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Abstract

Background: Probabilistic models have gained widespread acceptance in the systems biology community as a useful
way to represent complex biological systems. Such models are developed using existing knowledge of the structure
and dynamics of the system, experimental observations, and inferences drawn from statistical analysis of empirical data.
A key bottleneck in building such models is that some system variables cannot be measured experimentally. These
variables are incorporated into the model as numerical parameters. Determining values of these parameters that justify
existing experiments and provide reliable predictions when model simulations are performed is a key research problem.
Domain experts usually estimate the values of these parameters by fitting the model to experimental data. Model
fitting is usually expressed as an optimization problem that requires minimizing a cost-function which measures
some notion of distance between the model and the data. This optimization problem is often solved by
combining local and global search methods that tend to perform well for the specific application domain. When
some prior information about parameters is available, methods such as Bayesian inference are commonly used for
parameter learning. Choosing the appropriate parameter search technique requires detailed domain knowledge
and insight into the underlying system.

Results: Using an agent-based model of the dynamics of acute inflammation, we demonstrate a novel parameter
estimation algorithm by discovering the amount and schedule of doses of bacterial lipopolysaccharide that
guarantee a set of observed clinical outcomes with high probability. We synthesized values of twenty-eight
unknown parameters such that the parameterized model instantiated with these parameter values satisfies four
specifications describing the dynamic behavior of the model.

Conclusions: We have developed a new algorithmic technique for discovering parameters in complex stochastic
models of biological systems given behavioral specifications written in a formal mathematical logic. Our algorithm
uses Bayesian model checking, sequential hypothesis testing, and stochastic optimization to automatically
synthesize parameters of probabilistic biological models.

Introduction analysis of in silico models of complex biological sys-

Over the last few years, computational modeling has
emerged as a popular tool for studying and analyzing
biological systems. With rapid growth in the availability
of high-performance computing (HPC) infrastructure,
there is increasing interest in the construction and
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tems [[1], Chapter 5]. An essential requirement for ana-
lyzing a complex high-dimensional system is to build a
sufficiently rich computational model that exhibits key
properties of the real system being represented [2]. For
users to have confidence in the predictions made by
analyzing model simulations, it is desirable that the
model be amenable to automated verification against
large data-sets and expert specifications [3,4].
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This process of analysis and verification becomes
complicated if the system is not deterministic, i.e. if
repeated executions of the model, under the same
inputs, may produce different results. Deterministic
models, while often having a clean analytic representa-
tion, cannot capture the unpredictability of natural phe-
nomena or multi-outcome man-made artifacts. This
limitation is addressed by stochastic models that allow a
succinct representation of variability in system behavior
[5]. Such models incorporate the uncertainty inherent in
the system being modeled, thus facilitating more accu-
rate analyses and predictions [6].

Models in systems biology are usually nondeterministic,
nonlinear, parameterized, and describe both functional
behavior and quantitative properties [7]. We will focus on
a class of stochastic models that are known in the litera-
ture as probabilistic models [[8], Chapter 10]. The essential
property of these models that is of interest to us is that it
is possible to accurately assign a probability to every possi-
ble behavior that the model can exhibit [[9], §3.1].

As a case study for demonstrating our parameter esti-
mation technique, we have considered a class of probabil-
istic models known as agent-based models (ABMs). An
ABM consists of a number of autonomous, indepen-
dently-acting entities known as agents. An agent interacts
with other agents in its immediate vicinity, according to
fixed rules that are possibly probabilistic, enabling the
system to demonstrate behavioral variability in the face
of environmental uncertainty [10,11].

An important challenge faced by designers of a biologi-
cal model is to find values of unknown parameters in the
model that enable it to reproduce the behavior of the
relevant biological system [[12], §2.2, §3.1]. Wooley and
Lin describe [[1], §5.3.3] the importance of parameter
estimation in the computational modeling of biological
systems:

“Identifying the appropriate ranges of parameters (e.g.,
rate constants that govern the pace of chemical reac-
tions) remains one of the difficulties that every modeler
faces sooner or later.”

When the state-space of the parameters is small, an
exhaustive search for the correct parameter values is
feasible. For high-dimensional models, brute-force meth-
ods are unlikely to terminate in sub-exponential time
and hence are prohibitively expensive [13].

We address this problem by designing an algorithmic
technique for parameter estimation in stochastic biologi-
cal models that ensures that the synthesized model con-
forms to desired behavior as expressed in a formal
temporal logic [14]. This paper makes the following
contributions:

« We describe a new algorithm for automatically dis-
covering parameters of probabilistic computational
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models of biological systems. Our algorithm uses
simulated annealing [15] and Bayesian statistical
model checking [16] to efficiently explore the sys-
tem’s parameter space while continually verifying
whether the model instantiated with the current
parameters satisfies the given expert specifications.

+ We demonstrate the effectiveness of our approach
by applying our algorithm to automatically synthe-
size twenty eight parameters in an agent-based, phy-
siological model of the acute inflammatory response
to endotoxin administration [17].

Related work

This section surveys major recent research results on
parameter estimation in systems biology. We first sum-
marize techniques that rely primarily on reformulating
estimation as a non-linear optimization problem. Later,
we discuss approaches based on formal verification.

