation. We focussed only on
cluster 1 and 5 as these showed significant differences in
clinical outcome for both OS and EFS compared to the
patients in any of the other clusters.

Cluster 1

Cluster 1 is one of the three clusters (together with cluster
2, and 8) that showed significant overrepresentation of
genes with DNA hypermethylation. However, only cluster
1 resulted in significant unfavourable clinical outcome for
OS and EFS (Figure 1B, C and Additional file 5). The two
other clusters are enriched for the good cytogenetical risk
group (cluster 2), and for MDS patients (cluster 8). DNA
hypermethylation of WNT signaling genes among the
good cytogenetical risk group [8], and MDS/secondary
AMLs [5,19] are supported by previous results. In fact, it
has also been illustrated that patients with multiple hyper-
methylated WNT signaling genes are associated with unfa-
vourable clinical outcome [8]. But we demonstrate that
significant unfavourable clinical outcome is only seen for
patients with overrepresentation of genes in scenario 3
(DNA hypermethylation without significant change of
gene expression levels). Patients in this cluster (cluster 1)
also showed significant occurrence of ASXL1 mutations,
which has previously been described to be a prognostic
marker for unfavourable outcome [20]. To determine
whether the DNA hypermethylation (genes in scenario 3)
causes the unfavourable outcome of cluster 1 patients or
whether it is caused by the ASXLI mutations, we included
ASXLI as an additional covariate in the multivariate analy-
sis. With a result that Cluster 1 still showed significant
survival for OS (P < 0.025, HR: 1.58) and EFS (P < 0.028,
HR: 1.57), and thereby indicating that patients with DNA
hypermethylation of WNT genes are associated with unfa-
vourable survival.

Cluster 5

Patients in cluster 5 also showed unfavourable OS and EFS
(Figure 1D, E). These patients were enriched for genes
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with their state in scenario 8 but showed no enrichment
for other cytogenetical or molecular abnormalities.

With the cluster analysis we illustrate the complex
behaviour of multiple WNT signaling genes and their
combined association with clinical outcome. Using both
the methylation and expression profiling we are able to
refine current subtyping of AML patient’s giving new
leads to further research.

The good risk patients group is characterized by DNA
hypermethylation of the WNT pathway

We analysed the gene expression and DNA-methylation
profiles of the 268 WNT signaling genes to infer
whether WNT signaling genes could explain differences
among the risk groups. We detected that DNA hyper-
methylation (genes whose state is in the scenarios 1, 2,
or 3) is significantly more seen in the WNT genes
among the good risk group patients when compared to
the intermediate and poor risk group (Figure 3A-C, blue
shaded colours). By looking into the gene-states of the
WNT genes, we found that 33% of the WNT genes are
in similar gene-states for all the three risk groups,
whereas only 9 genes (10 refseqs) showed unique gene-
states for the risk groups (Figure 3D). Among them
‘proteasome 26S subunit, non-ATPase, 10’ (PSMD10).
For PSMDI0 there is evidence that positive expression
levels associate with short survival time of patients in
pancreatic ductal adenocarcinoma tissues [21]. This is in
line with our results where the poor risk group is
detected with overexpression, and the good and inter-
mediate risk group with promoter DNA hypermethyla-
tion of PSMDI0.

Good risk patients group shows interactions between
WNT signaling genes and genes of the proteasome
network

To gain more insights in the role of DNA-methylation
for the signaling cascade of WNT we examined whether
the methylation status associates with the functional
importance of a gene. To get a notion of the functional
importance of a gene, we assumed that the degree of a
gene, in a co-expression network is indicative for its
role: i.e., a gene with frequent interactions potentially
regulates (or is regulated by) more genes. Consequently,
we construct a co-expression network by means of pair-
wise Pearson correlations between the continuous
mRNA expression levels for the poor, intermediate and
good AML risk group (see methods).

The good risk group contained in total 167 signifi-
cantly expressed genes for which 65 are upregulated and
102 downregulated. Pairwise correlation resulted in 96
unique genes with one or more significant pairwise
interactions (Figure 4A). DNA hypermethylation was
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detected in 36% of the genes, whereas the genes with
highest degree consists of DNA hypermethylated genes,
such as KREMENI1, APC2, CSTF1, NFATC2, SPAGS,
WIFI (Figure 4A).

