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Abstract

Background: Tandem repetitions within protein amino acid sequences often correspond to regular secondary
structures and form multi-repeat 3D assemblies of varied size and function. Developing internal repetitions is one
of the evolutionary mechanisms that proteins employ to adapt their structure and function under evolutionary
pressure. While there is keen interest in understanding such phenomena, detection of repeating structures based
only on sequence analysis is considered an arduous task, since structure and function is often preserved even
under considerable sequence divergence (fuzzy tandem repeats).

Results: In this paper we present PTRStalker, a new algorithm for ab-initio detection of fuzzy tandem repeats in
protein amino acid sequences. In the reported results we show that by feeding PTRStalker with amino acid
sequences from the UniProtKB/Swiss-Prot database we detect novel tandemly repeated structures not captured by
other state-of-the-art tools. Experiments with membrane proteins indicate that PTRStalker can detect global
symmetries in the primary structure which are then reflected in the tertiary structure.

Conclusions: PTRStalker is able to detect fuzzy tandem repeating structures in protein sequences, with
performance beyond the current state-of-the art. Such a tool may be a valuable support to investigating protein
structural properties when tertiary X-ray data is not available.

Introduction
Motivations
In a seminal paper of 2001 M.A. Andrade and co-authors
[1] observe that repetitive subsequences that appear tan-
demly often form integrated assemblies when viewed in
their three-dimensional corresponding conformation, as
they often confer multiple binding opportunities and play
a structural role in proteins. Moreover, tandemly
repeated structures constitute a different class from
domains and motifs that appear singly in each protein
(while they can be repeated across families of protein).
M.A. Andrade and co-authors also remark that repeats in
protein sequences are usually hard to detect because of
their relatively (on average) short length and because of
their considerable -inherent- sequence divergence.

A study of 1999 by Marcotte et al. [2] indicate that
internal subsequence repetitions in proteins primary
structure are quite widespread. They have been noticed
in about 14% of all the known proteins, with eukaryotic
proteins being three times more as likely to have inter-
nal repeats than prokaryotic ones. The distribution of
TRs in protein families and the mechanisms of protein
TR formations are discussed in detail in [3].
From a theoretical point of view almost any approach

that works for a 4-characters alphabet (DNA) could also
be applied to the 20-characters amino acid alphabet and
indeed some methods are developed for “generic” biologi-
cal sequences (e.g. [4]). In practice, there are differences
between protein and DNA sequence, and the way they can
be analyzed. Protein sequences tend to be shorter (at most
of the order of 104 amino acids) than DNA sequences
(often of the order of 106 nucleotides and more). In pro-
teins, assigning a score to an amino acid substitution is
important, and finally repetitions in amino acid sequences
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tend to be very divergent, since the same structural role
can be maintained even with little sequence conservation.
Also, empirically, we observe that the tools for detecting
(tandem) repeats for DNA and for proteins constitute two
rather distinct families, often employing completely differ-
ent characterization and algorithmic approaches.
In [5] we presented TRStalker, an algorithm designed,

developed and tuned to detect fuzzy tandem repeats in
DNA sequences. In view of the biological relevance of tan-
demly repeated subsequences in proteins, we worked on
an evolution of TRStalker, modified and tuned to work
with protein sequences in order to detect amino acid (aa)
tandem repeats, by incorporating amino acid similarity
information deep into the algorithmic framework. Amino
acid substitution matrices (such as the PAM and BLO-
SUM families of matrices, based on known evolutionary
changes of amino acids in proteins) are usually expressed
in terms of a similarity score between amino acids. In the
framework we present here, we use the notion of weighted
edit distance between sequences, thus converting standard
similarity scores into distance weights. Interest in metric-
space search and indexing in bioinformatics [6] has been
recently rekindled since one can tap on a vast array of effi-
cient metric-based generic methods developed over the
years, thus reducing the need for developing ad-hoc
searching and indexing algorithms for each new similarity
measure. A technique for turning BLOSUM log-likelihood
similarity matrices into corresponding metric space was
proposed in [7], while a second method to turn PAM log-
likelihood similarity matrices into a corresponding metric
space was proposed in [8]. It is also possible to define new
metrics over amino acids by first mapping each amino
acid into a real vector space (see e.g. [9]), and then apply-
ing one of the many possible metrics associated to a real
vector space. For this reason we generalize the definition
of tandem repeat in order to incorporate this larger class
of metrics in the proposed algorithm.
PTRStalker, the novel algorithm we developed, has

been compared against competing state-of-the-art meth-
ods over large collections of proteins (UniprotKB/Swiss-
Prot), on membrane channels proteins, and on selected
families of proteins known to contain long fuzzy TRs.
We found out that under edit distance 19.53% of the pro-
tein listed in UniPtotKB/Swiss-Prot have significant fuzzy
TRs. We could find fuzzy TRs, not detected by some
competing methods (XSTREAM, T-REKS, TRUST), in
Human Titin (striated muscles). For the Chlorine chan-
nel protein ClC-0 (membrane transport) we show that
PTRStalker can detect known symmetries while compet-
ing methods do not. The output of our analysis of protein
sequences has been collected into a publicly available
database, that will be continuously updated in order to
provide useful insight to researchers interested in protein
sequence analysis. The database is freely available at [10].

The outline of the paper is the following: after a short
introduction on the algorithms developed for detecting
tandem repeats in protein sequences, we introduce and
describe PTRStalker procedural approach in detail. Next
we describe the experiments we performed to evaluate the
metric chosen, and the results obtained by PTRStalker and
competing state of the art tools.