Parameter estimation using global and local search

Sun et al. [18] survey metaheuristic techniques used in
parameter estimation in systems biology, focusing on
simulated annealing, evolutionary algorithms and hybrid
strategies that combine multiple heuristics.

Gonzalez et al. [19] use simulated annealing [20] to
find parameters in S-system models of biochemical net-
works. At a given parameter point during the annealing
process, they find a neighboring point by adding a noise
term to each component of the parameter vector that is
dependent on the current optimization error.

Lillacci and Khammash have designed a method that
uses Kalman filtering, statistical testing and numerical
optimization for parameter estimation and model selec-
tion [21]. Inspired by these two approaches [19,21], we
have used simulated annealing for optimization and sta-
tistical hypothesis testing-based verification in our para-
meter estimation algorithm for probabilistic models.

Algorithms based on maximum-likelihood estimation
(MLE) and the singular value decomposition (SVD) have
been proposed by Reinker et al. [22], to estimate the
reaction rate constants (the parameters) from discrete
time series data for molecule counts in stochastic bio-
chemical reactions.

Rodriquez-Fernandez et al. use a hybrid approach for
parameter estimation in deterministic, non-linear mod-
els of biochemical pathways [23]. Their approach com-
bining local and global optimization methods helps
overcome the problem of convergence to local minima
common in traditional local optimization methods (like
gradient-descent) and the problem of slow convergence
seen in global optimization techniques.

Moles et al. have studied the global optimization based
approaches to the parameter estimation problem in non-
linear dynamic systems using a 36 parameter dynamic
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pathway model as a benchmark [24]. They report that
only approaches based on evolutionary strategies, viz. the
stochastic ranking evolutionary strategy (SRES) and
unconstrained evolutionary strategy (use), were able to
successfully find parameters in the pathway.

The parameter estimation problem for biological path-
way models has also been addressed by Koh et al. [25].
An interesting element of their approach is to decom-
pose the model into components whose parameters can
be estimated independently. They model pathways using
hybrid Petri nets and use evolutionary strategies for
parameter estimation, but their approach can be used
for any modeling framework and choice of the optimiza-
tion technique.

Matthew et al. have used global sensitivity analysis
(GSA) to study the effect of parameter perturbations in
a large, non-linear, ODE-based model of acute inflam-
mation in mice [26], and found that Interleukin 6 (IL-6)
and nitric oxide (NO) had a significant, non-linear
impact on inflammatory damage [27].

In another approach that uses sensitivity analysis,
Donze et al. have developed an algorithm for parameter
synthesis in nonlinear systems of ODEs (ordinary differ-
ential equations) [28], and applied their technique to
find parameters in two models of acute inflammation
[29,30].

Next, we discuss parameter estimation approaches
based on formal verification techniques.

Parameter estimation using formal verification

Many recent procedures for parameter estimation make
use of a formal verification technique known as model
checking.

A model checking approach to finding parameters in
biological models has been used by Calzone et al [31].
They use the Biochemical Abstract Machine (BIOC-
HAM) modeling framework to describe the system and
temporal logic model checking [32] to find parameters
values in a user-specified range.

Dreossi and Dang have recently designed an algorithm
that reduces the problem of parameter synthesis in poly-
nomial (discrete-time) dynamical systems [33] to solving
a set of linear programs [34]. They use their technique
to find parameters of two well-studied epidemic models.

Batt et al. have used symbolic model checking to find
parameters in a piecewise affine differential equation
(PADE) model of the gene regulation IRMA network
[35]. IRMA stands for in vivo “benchmarking” of reverse-
engineering and modeling approaches [36]. Donaldson
and Gilbert have designed a technique for parameter
estimation that combines model checking with a genetic
algorithm [37], and used it for estimating kinetic rate
constants in a model of the mitogenactivated protein
kinases (MAPK) signaling pathway.
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Usually, model checking based methods of parameter
estimation require that the relevant specification be
expressed in a formal temporal logic, whose satisfaction
against a given execution path (known as a trace) of the
model can be determined. Rizk et al. define a continuous
degree of satisfaction of a temporal logic formula for any
given trace of the model [38] and use it as a fitness
function to drive an optimization-style search for kinetic
parameters in models of the cell cycle and the MAPK
signal transduction.

In recent work, Mancini et al. have used statistical
model checking to synthesize parameters in an ODE-
based biological model [39]. They have implemented a
distributed, multi-core version of their algorithmic tech-
nique, and used it to estimate patient-specific para-
meters of a a human menstrual cycle model [40].

Background

Before describing our algorithm for synthesizing para-
meters in probabilistic models, we give some back-
ground on stochastic modeling in systems biology, spe-
cification of time-varying properties using temporal
logic and statistical verification of probabilistic systems
against behavioral specifications. We also provide defini-
tions for formal concepts that will be used to describe
our algorithm.

Remark 1 One of our main objectives in this section is
to develop a formal definition of computational prob-
abilistic models: i.e. those stochastic models for which a
probability can be assigned to any observed model beha-
vior when the model is executed. The reader familiar
with this concept can quickly skim through the next
two subsections.