The intermediate risk group contains 160 significantly
regulated genes (63 upregulated, and 97 downregulated),
for which 67 unique genes had significant pairwise interac-
tions. Nine genes are detected with DNA hypermethyla-
tion from which KREMEN1, and SPAGS are listed with
the highest degree (Figure 4B). The poor risk group con-
tains 56 significantly upregulated and 89 downregulated
genes for which 68 unique genes had significant pairwise
interactions. The genes with the highest degree contained,
among others, the DNA hypermethylated gene SPAGS
(Figure 4C).

Interestingly, genes with a high degree appear to be
DNA hypermethylation, such as for gene KREMENI,
which is seen in similar state in the good and intermediate
risk group but not in the poor risk group. KREMENI
encodes a high-affinity dickkopf homolog 1 (DKK1) trans-
membrane receptor that functionally cooperates with
DKKI1 to block wingless (WNT)/beta-catenin signaling.
Another finding is that each risk group contains two simi-
lar sub-networks (i.e., network 1 and 2, Figure 4), indicat-
ing that genes behave, to some extent similar. The first
network consists of genes such as KREMEN1, SPAGS,
DKK3, and NFATC?2 that appeared to be under control of
DNA hypermethylation in the good risk group, but not for

the intermediate and poor risk group. The second network
is significantly enriched for proteasome gene family mem-
bers (PSM) which provides instructions for making parts
of the proteasomes, and are part of the cell’s quality con-
trol system. Remarkably, the good risk group has frequent
co-regulatory effects with the proteasome network
whereas this seems absent in the intermediate and poor
risk group. To summarize, we show that DNA hyper-
methylated genes appear to be highly connected in the
co-expression network, and interact with a proteasome
network for the good risk group, which is not the case for
the intermediate and poor risk group.

Conclusions

We created a computational approach to classify genes
into scenarios that describe, in a discrete manner, the state
of a gene considering its gene expression and the DNA-
methylation levels of its promoter region. Throughout the
whole study we used these scenarios to analyse WNT sig-
naling genes for patients with Acute Myeloid Leukemia.
As in previous studies [6], we also detected high frequency
of DNA hypermethylation of WNT genes in AML but
could now better characterize patients by jointly analysing
the DNA-methylation and gene expression profiles.

We illustrate that the integration of DNA-methylation
and gene expression into scenarios can refine and detect
novel prognostic gene markers. This is especially impor-
tant when groups are selected using prognostic markers
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Figure 4 Co-expression network among cytogenetical risk groups. Significant expressed genes (comparison with CD34+ normal samples)
among each risk group are pairwise correlated using the continuous gene expression levels. A network is subsequently build by means of the
significant pairwise correlations. The colour of the nodes (genes) illustrates the scenarios, whereas the size of the node and the label text is
based on the -log10(P-value) for differential expression or methylation. Edges with positive correlation are indicated in red, whereas negative
correlations are indicated in blue. The thickness of the edges are based on the absolute correlation measure which varies between 0.6 and 1.
The proteasome gene family network (PSM-family) describes members of the proteasome complex.
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for targeted drug therapy. Using our integrative approach
we detected in total seven independent prognostic mar-
kers from which two (SFRP2 and XPNPEP2) overlapped
if only gene expression profiles are used (out of nine).
Based on only DNA-methylation profiles, 14 prognostic
markers are detected from which two (PSMD2 and
PPARD) overlapped with our integrative approach (Addi-
tional file 6).