State of the art
The first methods developed for finding TRs in pro-
teins are based on detecting sub-optimal alignments in
the self-alignment matrix generated by the Smith-
Waterman algorithm. Some examples are Internal
Repeat Finder [2,11], RADAR [12], REPRO [13,14] and
TRUST - Tracking Repeats Using Significance and
Transitivity [15], even if they often detect both tandem
and interspersed repeats. More recently Newman and
Cooper proposed XSTREAM [16], which uses a seed
expansion approach, while Jorda and Kajava proposed
T-REKS [17], which uses a clustering approach based
on k-means. The systems HHrep [18] and HHRepID
[19] are instead based on building and matching Hid-
den Markov Models for the repeating substrings to be
sought (not necessarily tandem). Some approaches
based on neuronal networks aim at detecting particular
repetitive structures. For example, in [20], Palidwor et
al. developed a classification technique for detecting
alpha-rods repeats, a specific repetitive structure. A
meta searching approach that combines the output of
different algorithms has been also proposed, for exam-
ple in the tool REPPER [21]. With a few notable
exceptions (see e.g. [4]) all these methods specialize on
protein sequences. Sokol et al. [22] proposed TRED,
which is based on an estimation of edit distance
between strings. In principle their approach can be
applied to any alphabet size, however the on line avail-
able software is tuned only for 4-character DNA
strings.
Among the -few- databases reporting protein repeti-

tive subsequences we recall ProtRepeatsDB [23], a rela-
tional database of perfect and mismatch repeats, which
also provides cross species comparisons of different
types of amino acid repeats.

Methods
Algorithm PTRStalker
In this Section we describe PTRStalker, an evolution of
the algorithm TRStalker [5] we developed for finding
TRs within DNA sequences. Whereas TRStalker and
PTRStalker use the same overall procedural approach to
detect tandemly repeated subsequences, PTRStalker has
been opportunely tuned for detecting TRs in protein
sequences. In particular, the main differences are in the
formal definition of a tandem repeat, in the metrics
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used, and in the q-grams matching policy (see below).
However, the overall idea still holds: TRs are detected
by (i) first finding a set of candidate periods, (ii) then
finding a set of candidate pairs (period, starting posi-
tion), and (iii) finally verifying if in a particular position
there exists a TR according to the precise mathematical
definition adopted (see below). To make this paper self
contained, after introducing a few working definitions
we will recall the general structure of the algorithm pre-
sented in [5], describing the innovative parts PTRStalker
has.

Preliminaries
In order to extend the methodology used in [5] by
incorporating amino acid similarity information encoded
in similarity matrices, we need to perform two tasks:
define a weighted edit distance, and suitably modify the
tandem repeat definition so to obtain a Weighted Steiner
Simple Tandem Repeat (Weighted Steiner STR). We
give here details for the BLOSUM metric space as
defined in [7]. The extension to other metrics is
straightforward.
BLOSUM-weighted edit distance
We incorporate the definition of BLOSUM-derived edit
distance between two strings as follows: the cost of
indel operations is equal to 1, while the cost of substitu-
tions depends on the involved characters. Since BLO-
SUM matrix entry Mij defines the level of similarity
between characters i and j, and not their distance, the
cost Cij of a substitution between characters i and j is
computed, according to [7], as the ratio:

Cij =
Dij

Dmax

where

Dij = Mii +Mjj − 2Mij,

Dmax = max
i∈�,j∈�

Dij

and ∑ is the amino acid alphabet. Since Dij represents
the non-normalized distance between two characters, we
use Dmax, representing the maximum distance between
two characters, as the normalization value so to obtain
the normalized weight Cij Î [0, 1]. In [7] it is shown
that these weights are consistent, since they almost
always satisfy the triangular inequality.
BLOSUM-weighted Steiner-STR
Let DB(a, b) be the BLOSUM-derived edit distance
between strings a and b computed by using the BLO-
SUM-derived weights defined above. In order to give
meaningful limits to the divergence of strings under this
metric we need to define its behavior for random pair of

amino acid strings. For the expected edit distance of two
strings no analytic formula is known even in the
unweighted case. Even if the theory of Karlin and Alt-
shul [24] could give some insight, the issue of extending
their methodology to the case of tandem sequences is
not trivial. For these reasons we estimate DB(a, b) with
an experimental approach, by generating a suitable
number of random strings in which the probability of
amino acid substitution is consistent with the BLOUSM
data, and by measuring the weighted edit distance for a
given error level. We define with E(C) the expected sub-
stitution cost among two amino acids due to the cost
matrix C. As a consequence, two random amino acid
stings of length p = |a| = |b| are at expected distance
pE(C). If we allow only a percentage μ of substitutions
we obtain an estimated weighted distance of μpE(C).
A BLOSUM-weighted Steiner-STR is defined as a

string X = x1x2..xt for which two conditions hold, for a
user defined error parameter 0 ≤ μ ≤ 1, and constant c
with 1 ≤ c ≤ 2:
(a) for each i Î [1, .., t - 1], DB(xi, xi+1) ≤ cμ|xi|E(C)
(b) there exists a Steiner string x̄ ∈ �∗ so that for

each i Î [1, .., t], DB(x̄, xi) ≤ μ|xi|E(C)
Intuitively, in a BLOSUM-weighted Steiner-STR the