Stochastic biological models

Many biological systems have traditionally been
described using deterministic, mathematical models,
often in terms of ordinary differential equations [[12]
§2.1]. However, in recent years, the need for incorporat-
ing the uncertainty inherent in biological systems has
led to the development of stochastic models: these are
harder to analyze but more accurately reflect the beha-
vior of the underlying system [5]. Common stochastic
models in biology include Markov jump processes [5],
stochastic differential equations [41], discrete-time Mar-
kov chains [[42], Chapter 3] and continuous-time Mar-
kov chains [43].

Also, researchers are increasingly developing computa-
tional models that naturally capture the bottom-up nat-
ure of biological phenomena and hence are more
amenable to in-silico implementation [44]. Such models
are constructed by observing large sets of timeseries
data, combined with their expert insight into the system
being modeled [45]. Some of these models are based on
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experimental data of varying veracity and error propaga-
tion into the designed model is an ever-present chal-
lenge [46].

We will focus on discrete-time Markov chains, a class
of stochastic models that are widely used in the
sciences, engineering, economics and other areas. We
closely follow Baier and Katoen [8] in formally defining
them.

Definition 1 (Discrete-time Markov chain) A discrete time
Markov chain (DTMC) is given by M = (S, P, init, AP, L)
where:

« S is a countable, nonempty, set of states,

e init : S — [0, 1] is the initial distribution such that
> g init(s) =1,

«P:S8 xS — [0, 1] is the transition probability
function,

+ AP is a set of boolean valued atomic propositions,
o L: S — 2%"is a labeling function for states. ®

We next define (a) a parameterized family of DTMCs,
given a set of parameters and (b) execution paths over
them.

Definition 2 (Parameterized DTMC) A parameterized
discrete time Markov chain (ParDTMC) is given by
M = (S, O, P, init, AP, L) where

« S is a countable, nonempty, set of states,

¢ @, =R™, m > 1 is the parameter space,

o init : S —[0, 1] is the initial distribution such that
ZSES init(s) =1,

e P:S xS x 0, —[0, 1] is the transition probability
function over an m-dimensional parameter space,

+ AP is a set of boolean valued atomic propositions,
and

o« L:S — 2" is a labeling function for states. ®

Definition 3 (ParDTMC execution paths) An execu-
tion path of a ParDTMC M = (S, ®, P, init, AP, L)
given by o = sq, s1, . . .. The suffix of a path o that starts
at state s; (i.e. s 841, . . .) is denoted 0.

As a case study, we have applied our automated para-
meter estimation technique to an agent-based model of
the acute inflammatory response. We now briefly dis-
cuss major characteristics of ABMs.

Agent-based modeling in systems biology
Agent-based models (ABMs) form an interesting, well-
studied subset of complex probabilistic models. In
recent years, agent-based modeling has emerged as a
popular method for the representation, analysis and
simulation of biological models [10].

ABMs allow the specification of high-level model
properties as well as fine-grained component behavior.
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An ABM is composed of autonomous elements whose
individual properties can be specified. At a macro-level,
model-wide agent-interaction rules can be defined and
enforced. Each agent has a physical location and its
state evolves with time based on messages exchanged
with other agents, allowing rich spatiotemporal proper-
ties to emerge [10].

ABMs can incorporate parallelism, object-oriented
behavior and stochasticity, making them conducive to
the development of computational models in systems
biology. Another advantage of using ABMs is that they
are bottom-up models that mirror the natural behavior
of biological systems [47]. Agents interact with one
another based on fixed rules and also have a spatial
location [10].

Most agent-based models do not have compact ana-
lytic descriptions, and simulations across the input
space must be performed to in order to infer general
model properties [48]. Also, agent-based models tend
to have a large number of parameters, some of them
highly-sensitive in the sense that a small change can
radically alter model behavior [49]. To the best of our
knowledge, the parameter estimation problem in
ABMs has only been addressed for very simple models
[50] and most approaches use standard optimization
techniques [31,51].

As a case study for our parameter estimation techni-
que, we have used an agent-based model of the acute
inflammatory response due to endotoxin administration
[52] written using the SPARK tool [53]. SPARK is an
ABM framework designed for multi-scale modeling of
biomedical models that is implemented in Java and
allows users to develop models using its own program-
ming language (SPARK-PL) [54-57].

One we have a basic model design available, we need
to find the exact model instantiation in terms of con-
crete parameter values that meets desired behavior
(usually experimental data). Therefore, we need a way to
check if the models all requirements. We now discuss
how to formally specify and automatically verify prob-
abilistic computational models.

An ABM A consists of a fixed number of agents
Aj, ... A,, where the state of agent A; is determined
by the values of variables Vi ...Vi . Assuming that for
any agent A, i € {1 ... n}, variable Vj’,j e{l...m
can take values in the set V ar;, A can be represented
as a DTMC.

Definition 4 (DTMC corresponding to an ABM)
Consider ABM A(n, m) with n agents A;, ... A, and
m variables V; . .. V,, that take values over countably
finite sets V ary, . . ., V ar,, respectively. The DTMC
M4 = (S, P, init, AP, L) corresponding to A(n, m) is:

e S=WVar; x...x Vary)"
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o init : S —[0, 1], the initial distribution is imposed
by A,

e« P:S xS —[0, 1] is determined by the transition
rules over variables of A,

+ AP consists of (boolean-valued) atomic proposi-
tions over agent variables V] ...V}, ..., VI ...V}
and

o L:S — 2*” is the usual function marking each
state with propositions that hold there. ®

We generalize agent-variable ABMs, by adding the
notion of parameters to obtain a family of ABMs. More
formally, we talk of a parametric ABM A(n, m, k) over
n agents, m variables and k parameters whose dynamic
behavior (i.e. its transition function P) now also depends
on the parameter values. For a given parametric ABM,
we can defined an equivalent ParDTMC.