Our approach also refined patient groups for which pre-
viously was shown that multiple hypermethylated WNT
genes were associated with unfavourable survival [8]. We
demonstrate that unfavourable survival of patients is asso-
ciated with promoter hypermethylation without change of
gene expression levels (scenario 3). In addition, we detected
that good risk group patients significantly harbour DNA
hypermethylation (which is in line with previously results
[12], but we provide a mechanistic understanding of the
functional role of DNA hypermethylation by examining
the co-expression gene networks. Although the exact func-
tional relationships of DNA-methylation and the protea-
some is difficult to comprehend, the importance of
proteasome inhibitors is described for Multiple Myeloma,
where the use of proteasome inhibitors are potentially
interesting as they can serve as therapeutic strategy by
directly targeting both the tumor and bone disease [22].
Their role in AML is, however, less known. Yet, protea-
some inhibition is recently introduced as a promising novel
anticancer therapy for AML [23]. Further, the proteasome
inhibitor Bortezomib sensitizes AML with myelomonocy-
tic/monocytic phenotype (M4/M5 AML based on FAB
classification) in AML cell lines [24].

Although many studies illustrate that gene expression or
DNA-methylation levels in isolation can serve as a prog-
nostic marker, our computational approach proved effec-
tive in the identification of prognostic markers and
improves characterization of patient groups by the integra-
tion of gene expression and DNA-methylation profiles.
This is especially important when groups are selected on
prognostic markers for targeted drug therapy.

Methods

Patient samples

Diagnostic bone marrow (BM) or peripheral blood (PB)
samples from 344 adults were analysed. All patients pro-
vided written informed consent in accordance with the
Declaration of Helsinki. All trials were approved by the
Institutional Review Board of Erasmus University Medical
Center. Summary of clinical, cytogenetical and molecular
features of the patient are previously described [9].

Genome-wide high throughput data

Two high throughput datasets were used in this study:
genome-wide mRNA expression profiling data (GEP) and
for the same 344 samples, genome-wide DNA-methylation
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profiling data (DMP). In addition, eight GEP and eleven
DMP reference samples (CD34+) are available. These two
assays provide mRNA expression and promoter DNA-
methylation abundance levels. GEP data is generated using
Affymetrix HGU133 plus2.0 (Santa Clara, CA, USA). Nor-
malization of raw GEP data was processed with RMA
[25,26]. In addition, probes are remapped to refseq tran-
scripts using a custom CDF definition. Gene expression
levels are mean centered over all samples. DMP-data is
generated using the HELP assay and pre-processed as
described previously [27]. Both data sets are annotated
using UCSC hgl9, and are available at the NCBI Gene
Expression Omnibus [accession numbers GSE14468 and
GSE18700]. Refseq transcripts from GEP and probesets
from DMP are included on the following terms: 1) Probe-
set are annotated with chromosome information, genomic
location and strand position; 2) Mapping of probesets was
without known sequence variation; 3) Annotated genes for
the refseq transcripts and probesets overlapped between
both data sets. This resulted into 12925 uniquely overlap-
ping genes for 14292 refseq transcripts (GEP) and 19899
probesets (DMP). However, in this study we were specifi-
cally interested in the genes that are annotated as being
part of the WNT signaling pathway.

WNT pathway signaling genes are derived from the
Molecular Signature database

Eight WNT associated pathways are utilized from the
Molecular Signature Database (MSigDB, v3.0), and we
derived 364 unique genes from them: Biocarta WNT
Pathway (26 genes), KEGG WNT Signaling Pathway
(151 genes), Morf WNT1 (101 genes), Reactome Signal-
ing by WNT (58 genes), ST WNT Beta Catenin Pathway
(31 genes), ST WNT CA2 Cyclic GMP Pathway (19
genes), Willert WNT Signaling (20 genes), WNT Signal-
ing (89 genes). From the 364 WNT associated genes,
268 were available in the gene expression profiling data
(291 refseqs), and overlapped with the DNA-methylation
profiling data (539 probesets).

Discretization of DNA-methylation and mRNA expression
profiles into gene-state scenarios for individual cancer
samples