TR consists of t duplications of a single Steiner consen-
sus string x̄ with at most μ times the number of muta-
tions one would expect from random strings of the
same length (condition (b)). Moreover consecutive
copies of the mutated string do not diverge too much
w.r.t. each other, at most cμ times the number of muta-
tions one would expect from random strings of the
same length (condition (a)). Note that condition (a) is
vacuous for μ ≥ 1/c. The choice for the constant c
depends also on the level of divergence. For protein
repeats with low divergence c = 2 is a sensible choice
since two copies at distance μ|xi|E(C) from x̄ are also at
distance at most 2μ|x̄|E(C) from each other by the tri-
angular inequality. Thus (a) is a necessary condition for
(b). For the higher level of divergence we are interested
in (μ = 0.3), the value c = 2 is too loose and we use a
lower value (c = 1.5), so to maintain a good filtering
ability of condition (a) and to avoid having as a possible
solution a TR where the consecutive pairs may have a
very irregular divergence. Note that the standard TR
definition for the unweighted edit distance corresponds
to a matrix with cost 1 for each substitution.
Homologous q-grams
Let I be a finite subset of non-negative integers. We call I
an index set. The span of I is span(I) = max{i - j|i, j Î I},
the position of I is pos(I) = min i Î I, and the shape of I is
shape(I) = {i - pos(I)|i Î I}. When |I| = q and span(I) = s,
the shape of I belongs to the class of (q, s)-shapes. Any set
of non-negative integers Q containing 0 is a shape. For an
alphabet ∑ (the 20 amino acid letters in our case), a string
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S Î ∑* of length n can be seen as a function defined over
[0, ..,n - 1] with values in ∑, and for any subset I ⊂ [0, ..,
n - 1] the restriction of S to I, denoted by S[I], is a sub-
string of S. Given any shape Q in the class of (q, s)-shapes,
all sets I ⊂ [0, ..n - 1] such that shape(I) = Q, form the set
of Indexes(Q, n). We can use elements from the Indexes(Q,
n) to generate restrictions for the string S. An index set I
such that |I| = q and span(I) = q - 1 is called an ungapped
q-gram since its shape is shape(I) = [0, ..q - 1]. If we have
an index set J with |J| = q and span(J) = s ≥ q we have a
gapped q-gram since its shape is formed of non consecu-
tive integers. As noted in [25] gapped q-grams are strictly
more powerful than ungapped ones. In order to generate a
population of candidate periods we consider now all possi-
ble (q, s)-shapes with q = 3 and s = 4, 3, 2. Denoting with -
the gaps and with # symbols from ∑, (the first and
last positions must be always #), we have the (3, 4)-shapes
## - - #, # - # - #, and # - - ##; the (3, 3)-shapes # - ##,
## - #; the (3, 2)-shape ###; and the (2, 1)-shape ##.
Gapped q-grams (also called spaced seeds) have been

used in [26-28] to speed up homology search. In these
papers much larger values of q and s are used in order
to attain sensitivity. Therefore the key problem for them
becomes how to select one (or a few) effective seed out
of an exponentially large family (for s and q). Since we
use small values of (q, s) we do not have this seed selec-
tion problem and we can afford to use a complete
family, formed by 6 seeds only.
In defining the notion of homologous q-grams for

amino acid sequences we take into account the fact that
functional properties of proteins are preserved even
under considerable sequence substitutions. The BLO-
SUM similarity matrices give a quantitative definition of
the allowed amino acid substitutions. Given two index
sets I1, I2 Î Indexes(Q, n), we call them matching (or
homologous in S, if S[I1] and S[I2] have two identical
symbols in corresponding positions while the symbol in
the remaining position can be different in the two
strings but within ranking z of each other as given by
the BLOSUM similarity matrix (that is, the one symbol
is among the top z most similar symbols to the other
one, and vice versa). The slackness parameter is z = 1
when we want exact match, and z = 3 and z = 5 when
we allow more substitutions. The value |pos(I1) - pos(I2)|
is called the period of the match.
Note that, by considering the z amino acids closer to a

given amino acid, we introduce a discrete ranking in the
metric space. Alternatively one could choose a fixed
radius and consider all amino acids within that radius.
We performed dedicated experiments in order to choose
the right approach and the results (not shown here)
indicate that there is almost no difference in the two
approaches. We decided to adopt the discrete ranking

approach because choosing suitable radii implies ad-hoc
dependance on the specific metric.
Anti-smear weighting
The anti-smear weighting technique allows to cope with
the fluctuations in the period of matching q-grams
introduced by insertion and deletions of amino acids in
a sequence. If q1 and q2 are occurrences of homologous
q-grams in X at distance k, before the implant of muta-
tions, the effect of insertion and deletions on the posi-
tions of the string X between q1 and q2 is to alter their
distance so that a different period k’ is detected. The dif-
ference k - k’ is equal to the algebraic sum of number of
insertions and deletions in the positions between q1 and
q2. Assuming that any such position can be an insertion
or a deletion independently with the same probability,
the random variable k - k’ is distributed as a sum of
independent r.v. with values in {+1, -1, 0} with mean
value 0, thus, by a Chernoff bound argument, its tail dis-
tribution decays exponentially [29,30]. Also near-by
probes in X have small variations in the value of the
shift k - k’. Inspired by the above observation we devise
a weighting scheme that increments the total weight of
period k if another period of value k̄ is discovered in a
near-by position, with weights that decay exponentially
with |k − k̄| .
Let q be a q-gram in the input string Y at position i.