Definition 5 (ParDTMC corresponding to a parametric
ABM) Consider ABM A(n, m, k) with n agents A, . ..
A,, and m variables V; ... V,, that take values over counta-
bly finite sets V ar, ... V ar,, and k parameters 6, . . . 6.
The ParDTMC M 4 = (S, Oy, P, init, AP, L) correspond-
ing to A(n, m, k) is:

e S=WVar; x...x Vary)",

o init : § —[0, 1] the initial distribution is imposed
by A,

e P:S xS x 0O —>[0, 1], where O = 6; x ... x O is
determined by the transition rules over variables and
parameters of A,

+ AP consists of boolean propositions over variable
values of all agents V] ...V}, ..., V...V,

o L: S — 2*” is the usual function marking each
state with propositions that hold there. ®

Remark 2 In order to use statistical model checking to
solve the probabilistic model checking problem, we need
to associate probabilities with executions paths of the
model. For DTMC s, this has been shown by Kwiat-
kowska et al [9] and Baier and Katoen [[8], Chapter 10].
Although we do not prove this, this is also true for
ParDTMCs. From now on, we assume that our models
can be represented as ParDTMCs and thus have a
unique underlying probability measure.

Specifying and checking biological properties
Our algorithm discovers parameters of stochastic biolo-
gical from experimental data and expert behavioral spe-
cifications. While exploring the parameter space, we
continually verify whether we have a parameter assign-
ment at which the model meets the given specifications.
Typically, properties of biological systems that need to
be formally specified are qualitative, quantitative and
time-varying. Since the models are usually stochastic,
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specifications too should allow reasonable deviations
from desired behavior. To capture such rich behavioral
properties, we use a probabilistic temporal logic (see
Definition 8) to specify expected model behavior.

In order to develop automated techniques for analyz-
ing biological models, we also need the properties to be
specified in a way that can be monitored as we perform
ABM simulations. Monitoring is the process of deter-
mining if an execution trace of the model satisfies given
specifications [58,59]. Therefore, we write specifications
using a logic belonging to a class of languages for which
monitors can be derived algorithmically [60].

We translate natural language expert insights repre-
senting desired model behavior into a logic whose sen-
tences are adapted finitely monitorable (AFM) formulas.
The truth value of an AFM formula with respect to a
trace of a model execution can be determined by obser-
ving a finite prefix of the trace [[61], §2],[[60], §2.2].
Next, we formally define our specification language:

Definition 6 (BLTL grammar) Given a ParDTMC
M = (S, Oy, P, init, AP, L), the grammar of bounded lin-
ear temporal logic (BLTL) formulas ¢ in Backus-Naur
Form is as follows: (¢) ::= a|p A Plo V ¢|—¢|pUp

where a € AP, d e N, and A, V and - are the usual
proposition logic operators. We call U? the bounded
until operator. ®

The semantics of a BLTL formula ¢ is defined over an
execution path of a ParDTMC M (see Definition 3).

Definition 7 (BLTL semantics) Given a path ¢ of a
ParDTMC M = (S, P, init, AP, L), the satisfaction of a
BLTL formula ¢ on a path suffix ¢! = (s;, 55, ...) is
denoted o' F ¢, and is determined by the following
rules:

« 0 £ a, where a € AP iff a € L(s;),

e O E ¢ Ny iff & E ¢y and & E ¢,

e O E 1V oy iff & E ¢y or O E by,

o 0 E ¢ iff & & ¢,
o' E ¢1U%, iff 31 € N such that ] <=d, 6™ E ¢,
and V0 <j <1, 6" E ¢ A

We now state, without proof, the fact that it is possi-
ble to check if any path of a ParDTMC satisfies a given
BLTL formula, by observing a finite prefix of the path.
For a proof of a similar lemma for continuous-time
Markov chains, see Legay et al [62].

Lemma 1 (Monitorability of BLTL formulas over
DTMCs) It is always possible to algorithmically decide if
any simulation path ¢ = (sy, Sy, . . .) of a ParDTMC M
satisfies given BLTL formula ¢ by observing a finite pre-
fix of .

Note 1 (Additional bounded operators) We can
define bounded versions of the usual linear temporal
logic operators G (always) and F (eventually) as
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follows: F%y = true U%y, G% = ~F%-y. Fy means
that y holds at some state within the next d state-tran-
sitions, and G“y means that y continually holds for
the next d state-transitions.

The expressive power of our agent-based models ema-
nates from their ability to capture uncertainty. For such
stochastic models, a single execution trace that violates a
given property cannot serve as a counterexample. We
need a more flexible specification language whose formu-
las allow reasonable deviations from expected model beha-
vior. For this, we define a probabilistic version of BLTL.