Discretization of the data was used to categorize each gene
(refseq) into one of nine mutually exclusive scenarios. A
scenario describes in a discrete manner the change in gene
expression (upregulation, downregulation or no regulation)
and of the same gene, the change in DNA-methylation
level (hypermethylation, hypomethylation or no methyla-
tion). Classification of genes in one of the scenarios was
accomplished by first discretising the continuous gene
expression profiles in comparison to CD34+ control sam-
ples (Additional file 1A,B). A gene transcript (refseq) is
marked as upregulated/downregulated if the mRNA
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expression levels were lower/higher than the 99% confi-
dence interval of the CD34+ normal bone marrow samples
of the same gene transcript. Otherwise, a gene transcript is
marked as no difference in mRNA expression. Similarly,
the continuous DNA-methylation profiles were also discre-
tized in comparison to CD34+ normal bone marrow sam-
ples (Additional file 1A,B). A probeset is marked as
hypomethylated/hypermethylated if the DNA-methylation
levels were higher/lower than the 99% confidence interval
of the CD34+ normal bone marrow samples of the
same probeset. Otherwise, a gene is marked as no
DNA-methylation. Both discretized data sets are subse-
quently integrated to define the gene status in terms of
scenarios (Additional file 1C). There are nine possible
scenarios in total. The first three scenarios [1-3]
describe DNA hypermethylation with mRNA transcript
expression (up, down or no/low expression), and are
colored in different shades of blue. Scenarios [4-6],
describe DNA hypomethylation with mRNA transcript
expression (up, down or no/low expression), and are
colored in different shades of green. Scenarios [7,8]
describe upregulation and downregulation but without
difference in DNA-methylation levels, and are colored
in different shades of red. The ninth scenario contains
genes for which no difference in gene expression and no
difference in DNA-methylation levels were observed, or
cases for which the gene promoters contained multiple
probesets with inconsistent DNA-methylation levels
(e.g., one probeset with hypermethylated whereas
another with hypomethylated, independent of the gene
expression level). We will denote this scenario as no
difference, and is colored as white in the figures. The
colors are consistently used throughout the whole
manuscript.

Discretization of DNA-methylation and mRNA expression

profiles into gene-state scenarios for patient risk groups

Discretization and integration of gene expression and
DNA-methylation data of the cytogenetical risk groups
(poor, intermediate and good) into gene-state scenarios is
performed in two steps. The first step involves compari-
son of the GEP patient data with GEP reference samples
(CD34+), and the DMP patient data with DMP reference
(CD34+) data by means of a student T-test. Significant
genes (FDR<0.01) with a significant positive T-statistic
are categorized as upregulated/hypomethylated and with
a significant negative T-statistic as downregulated/hyper-
methylated. For DNA-methylation probesets, the abso-
lute fold difference must also be >1.5 compared to the
reference samples in order to have a sufficient effect-size.
The second step is the integration of the GEP and DMP
gene status in terms of scenarios. This is similar as
described for the individual cancer samples, thus each
gene is classified into one of the nine scenarios based on
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the DNA-methylation with mRNA transcript expression
level changes.

Construction of the co-expression networks

To construct the co-expression network and determine
the gene-degree, we applied the following approach:
1) gene expression levels among the AML risk groups
must be significantly upregulated or downregulated
compared to the CD34+ normal samples (as described
in the method section); 2) pairwise Pearson correlations
among the continuous mRNA gene expression levels are
computed between the significantly detected WNT sig-
naling genes; 3) gene interactions with r>0.6 and P <
0.05 are marked, and used in the network; 4) the degree
for each gene is determined by the number of edges it
contains; 5) each gene in the network is illustrated in
terms of the mutually exclusive scenarios.

Survival analysis based on gene-state scenarios

To assess whether a gene is significantly associated with
clinical outcome, we compared patient groups based on
their gene-state scenarios (Additional file 1D). To prevent
high multiple test correction by comparing a maximum of
nine patient groups (i.e., patients that are categorized in
each of the nine scenarios), we first clustered patient
groups on survival. We applied the following approach:
1) for each gene a pairwise comparison between patient
groups (e.g., among the gene-state scenarios) is performed
using the log-rank test (for OS or EFS) (Additional file 1E).
The pairwise log-rank test is then used as a distance matrix
(indicating the similarity between patient groups survival)
which is in turn hierarchically clustered using Euclidean
distance and average linkage. The dendrogram is then cut
horizontally through the leaves at the smallest height that
results in two clusters (Additional file 1F). The resulting
two clusters, each containing one or multiple patient
groups are subsequently compared against each other for
its difference in OS and EFS using univariate (log-rank
test) and multivariate analyses (Cox’s proportional hazard
ratio model) (Additional file 1G). For the multivariate ana-
lysis we adjusted for the covariates; age, white blood cell
count, CEBPAdouble—mumtion, NPMlmutation, and FLTBITD
status. Note that the definition of survival endpoints were
based on the recommended consensus criteria [28].