Let q1, .., qh be the next h occurrences of q in Y follow-
ing the occurrence at position i. The h corresponding
detected distances are kg = jg - i, for g Î [1, ..h]. For the
period kg, we increment its weight:

w0(kg) = w0(kg) +
∑
k∈Q

2−|kg−k|, (1)

where Q is a queue holding the last H detected dis-
tances in the sequential scan of the input string Y. This
way, the final weight w0(k) for a given period k is the
sum of the individual anti-smear weights computed
above for probes at distance k. After the weight update,
we enqueue all h values kg in the queue Q, and we
dequeue an equal number h of items.
Multiplicity weighting
The goal of this technique is to strengthen the signal
when the TR is made by more than two repeating units.
Let w0(k) be the weight of the period k as assigned by
the anti-smear weighting procedure. As observed before
for a TR with a large number of copies we will find also
integer multiples of k with a relatively high frequency.
We take advantage of this fact and compute new
weights:

w1(k) =
∑

h≥1

w0(hk). (2)
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The candidate periods are then sorted by the weight
w1(.), and processed in decreasing order.
Positional k-density
We further exploit the property of TRs for which the same
period is detected by probes in near-by positions. The
positional k-density is the density of probes that contribute
to the counter for the candidate period k. Let k be the per-
iod under investigation. Consider the set Kk of the posi-
tions of those q-grams (i.e. substrings of Y) that contribute
to the weighting of k through the multiplicity weighting.
In order to avoid double counting we always take the posi-
tion of the first of the two matching probes. Note that, if a
position is shared by several pairs of probes it will be
counted only once. Let f : [0, ..,|Y| - 1] ® {0, 1} the charac-
teristic function that for each position in Y denote the
membership of that position to Kk. Consider the k-window

smoothing of f : F(i) =
∑i+k−1

j=i f (j) that computes the

k-smoothed density of the function f, for i Î [0, .., |Y| - k].
Finally we define a threshold t(k) proportional to the aver-
age k-density by a user-defined constant, and we consider
as a candidate position set CP(Y, k) = {i Î [0, .., |Y| - k]|F
(i) ≥ t(k)}. The output of this positional density computa-
tion is a sequence of pairs (k, i) where k is a candidate per-
iod and i a candidate position.
TR validation
We take each candidate pair (p, i) and explicitly test
whether there is a TR of period p starting in position i
according to the definition used, by using an alignment
technique based on the well-known Smith-Waterman
algorithm. In this phase, besides validating the TRs, we
discover the (fractional) repetition number of the TRs
eventually extracted. Finally, we check for inclusion the
TRs found and we filter out those TRs completely
enclosed in another one. For TRs in the same position
and length but different period we report the TR with
shorter period.

The algorithm in detail
In the following we will go through the high level pseu-
docode of PTRStalker, reported in Figure 1, explaining
each phase and function in detail.
Step 1. The number L of candidate periods to exam-

ine is empirically set to 50, while the set of candidate
pairs K, and the set of TRs T to be given as output are
initialized as empty sets.
Step 2. The function block(Y) splits the input

sequence Y into n blocks Yj, 1 ≤ j ≤ n, of predefined
length (we used a value of 2000 aa). We limit our com-
putations within a block so to avoid counting q-grams
when they are too far to be involved in a TR local to
the block. For TRs stranding across blocks we adopt
mechanisms to carry over useful information from one
block to the next one.

Steps 3-4. The candidate periods are found by detect-
ing the distance (counted in amino acid positions)
among homologous q-grams. Because of the presence of
substitutions, insertions, and/or deletions, many
instances of q-grams will be probably affected by error
and a match could be missed, thus reducing the fre-
quency counts for the candidate period k. In order to
cope with this effect, for each block Yj, function find-
GappedQGrams(Yj) records for each occurrence of a
gapped q-gram Piin Y its distances K’ to the next 5
occurrences (candidate periods) and its starting position
i in Y. Note that the candidate periods will be processed
later in order of cumulative weight.
Steps 5-8. For each period k detected by a q-gram at

position i, the function updateWeight(k, i) increments
the weight w(k) of the period k Î K’ by applying the two
weighting techniques presented before: the anti-smear
weighting technique to cope with the fluctuations in the
period of matching q-grams introduced by insertion and
deletions of amino acids in a sequence (see Equation 1),
and the multiplicity weighting (see Equation 2) to
strengthen the signal when the TR is made by more than
two repeating units. For computing the anti-smear
weight as shown in Equation 1 we empirically set h = 5
and H = 20. The candidate pair (k, i) is then added to the
set K, if it is not already present.
Step 9. Function getTopPeriods(K, L) ranks the periods

by weighted frequency and returns only the top L posi-
tions in the set KL.
Step 10. PTRStalker further exploits the property of

TRs that the same period is detected by probes in near-
by positions through the positional k-density. Thus, the
function posDensity(KL) computes the density of probes
that contribute to the counter for the candidate period
K, and then cuts off for position with low density,
returning those candidates with higher positional
density.
Steps 11-14. For each candidate pair (k, i), functions

getTR() computes a candidate TR of period k starting at
position i and verifyTR() verifies whether there is a tan-
dem repeat t of period k starting at position i according
to the definition of TR given, and if so t is added to the
set T. Recall that for a BLOSUM-weighted Steiner-STR
we set μ = 0.3 and c = 1.5.
Steps 16-18. Finally, for each candidate tandem repeat

t Î T the function maximal() verifies whether t is
included in a longer TR, and possibly removes t from T,
while minp() for TRs in the same position and length
but different period maintains only the TR with shorter
period. The procedure returns the set T as result.
The elements of T can be visualized and listed according

to different properties of the TR found: initial position,
final position, repeating unit size, number of repetitions,
total length, absolute divergence, mean divergence, etc.
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Results
In this section we report PTRStalker performance with
the use of a BLOSUM-based metric and the unweighted
edit distance. Furthermore we report a detailed compari-
son of PTRStalker versus some state of the art algo-
rithms. For some of the experiments reported below,
PTRStalker has been run to analyze the UniprotKB/
Swiss-Prot database of protein sequences. More in
detail, the version we used in our experiments was Uni-
ProtKB/Swiss-Prot Release 57.15 of 02 March 2010
-henceforth called Swiss-Prot database, that contains
515, 203 sequence entries.