Definition 8 (Probabilistic Bounded Linear Temporal
Logic) A specification of the form P. 4 (¢) is a probabil-
istic bounded linear temporal logic (PBLTL) formula if
¢ is a bounded linear temporal logic formula and 6 is a
probability threshold such that f e R, 0<0<1.Ifa 0
fraction of the traces of a model satisfy ¢, we deem
the model to satisfy the (probabilistic) AFM specifica-
tion P. 4 (¢).m

Automated verification using model checking

Model checking is an automated technique for verifying
finite and infinite state transition systems that is widely
used for formal assurance of safety-critical systems [8].
Techniques based on model checking have been used
for verification in a number of areas such as hybrid
dynamical systems [63], computer software [64] and sys-
tems biology [43].

In order to use model checking to verify a time-vary-
ing system, the model is described using a Kripke struc-
ture and the property to be checked is written in a
formal temporal logic [32]. We will use PBLTL (Defini-
tion 8) to define the probabilistic model checking
problem.

Definition 9 (Probabilistic model checking (PMC))
Given a probabilistic model A and a PBLTL specifica-
tion P, 4 (¢), determine if M satisfies ¢ with probabil-
ity at least 6. ®

There are two approaches for solving the PMC pro-
blem:

» Symbolic and numerical techniques [65,66] that
estimate the exact value of the probability with
which M satisfies ¢ (by exhaustively exploring all
possible model behaviors) and then compare it to
the specification threshold probability 6.

« Statistical techniques [67-70] that use a set of sam-
ple simulations to determine if M F Psg(¢).

Statistical approaches for probabilistic model checking
are more scalable since they avoid the expensive calcula-
tion associated with accurately estimating exact prob-
abilities. However, a limitation of statistical model
checking algorithms is that the reported result is not
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guaranteed to be correct, i.e., there may be false posi-
tives or false negatives [71]. For an excellent overview of
major statistical model checking techniques, we refer
the reader to Legay et al [61].

Since computational models in systems biology often
have large parameter spaces, we use statistical model
checking as part of our parameter estimation algorithm.
Next, we describe a reformulation of the probabilistic
model checking problem in terms of statistical hypoth-
esis testing - an approach first used by Younes [71].

Hypothesis testing based statistical model checking

We are interested in determining an answer to the
probabilistic model checking problem, i.e. “Does
M E Psp(¢)?” (see Definition 9).

Assuming that the model’s actual probability of satis-
fying the specification is u €[0, 1], i.e. M E P_,(¢), we
test the (null) hypothesis H : u > 6 against the (alterna-
tive) hypothesis K : u <6. If K is rejected we conclude
that M E Ps¢(¢). If H is rejected we conclude that
ME Po().

Note 2 (Errors in hypothesis testing) For a hypothesis
test procedure, the critical region is the part of the sam-
ple space where the null hypothesis is rejected. If the
test rejects H when its true, it is considered a type-I
error. On the other hand, if the test accepts H when its
false, it is a type-2 error. Once the critical region for a
test procedure has been decided, it uniquely determines
the probabilities of type-1 and type-2 errors. For a given
critical region, we denote by « (resp. ) the probability
of a type-1 (resp. type-2) error [[72], §1.3].m

Naturally, for any statistical hypothesis testing procedure
we want a critical region that minimizes the probabilities
o and f3 of Type-1 and Type-2 errors (see Note 2). How-
ever, this implies either using a large value for either o or
B, or drawing a large number of samples to ensure test
accuracy.

Younes [70] suggests that the solution is to use the
more relaxed test of Hy : u > u, against Hy : u < uy,
where 0 < u; <60 <u, < 1. If Hy (H,) is accepted, we con-
sider H (resp. K) to be true.

Remark 3 (Indifierence regions) [u; u,] is known as the
indifierence region. If u € [u; u,] (i.e. when both Hy and H,;
are false), we do not care about the result of the test; thus
the test procedure is allowed to accept either hypothesis. In
practice, we often choose the indifierence region [u; u,] to
be of width 2 * € (where 0 <e«k 1),ie. [u- €, u+ €].

Our parameter estimation technique uses the Bayesian
statistical model checking (BSMC) algorithm developed
by Jha at al [16], to algorithmically check if a probabilis-
tic model satisfies given behavioral specifications. Note
that a fully Bayesian statistical model checking algorithm
that verifies Dynamic Bayesian Networks against prob-
abilistic queries was developed by Langmead [73].
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Below, we briefly describe the main idea behind
BSMC and refer to the reader to the literature for
details [60,61,16].

Bayesian statistical model checking

Recall that we are interested in testing whether a
probabilistic model meets a PBLTL specification with
a minimum threshold probability, i.e. “Does
ME P2 (4)?”

Assuming that M = P_,(¢), we have posed this pro-
blem as hypothesis testing query: test H : u > 6 against
K : u <0, and then relaxed it to use indifference
regions: Hy : u > u, against H; : u < u; (where 0 < y; <
0 < u,<1).

If H; is rejected, we consider that H : # > 6 holds, and
hence conclude that M F Psy(¢). If Hy is rejected, we
conclude that M ¥ Psy(¢), ie. M E Py(o).

Recall that we do not know the value of the actual
probability u with which the model satisfies the speci-
fication i.e. M FE P_,(¢). For Bayesian testing, we
model this unknown probability as a random variable
U and assume the availability of a prior density func-
tion g (.) that incorporates our existing knowledge
of U.