Additional material

Additional file 1: Schematic overview: Discretization of DNA-
methylation and mRNA expression profiles into gene-state
scenarios and survival analysis. (A) Discretization of the continuous
gene expression and DNA-methylation profiles compared to CD34+
control samples. (B) A gene transcript (refseq) is marked as upregulated/
downregulated if the mRNA expression levels were lower/higher than
the 99% confidence interval of the CD34+ normal bone marrow samples
of the same gene transcript. Similarly, the continuous DNA-methylation
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profiles were also discretized in comparison to CD34+ normal bone
marrow samples. (C) Both discretized data sets are subsequently
integrated to define the gene status (scenarios) in terms of mRNA
transcript expression and DNA hypermethylation. (D) Grouping of
samples that have the same gene-state scenario. In this example, Gene 1
groups patients in scenario S1, S2, S4, S7 and S8. (E) Pairwise comparison
between patient groups using the log-rank test (for OS or EFS). (F) The
distance matrix based on the pairwise log-rank test is hierarchically
clustered, and cut horizontally through the leaves that results in two
clusters. (G) The resulting two clusters, each containing one or multiple
patient groups are subsequently compared against each other for its
difference in OS and EFS using univariate (log-rank test) and multivariate
analyses (Cox's proportional hazard ratio model).

Additional file 2: Kaplan-Meier curves for the identified prognostic
genes for Event-Free Survival. The Kaplan-Meier curves illustrates the
prognostic markers and the patient groups based on the classification of
gene scenario. (A) LEFT, (B) SFRP2, (C) RUNX1, (D) PSMD2, (E) XPNPEP2, (F)
PPARD, and (G) AXIN2. Significance for each prognostic marker is
computed by comparing patients in the particular scenario versus
patients in any other scenario (black line) using a univariate (depicted by
the P-value), and multivariate analysis (depicted by the adjusted P-value).

Additional file 3: Multivariate analysis for the identified prognostic
genes for Event-Free Survival (EFS). Cox proportional hazard model for
multivariable analyses of prognostic markers for Event-free survival.
Analyses included 344 AML patients. Abbreviations: HR, hazard ratio; Cl,
confidence interval; o CEBPAZUP/e-mutation srarys versus CEBPA™, B FLT3™®
versus no FLT3"P mutation, B NPM1™4“" versus NPM7*, § WBC count
higher than 20 x 10%/L versus lower than 20 x 10°/L, $ Age is used as
continuous variable.

Additional file 4: Kaplan-Meier curves by using solely gene
expression or DNA-methylation profiles. The Kaplan-Meier curves
illustrates the prognostic markers and the patient groups based on the
comparison upregulated (scenario 1,4,7) versus downregulated (scenario
2,58) gene expression levels, and hypermethylated (scenario 1,2,3) versus
hypomethylated (scenario 4,5,6) levels. Significance is assessed by
comparing patients using a univariate (depicted by the P-value), and
multivariate analysis (depicted by the adjusted P-value).

Additional file 5: Multivariate analysis for cluster 1 and cluster 5 for
0OS and EFS. Cox proportional hazard model for multivariable analyses of
cluster 1 and cluster 5 for OS and EFS. Abbreviations: HR, hazard ratio; Cl,
confidence interval; o CEBPAZUPIe-mutation sarys versus CEBPA™, B FLT3®
versus no FLT3"P mutation, B NPM1™ " versus NPMT™*, § WBC count
higher than 20 x 10%L versus lower than 20 x 10°L, $ Age is used as
continuous variable.

Additional file 6: Venn diagram illustrating the overlap of prognostic
markers detected by the integrative approach, the use of solely gene
expression profiles, and solely DNA-methylation profiles. Using the
integrative approach, seven prognostic markers are detected. Using solely
gene expression profiles, 9 prognostic markers are detected. Using solely
DNA-methylation profiles, 14 prognostic markers are detected.
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