Metric evaluation
We performed a set of experiments to evaluate the effects
of BLOSUM-based metrics and q-gram similarity. For
this reason PTRStalker has been run on the first one
thousand sequences of the database, using the definition
of BLOSUM-weighted Steiner-STR. We also evaluated
the influence of the q-gram similarity matching para-
meter z. Table 1 reports the percentage of sequences that

contain at least a TR with length ≥ 20 when using edit
distance and BLOSUM-based distance (three different
matrices have been used: BLOSUM 90, BLOSUM 70, and
BLOSUM 50). The table also show the results obtained
for different levels of q-gram similarity. When z = 1 simi-
larity is not considered: a q-gram is only similar to itself.
When z = 3, for every q-gram also the two other more
similar q-grams have been considered (the total number
is three), and so on. Tables 2, 3 show the results obtained
when considering TRs with length ≥ 30, and ≥ 40. The
maximum sensitivity is attained for almost all length

Figure 1 PTRStalker algorithm scheme.

Table 1 UniProtKB/Swiss-Prot database: percentage of
protein sequences that contain at least a tandem repeat
with length ≥ 20

Metric z = 1 z = 3 z = 5

BLOSUM 90 17.7 20.5 23.2

BLOSUM 70 21.6 25.6 26.1

BLOSUM 50 22.5 27.4 29.1

Edit 4.3 - -
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classes with z = 5 and the BLOSUM 50 matrix. The use
of BLOSUM metrics more than doubles the sensitivity
for TR of length above 20 aa w.r.t the unweighted edit
distance. Experiments shown later indicate that for the
chosen parameters, the threshold 20 is far from the
expected maximum TR length in shuffled sequences
(about 15) for sequences of length at most 1000, which
constitute 99,96% of the sequences in UniProtKB/Swiss-
Prot. These experiments indicate that the use of BLO-
SUM based metrics within PTRStalker is effective in
detecting long fuzzy TRs.

Competitors
In what follows we compare PTStalker with several state of
the art algorithms, namely, RADAR, TRUST, XSTREAM,
T-REKS, HHrep and HHRepID. Like PTRStalker, all these
algorithms do ab-initio identification of protein repeats
with indels.
RADAR [12] and TRUST [15] detect internal sequence

symmetries by aligning the protein sequence to itself and
analyzing the collection of suboptimal alignments. In parti-
cular, they build a repeat profile to exactly determine repeat
borders and extract a multiple alignment of repeats.
Usually, the alignment of a sequence to itself for the detec-
tion of suboptimal alignments is performed with the Smith-
Waterman algorithm [31] or its variations (see, e.g., [32]).
HHrep [18] and HHRepID [19] are based on HMM-

HMM comparison instead of sequence-sequence com-
parison: a Hidden Markov Model (HMM) profile is built
from a multiple alignment of proteins homologous to the
analyzed one, and sub-optimal alignments are then
searched by aligning this HMM with itself. These meth-
ods can be very sensitive in detecting long and highly
divergent repeats.

TRUST and HHrep make also use of the concept of
transitivity of alignments, through which identify addi-
tional distant homologue TRs and recognize and reduce
the contribution of non-homologous TRs.
XSTREAM [16] is based on a short string extension

algorithm.
T-REKS [17] uses a K-means clustering algorithm for

identifying putative lengths of TRs. XSTREAM and
T-REKS use quite similar definition of TR and are espe-
cially effective in finding relatively short tandem repeats
(15-20 bp long).

Proteins with very long tandem repeats
In this experiments we compared PTRStalker with two
state of the art algorithms: XSTREAM [16] and TREKS
[17], for the task of detecting very long tandem repeats
(spanning more than 4000 aa). We also tested two algo-
rithms TRUST [15] and RADAR [12] which produce clus-
ters of generic (interspersed) repeated motifs. We have
filtered the output of TRUST and RADAR in order to
highlight the TRs found. Entries in the RADAR column of
table 4 are marked “***” when there is no evident TR clus-
ter in the output, although many interspersed repeats may
be found. HHRep and HHRepID are less suitable for this
task since they report pairs of homologous substrings,
thus failing to report multi-repeating units. We have
selected 12 proteins from Swiss-Prot database for which a
tandem repeat of length ≥ 4000 aa has been detected by
PTRStalker. The data in Table 4 show that T-REKS with
the standard parameter setting for these long proteins
does not detect fuzzy TRs longer than 100 aa in 6/12 cases
(marked “*”), and, even when longer TRs are found, these
are often sub-TR of those found by the other methods.
PTRStalker and XSTREAM have a remarkable consistence
in detecting the location of the longest fuzzy TR in 11/12
cases. Sometimes they differ in the periodicity, since
XSTREAM gives priority to higher repeat number (and
consequently shorter period), while PTRStalker prefers TR
with longer span (often attained with a lower copy number
and longer period). One notable difference in the output
of PTRStalker and XSTREAM is for the Human Titin
sequence (involved in the functioning of vertebrate striated
muscles). This protein is one of the longest and most com-
plex human proteins. Here PTRStalker is able to detect a
much longer TR (4-repeat, 1082-period) completely
missed by the other two methods, RADAR also found a
long TR structure in the same region. The domain compo-
sition of Human Titin has been analyzed in [33,34]. The
long fuzzy TR we have found falls in the A-band region,
which is known to contain two long super-repeating pat-
terns both composed of regular patterns of Ig and FN-III
motifs [34]. In order to appreciate the unusual length of
this Fuzzy TR we also performed an experiment by feeding
PTRStalker with a random shuffled Titin sequence, in

Table 2 UniProtKB/Swiss-Prot database: percentage of
protein sequences that contain at least a tandem repeat
with length ≥ 30

Metric z = 1 z = 3 z = 5

BLOSUM 90 5.7 6.4 7.8

BLOSUM 70 7.0 7.0 8.7

BLOSUM 50 7.1 8.4 8.8

Edit 2.2 - -

Table 3 UniProtKB/Swiss-Prot database: percentage of
protein sequences that contain at least a tandem repeat
with length ≥ 40

Metric z = 1 z = 3 z = 5

BLOSUM 90 4.3 4.9 4.9

BLOSUM 70 4.9 5.5 5.4

BLOSUM 50 4.9 5.7 5.7

Edit 1.8 - -
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which the longest fuzzy TR found (with the same config-
uration parameters) has length 25. For 6 sequences out of
12, RADAR did return large clusters of interspersed
repeats covering the region containing the TR, while for 6
sequences the cluster produced corresponds to a long TR.
In general, we can conclude that PTRStalker is at a par
with XSTREAM and RADAR for detecting this class of
long fuzzy TRs, and better than T-REKS (in output qual-
ity) and TRUST (in efficiency).