The Bayesian statistical model checking procedure
(see Algorithm 1) sequentially draws traces from M in
an i.i.d. fashion until it rejects either Hy or H;. For each
sample trace g;, (i € {0, 1, . . .}) of M, it uses a moni-
toring algorithm to determine if the path satisfies the
BLTL specification ¢.

The outcome of each such test of path satisfiability can
be represented by a Bernoulli random variable X; i.e.
Vie{l, ..n}, if o, F ¢, X; = 1, otherwise (i.e. when
oi ¥ ¢ ) X; = 0. At each iteration, the algorithm calculates
a quantity known as the Bayes Factor (BF) that, given the
observation of a sample {x;, x5, . . . x,.}; x; € {0, 1}, reflects
confidence in Hy holding versus H;:

P(xl,
P(xl,

7 xanO)

BayesFactor :
s  XalH:)

1)
Algorithm 1 Bayesian statistical model checking
(BSMC) algorithm for probabilistic models
Require:

Probabilistic model M,

PBLTL specification Psg(¢),

Threshold L > 1,

Prior density function g(-) of the unknown parameter
u where M E P_,(¢)

Indifference region bounds: (€;, €,), where €; > 0,
€, > 0.

{Note: Indifference region is [0 - €}, § + &;]

{Note: Hy: u >0+ €; Hy :u<0- €}
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Ensure:

ans = false if H, rejected,
ans = true if Hy is accepted,
n = Total number of traces sampled from M .

1: n < 0 {Number of traces drawn from M .}
2: z < 0 {Number of traces satisfying ¢.}

3: repeat

4: Draw sample o from M

S5:ne—n+1

6: if 0 £ ¢ then

7:z¢z+1

8: end if

Jpve, Q1 = u)" g (u)du

9: B « h—c, ez
Jo ThuA(1 —u)" g (u)du

2)

1
10: until (B > L) v (B < L)

11: if B >L then

12: ans < true

13: else

14: ans < f alse

15: end if

16: return (ans; n)

We need to calculate the probability P(d|H,) of obser-
ving sample d = (%1, x5, . . . x,,) given hypothesis H;, i €
{0, 1}. Therefore, we will need to consider all cases where
H (resp. H;) holds. Assuming the indifference region [u;
u,] tobe [0 - €1, 0+ €], whether Hy: u > u, or Hy : u <
u; holds depends on the actual probability # of M satis-
fying ¢. For both cases, we integrate over all possible
values of u according to our prior g:

P(d|Ho) = [y, f(x1lu)... f(xalu)g(u)du

P(AIHY) = [0 f(xlu) . .. f (xnlu)g(u)du

Here, f(xilu) = u*(1 —u)'~% is the conditional den-
sity of Bernoulli random variable X; given the actual
probability u. We thus obtain the following expression
for the Bayes factor:

Jreey w1 = )" *g(u)du
BayesFactor = ;"2
Jo tuF(1 —u)" g(u)du

In summary, calculating the Bayes factor requires
knowing the number of total traces n drawn from M,
the number z of traces that satisfied specification ¢, the
indifference region [u; u,] and the prior density g(-) of
the unknown probability u. For more details about the

Bayesian model checking algorithm, we refer the reader
to the work of Jha [[60], Chapter 4].
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Algorithm for discovering parameters
We formally state the problem of estimating parameters
in computational models of probabilistic systems:

Definition 10 (Parameter estimation problem) Given
a parameterized probabilistic model M(w), with para-
meter set Q CR", a desired specification ¢ in a
bounded (finitely monitorable) temporal logic, and a
probabilistic threshold 8 €[0, 1], find a parameter value
® € Q such that M(w) satisfies property ¢ with prob-
ability at least 6, i.e. M(w) E Pso(¢). ®

Our algorithmic procedure for synthesizing para-
meters is shown in Algorithm 2. We use simulated
annealing [74] for exploring the parameter space of the
stochastic model. Simulated annealing is a stochastic
optimization technique that avoids local minima in two
ways (lines 17-27): (a) by sometimes accepting points
with lower fitness and (b) via the temperature schedule
that causes fewer bad choices to be accepted as we
move closer to one of the global optima.

When considering any candidate parameter o € Q,
we invoke the Bayesian model checking routine (lines 2
and 12) to check if the parameterized model matches
expected behavior (i.e. if M(w) F Pso(¢)).

Note that since the BSMC algorithm expects as input
a prior density g for the unknown probability # where
M EP_,(¢p), our synthesis algorithm needs a parame-
terized prior /4(-) that represents the prior for each
model instantiation M (w).

To guide the annealing process, we use the number of
samples returned by the Bayesian model checking pro-
cedure, moving to the parameter point that needed
more samples to reject the null hypothesis during Baye-
sian statistical model checking (lines 17 to 20 in Algo-
rithm 2). For verifying a model M against a PBLTL
formula Psy(¢), given that M actually satisfies ¢ with
probability u (i.e. M E P_,(¢)), the Bayesian statistical
model checking algorithm takes increasingly larger num-
ber of samples to reject the null hypothesis as the speci-
fication threshold probability (6) approaches the actual
probability (x#) with which M satisfies ¢, as shown in
Figure 1. The figure shows how, for a fixed threshold 6,
the Bayesian hypothesis testing algorithm takes a larger
number of samples for verification when we consider
parameter points @ at which the model’s probability p
(w) of satisfying ¢ is close to 6.