Membrane proteins
Membrane proteins perform a wide range of biological
functions including signal transduction and molecular
transport. Here we report the behavior of PTRStalker in
detecting fuzzy tandem repeats in two families of well
known membrane proteins: the Urea Transport Channels
and the Chloride Channels.
Urea transport channels
Transmembrane transport protein biology is key to the
understanding of many critical biological process such as

absorption and distribution of drugs within the human
body. Transport proteins are basic component of trans-
membrane channels and often exhibit interesting symme-
tries at the structural level. Since experimental structural
resolution of membrane proteins is difficult one would
like to extract as much information as possible from the
analysis of sequence data. In this set of experiments we
tested the ability of PTRStalker in detecting blindly known
repetitive structures in proteins of the Urea Transporter
(UT) family [35]. Many members of the UT family are
known to have a dimeric structure, but the level of amino
acid identity between homologous subsequences is rather
poor. Here we employ the metric based on the BLO-
SUM30 substitution matrices. For the purpose of detecting
long fuzzy dimeric structures in proteins the tools
XSTREAM and T-REKS proved unsuitable, therefore we
tested PTRStalker against the tools HHRep, HHRepID,
TRUST, and RADAR. Results in Table 5 show that all
four methods could detect some dimeric structure of
the four UT proteins under examination. In the case of

Table 4 Analysis of the 12 proteins from the UniProtKB/Swiss-Prot database with a very long fuzzy tandem repeat

Protein Tandem repeats found by

Acc # ID Length PTRStalker XSTREAM T-REKS TRUST RADAR

Q8IVF2 AHNK2_HUMAN 5795aa 165-x-24 165-x-23 * ** 163-x-31

[720-4666] [774-4617] [289-5529]

Q9N4M4 ANC1_CAEEL 8545aa 915-x-6 903-x-4.27 58-x-4 ** ***

[3000-8491] [4342-8199] [2336-2567]

P08519 APOA_HUMAN 4548aa 1495-x-3 114-x-37 114-x-24 114-x-39 111-x-38

[0-4486] [7-4220] [1501-4125] [18-4523] [17-4282]

P20930 FILA_HUMAN 4061aa 1339-x-3 323-x-11 * 324-x-12 ***

[32-4051] [268-3902] [82-3935]

Q54CU4 COLA_DICDI 11103aa 433-x-17 430-x-17 * ** 424-x-22

[1175-8554] [1257-8691] [301-9409]

Q8R0W0 EPIPL_MOUSE 6548aa 515-x-8 515-x-8 * ** ***

[2000-6548] [2067-6529]

Q9Y6R7 FCGBP_HUMAN 5405aa 1367-x-3 1201-x-3 * 1201-x-5 394-x-13

[1000-5102] [1100-4811] [21-5405] [444-5382]

P05790 FIBH_BOMMO 5263aa 1049-x-5 168-x-30 8-x-19 ** ***

[1-5247] [152-5221] [3362-3495]

Q9UKN1 MUC12_HUMAN 5478aa 1548-x-3 1557-x-2 25-x-8 28-x-151 ***

[74-4719] [446-3569] [2049-2280] [215-5123]

Q8WXI7 MUC16_HUMAN 22152aa 156-x-61 156-x-61 156-x-17 ** 153-x-61

[12038-21555] [12047-21567] [12420-15000] [12046-21559]

Q6PZE0 MUC19_MOUSE 7524aa 652-x-9.6 163-x-36.4 * ** ***

[1071-7372] [1281 -7214]

Q8WZ42 TITIN_HUMAN 34350aa 1082-x-4 28-x-6 10-x-26 ** 395-x-28

[22186-26525] [11428-11596] [11445-11686] [20001-29694]

Analysis of the 12 proteins from the UniProtKB/Swiss-Prot database for which a tandem repeat of length ≥ 4000 aa has been detected by PTRStalker. For each
protein (row) and each algorithm that returned at least a result (column) we report the longest TR found by each algorithm above the threshold of 100 aa. For
each TR we report: the period -x- repeat number and the [interval spanned]. Fail to report is marked with “*”. Note that HHRep and HHRepID are not listed here
because they fail to report multi-repeating units, since they only report pairs of homologous substrings. Entries on the TRUST column marked “**” could not be
completed because of excessive memory required (see Additional file 1). Entries in the RADAR column marked “***” correspond to absence of a TR cluster in the
output, although many interspersed repeats may be found.
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UT-A1 [Mus musculus], PTRStalker attains a notably
longer alignment w.r.t those reported by the three alterna-
tive methods, therefore giving a result more consistent
with the known structure of that protein. On UT-A1
[Homo sapiens], TRUST and HHRepID gives a longer
alignment. RADAR failed to highlight the dimeric
structure.
Chloride channel ClC-0
CLC Channels are a family of membrane proteins whose
major action is to translocate chloride ions across cell
membranes. They have been subject to intense study
since the cloning and identification of this protein in the
species Torpedo marmorata (marbled electric ray) in
1990 [36]. This first identified protein, denoted CLC-0
(UniProtKB locus CICH TORMA, accession number
P21564), is 805 aa long. It is divided into a pore domain
in the region [49-507] and a cytoplasmatic domain in the
region [508-805]. The pore domain has a diadic structure
made of 18 alpha-helices organized in two symmetric
groups of 9 alpha-helices each. The cytopalsmatic
domain contains two CSB subdomains in positions [543-
601] and [719-776]. Our hypothesis is that by analyzing
just the amino acid sequence we can gain insight into the
symmetries present in the structure of the protein (at
least at a high level). We submitted the ClC-0 sequence
to PTRStalker, XSTREAM, T-REKS, HHrep, HHrepID,

TRUST, and RADAR. As shown in Table 6, HHrep iden-
tifies two homologous regions in positions [542-597] and
[718-770] which coincide almost exactly with the CSB
subdomains and two (short) partially overlapping
domains that do not correspond to the global symmetry
of the pore domain. Similarly TRUST reports shorter TR
than those corresponding to known (global) symmetries
of the protein. Instead, PTRStalker discovers a tandem
structure in positions [8-289] [291-575] that covers most
of the pore domain respecting its symmetry, and a tan-
dem structure in positions [517-627] [628-800] that
extends the two CSB subdomains. XSTREAM, T-REKS
and HHrepID could not find any repetitive structure.
RADAR and TRUST do not highlight any of the global
known symmetries of ClC-0.

Analysis of UniprotKB/Swiss-Prot
PTRStalker has been run to analyze the database in order
to report Steiner Tandem Repeats with edit distance
where the level of similarity between the repeated copies
and the motif was greater than or equal to 0.7 i.e. error
level μ = 0.3). The output of PTRStalker has been stored
in a web-accessible database. The website takes as input
the accession number of a sequence and shows a table
containing all the TRs found in such a sequence. For every
TR it displays the start and end position, the length of the

Table 5 Analysis of proteins belonging to the Urea Transporter (UT) family

Protein Tandem repeats found by

ID Acc # Length PTRStalker HHRep HHRepID TRUST RADAR

dvUT ABM28909 337aa [14-165] [11-91] [2-138 ] [11-139] 5-x-44

[177-323] [174-254] [141-286] [140-303] [23-269]

apUT YP_001969475 300aa [17-136] [2-140] [2-138] [21-128] [45-129]

[153-284] [156-288] [156-286] [175-278] [199-277]

mUT-A1 AAM00357 930aa [4-452] [63-337] [65-493] [41-421] 5-x-52

[467-918] [532-800] [533-916] [422-866] [117-775]

hsUT-A1 AAL08485 920aa [4-320] [50-338] [87-490] [102-564] 6-x-24

[403-763] [519-800] [548-906] [565-916] [189-721]

dvUT = [D. vulgaris DP4], apUT =[A. pleuropneumoniae AP76], mUT-A1 = [Mus musculus], and hsUT-A1 = [Homo sapiens]. For each protein (row) and for each
algorithm that returned at least a result (column) we report the longest fuzzy repeated subsequence detected by each algorithm by giving start and end position
of homologous segments. Note that XSTREAM and T-REKS are not listed here because they are unsuitable for detecting long fuzzy dimeric structures.

Table 6 Analysis of the CIC-0 protein belonging to the Chloride Channel family

Protein Tandem repeats found by

ID Acc # Length PTRStalker HHRep TRUST RADAR

CLC-0[CICH_TORMA] P21564 805aa [8-289] [119-220] [82-195] [102-154]

[291-575] [174-260] [196-303] [161-205]

[214-265]

[517-627] [542-597] [447-483] [329-353]

[628-800] [718-770] [484-527] [386-407]

[528-564]

For each algorithm that returned at least a result we report the fuzzy repeated subsequences detected by giving its start and its end position. Note that
XSTREAM, T-REKS, and HHrepID are not listed here because they could not find any repetitive structure.
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motif, the number of repeats, the total length and the con-
sensus string. The output can be filtered by range of values
for several features of the TR (total length, motif length,
number of repetitions).
This analysis provides an indirect evaluation of

PTRStalker with respect to other tools: in [17] T-REKS
and other programs are compared by analyzing an old ver-
sion of the Swiss-Prot database (Release of January 2009),
which contained 356, 232 sequences. Among the four
evaluated tools (T-REKS, Internal Repeats Finder [2],
XSTREAM [16], and TRED [22]), T-REKS is the one that
provided the best results by identifying 33, 780 sequences
as containing TRs. The definition of TR used by T-REKS
is the following: total length of TRs greater or equal to 14
residues (nine residues for homorepeats) and Psim ≥ 0.7
(average level of similarity between copies and consensus).
A direct comparison between PTRStalker and T-REKS
would require the analysis of the same version of the
Swiss-Prot database. Nevertheless, an indirect comparison
can be performed by counting the percentage of sequences
containing TRs (found with a given program) against the
total number of analyzed sequences (we assume that such
percentage is independent from the specific version of the
used database). Let us call PTR such value. T-REKS,
according to the numbers reported above and derived
from [17], obtains PTR = 9.48%, while PTRStalker registers
a value of PTR equal to 19.53% (for PTRStalker, we
counted only the sequences for which a TR not shorter
than 14 residues has been found, independently from the
nature of the TR, i.e. homorepeats or not). Experiments
shown in Figure 2 indicate that for the parameter setting
used (c = 1.5, μ=0.3) the length 14 is above the average
length of the longest TR in shuffled sequences.