In earlier work, we had demonstrated the use of statis-
tical hypothesis testing for parameter search in stochastic
models by using a metric based on the Sequential Prob-
ability Ratio Test (SPRT) hypothesis testing technique
[75] as a fitness function to drive the global optimization
procedure used for searching the state space [76,77].

Algorithm 2 Parameter estimation for probabilistic
models using Bayesian statistical model checking
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Require:

Parameterized probabilistic model M(:) on para-
meter space (),

PBLTL specification Psy(¢),

Starting temperature £,

Stopping temperature s

Cooling schedule T : N+ [0, oo) (where T is
strictly decreasing),

Parameterized prior density /() on paramerter space
Q, Threshold L,

Indifference region bounds (€;, €,) where €; > 0,
€y > 0.

Ensure:

ans = o such that w € Q and M(w) F Ps¢(¢) or
ans = “No parameter found.”

: w < an element in Q selected randomly

: (f n) < BSMC (M(w), Pso(¢p), L, h(w), (€1, €2))
. if f = true then

ans <

return

: end if

=

: lcount = 0

: while ¢ > trdo

10:  lcount < lcount + 1

Select a neighbor @’ of @ randomly.

12:  (f1, ) < BSMC(M (1), Psg(¢), L, h(), (€1, €2)]
13: if f7 = truethen

O 0N U AW

—_
—

14 ans — w/
15: return

16: end if

17: if w > nthen
18: w — !
19: fefr

20: n<«n

21: else

22: if rand(0, 1) >exp(—(n — n)/t)then
23: w — w/
24: f«fr
25: n<«n
26: end if

27:  end if

28:  t <« T (lcount)

29: end while

30: ans < “No parameter found”

31: return ans

In Figure 1, we show results from two sets of experi-
ments that demonstrate how Bayesian hypothesis testing
uses significantly fewer samples than a verification
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(a) Bayesian hypothesis test with Bayes factor T = 1000, and using Beta prior with
parameters a = 1. 5=1.

SPRT-based hypathesis lesing
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30000
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Spec. hreshold prob

(b) Hypothesis test using the SPRT with Type-1 error bound a = 0.001, Type-2 error
bound 8 = 0.001 and indifference region 2 » 0.0001.

Figure 1 Comparison of the efficiency of (a) Bayesian and (b) SPRT hypothesis testing. In both cases, the number of samples required for
hypothesis testing increases as the specification threshold probability approaches the actual probability with which the model satisfies the
specification. Bayesian hypothesis testing required fewer samples than the SPRT when the model is obviously flawed with respect to the desired
behavior. The number of samples for the Bayesian hypothesis testing vary from 1 to 1000 while those for the SPRT become as large as 100000.
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procedure based on the SPRT when the model is far
away from the desired behavior. Unlike our earlier tech-
nique for parameter discovery [77], Algorithm 2 does
not need the Type-1, Type-2 error bounds (o, B resp.)
because it uses Bayesian statistical model checking for
verification, thereby reducing the number of samples
required for discovering a model’s parameters.

Case study: Application to a complex
physiological model of acute inflammation

We demonstrate our algorithm for discovering parameters
of parameterized probabilistic systems on a physiological
model that describes the acute inammatory response
(AIR) to the administration of the Gram-negative Bacterial
endotoxin lipopolysaccharide (LPS) [17]. Our aim is to dis-
cover the schedule and doses of LPS that make the model
exhibit desired behavioral properties.

We synthesized twenty eight model parameters, for a
set of four specifications given to us by experts with
extensive experience with the model. Simulations were
performed using the SPARK (Simple Platform for Agent-
based Representation of Knowledge) agent-based model-
ing and simulation framework [54,53]. We describe both
the (natural language) expert specifications and their
translations into BLTL:

1 There exists a low dose of the lipopolysaccharide
(LPS) that stimulates an episode of inflammation
which eventually resolves - the system returns to
baseline.

Formal specification: D; — Fo (I A F®2(N)).

2 There exists a high dose of LPS that stimulates an
episode of inflammation which does not resolve, i.e.
the system reaches levels of inflammation from
which there is no recovery.

Formal specification: Dy — F%(G*Iy).

3 Desensitization: For a certain time interval, when
one administration of LPS is followed by a second
administration of the same dose, the inflammatory
response resulting from the second administration is
lesser than that from the first.

Formal specification: D — F* (I, A F(D — F7Iy)).
4 Priming : For a certain time interval, when one
administration of LPS is followed by a second
administration of the same dose, the inflammatory
response resulting from the second administration is
greater than that from the first.

Formal specification: D — F% (I A F? (D — F°°I})).

D; (Dy) represents a low (high) dose of LPS, D is a
dose of unknown magnitude, but likely to be neither too
low nor very high, I indicates that an inammatory event
occurred, N is the event of entering a non-inammatory
state, and I; (Iy) stands for lower (higher) level of
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inammation. Also, Vi € {1...10}, J; € N represents the
(discrete) simulation time steps between the relevant
events. For initial values of each of the parameters, we
used a randomly chosen value within bounds provided
as part of the specification.

We successfully synthesized 28 parameters (shown in
Table 1) for the acute inflammatory response model
against four behavioral specifications. Our Bayesian
model checking-based parameter synthesis algorithm
took less than 24 hours to synthesize this parameter set
on a 1400 MHz, 64-core machine running the Linux
operating system.

Figure 2 shows the satisfaction of all four specifica-
tions by depicting model simulations when parameter-
ized at the synthesized parameter set from Table 1. The
first 14 parameters are fundamental to the model and
denote various attributes that cannot be measured
experimentally. The remaining 14 parameters describe
the endotoxin administration schedule. Of these, the
first 3 parameters indicate the case where inflammatory
event occurs but is later resolved; the next 3 parameters
show the scenario where an inflammatory event occurs

Table 1 Parameters of the acute inflammatory response
model synthesized by our algorithm.

param. 1 (LPS-evap) 0.932575
param. 2 (mac-act-LPS) 0661416
param. 3 (mac-act-pro) 0.326682
param. 4 (mac-regen) 12.655
param. 5 (mac-age) 60.5967
param. 6 (mac-act-dam) 03916
param. 7 (max-pro-dam) 18.5986
param. 8 (pro-dam-thresh) 0.51023
param. 9 (damage-evap) 0.276594
param. 10 (anti-heal-thresh) 7.92487
param. 11 (mac-anti) 0.442621
param. 12 (anti-evap) 0.623503
param. 13 (pro-evap) 0.142298
param. 14 (mac-prop) 8.39519
param. 15 (exp1-dose-time) 149.574
param. 16 (exp1-dose-duration) 4.80575
param. 17 (exp1-dose-amount) 3352.54
param. 18 (exp2-dose-time) 467.262
param. 19 (exp2-dose-duration) 458451
param. 20 (exp2-dose-amount) 896067
param. 21 (exp3-1st-dose-time) 333838
param. 22 (exp3-2nd-dose-time) 407.352
param. 23 (exp3-doses-duration) 416759
param. 24 (exp3-doses-amount) 262897
param. 25 (exp4-1st-dose-time) 8.24293
param. 26 (exp4-2nd-dose-time) 411.959
param. 27 (exp4-doses-duration) 440842
param. 28 (exp4-doses-amount) 449465
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that is never resolved. Both of these scenarios are
demonstrated on the same fundamental inflammation
model.

The last 4 parameters denote the priming scenario
(specification 3), and the second-last set of 4 parameters
denotes the desensitization scenario (specification 4).
Both priming and desensitization are phenomena in
which repeated administration of endotoxin leads to
either an augmented (priming) or reduced (desensitiza-
tion) level of inflammation as compared to a single
administration of endotoxin [17,78-81].

We conclude that a low dose for a high duration
causes priming behavior whereas an even lower dose
administered for a short period of time results in desen-
sitization. Thus, our algorithm synthesizes a model that
demonstrates all four behavioral properties (i.e. specifi-
cations 1, 2, 3, 4).

Discussion

Probabilistic computational models have been to used to
analyze complex phenomena in areas that include the
study of global ecology, forced migration, the spread of
infectious diseases and threats to international security
arising from local and regional conflicts [48,82-84].

While the use of mathematical models for computer
simulations in systems biology is not new, recent trends
show a marked qualitative change in the nature of the
models, with the explosive growth in the use of agent-
based models because of their natural ability to repre-
sent multi-scale biological systems. Agent-based models
use a set of interaction rules among individual compo-
nents of the system that have a spatial location. These
models are therefore suited for describing event-based,
non-deterministic and highly parallel systems. Like for
other stochastic models, discovering parameter values of
ABMs in a way that makes the model conform to actual
experimental data is an ongoing research challenge.

In recent years, there have been attempts to automate
the discovery of model parameters using modern high-
performance computing techniques. The ongoing expo-
nential increase in computational power provides an
opportunity for building software that can automatically
find parameter values of complex stochastic models,
given specifications describing the relevant properties
the completed model should ideally have.

We described a new algorithmic technique for para-
meter synthesis for agent-based models that uses Bayesian
model checking and simulated annealing to find a model
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that meets expert-provided behavioral specifications. We
applied our algorithm to discover twenty-eight parameters
in a model of the acute inflammatory response in humans
written in the SPARK modeling framework.

Future work
We plan to pursue several directions for future work:

« The current sampling strategy of drawing a fresh
set of samples for every parameter perturbation may
be avoided by employing change of measures argu-
ments and reusing earlier samples [85].

« The construction of expert insight from heteroge-
neous, uncertain data sets has not been discussed.
We plan to automate the process of learning specifi-
cations from time-series data, which will allow
researchers to build better models using specifica-
tions generated automatically from experimental data.
» After comparing different parameter estimation
techniques for stochastic models in systems biology,
we are convinced of the need to develop open
benchmarks of computational models and experi-
mental datasets (like time-series data) that would
help evaluate existing and proposed solutions to the
parameter estimation problem.

+ We plan to study the problem of parameter sensi-
tivity, i.e. ensuring that parameter values discovered
should be robust enough so that a slight change in
them does not cause drastically different model
behavior. This problem is especially important in
biology because experimental data are often not only
sparse but also contains measurement errors [45].

« Finally, the users of search algorithms are always
concerned about the issue of scalability, i.e. whether
or not the technique would work efficiently when
the problem size is large, resulting in a high-dimen-
sional parameter space. To address this issue, we
plan to investigate various model reduction techni-
ques [86].
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