Statistical significance
In our algorithm several parameters have to be set, the
most important ones are the error threshold μ, the
slackness parameter z and the metric used (i.e. type of
similarity matrix) that influences the value of E[C].
Since an improper configuration may result in detecting

a distribution of fuzzy TRs (FTRs) indistinguishable
from the distribution of FTRs one could derive from a
set of random sequences, we need to perform a statisti-
cal significance test to validate the configuration of para-
meters. In particular, we concentrate on the distribution
of the longest FTRs found in a population of biological
strings (sampled from UniprotKB/SwissProt), w.r.t. a
control set of random strings, with the same length and
aa count composition.
The distribution of the longest FTR in a set of random

sequences may in principle be modeled by an Extremal
Value Distribution (usually Gumbel-type) via a parameter
fitting phase that relies on extensive experimentation.
This approach however relies on several assumptions and
approximations requiring experimental verification on
the actual data. In order to reduce the assumptions
needed we prefer to use a non-parametric test that does
not assume that the distribution under investigation has
some specific property, thus resulting in more robust
conclusions. We apply (with some modifications, and
simplifications) a methodology described in [37,38] that,
in turns is based on the Wilcoxon signed rank test of sig-
nificance [39].
The Wilcoxon signed rank test allows to accept/reject

the hypothesis that the distribution of differences among
two series of paired scalar observations has a zero mean
(null hypothesis). Being a non-parametric test, we can
apply it without the need of strong hypothesis on the
shape of the distribution under testing. The rational
behind the test is that under the null hypothesis, the
longest of the two paired longest FTR measurements is
equally likely to be drawn from either sequence, thus the
mean of the distribution of the differences is close to
zero. In other words, if the longest FTR found by
PTRStalker in biological sequences is not affected by a
random shuffling of the input sequence, than we expect
that the distribution of the difference of measurements
(of the length of the longest FTR) has a zero mean. On
the other hand, a mean value far from zero implies that
the distributions from which the two sequences of scalar

Figure 2 Average length of the longest TR found in shuffled sequences when using edit distance.
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values are drawn are significantly different. A p-values for
the Wilcoxon signed rank test below the threshold of p =
0.05 allows us to reject the null hypothesis and conclude
that the longest FTR found in the biological sequences
with a particular parameter setting are statistically signifi-
cant. We report in Table 7 the p-values of the one-tailed
variant of the test.
We determine the significance of the fuzzy tandem

repeats found using PTRstalker with the specific para-
meter setting (μ = 0.3, c = 1.5, z = 1, BLOSUM50).
The test is organized as follows. We subdivide the Uni-

protKB/SwissProt sequences in classes of length and we
select the classes corresponding to lengths l = 400, 500,
600, 700, 800, 900, 1000. We test each length class sepa-
rately. In each class, except class 900 and 1000, we ran-
domly select 100 sequences that are shuffled to produce
the control data set. In class 900 we select 81 sequences
and in class 1000, 23 sequences, since these are all the
sequences in those length class present in the database.
The pairs of sequences (original and shuffled) are pro-
cessed by PTRStalker and the length of the longest FTR
found in both cases is returned as a matched pair to be
fed to the Wilcoxon signed rank test. Since PTRStalker
has a lower limit of 6 aa for the returned FTR, when one
of the two runs fails to report a FTR we set it to the value
6 by default. When both runs fail to report a FTR we
consider it a tie and is thus excluded in the testing, as
required by the Wilcoxon procedure.
As we can see from the results reported in Table 7,

the test gives p-values always below the 0.05 threshold
for each length class considered.

Tuning of parameters
The most important parameters that regulate the opera-
tion of PTRStalker are μ, c, and z (note that the latter
makes sense only when the distance definition is BLO-
SUM-based). A set of experiments has been carried out
to study the effects of such parameters in finding TRs.
We built a set of sequences belonging to the following
classes of length: 400, 500, 600, 700, 800. Each class

contains 100 sequences and each sequence has been
generated by shuffling a real sequence of UniprotKB/
SwissProt with same length (this ensures that the result-
ing sequences have the same properties of biological
sequences in terms of aa count).
Figure 2 shows the average length of the longest TR

found in every sequence of the set, when using edit dis-
tance. As expected, for a given value of c, the average
length of the longest TR depends on the value of μ when
the value of c increases, the length of the TRs increases
as well. Varying the value of c has a similar effect, this is
particularly evident for the larger values of μ.
Similarly, Figure 3 shows the average length of the

longest TR found in every sequence, when using a
metric based on BLOSUM 50. More in detail, the results
have been obtained keeping fixed the value of μ (0.3) to
study the effects of z with three different values of c.
The results show that, when using the BLOSUM-based
metric, the length of the longest TR increases slightly
with respect to the case when edit distance is used
(curves for μ = 0.3 in Figure 2). The effects of both c
and z are negligible when using the BLOSUM-based
metric on the considered random sequences.

Conclusions and future work
Discovering fuzzy tandem repeating units in amino acid
sequences gives precious hints as to the internal protein
organization and symmetries. However due to high level
of protein sequence divergence this task is considered
challenging even for relatively short sequences. In this
paper we presented a new algorithm, PTRStalker, oppor-
tunely tuned for detecting amino acid tandem repeats
within protein sequences. We proved that PTRStalker
pushes forward the state of the art. Indeed, feeding
PTRStalker with sequences from the UniProtKB/Swiss-
Prot database did allow us to detect novel repetitive
structures not captured by other state-of-the-art tools. In
particular, we could find a notable long fuzzy TR in
Human Titin that several competing methods missed.
For Chlorine channel protein ClC-0, we showed that
PTRStalker can detect general symmetries not detected
by competing methods.
We believe that a tool such as PTRStalker can be used

to extract valuable structural hints from protein
sequences for which no tertiary structure (determined
via X-ray or NMR) is available.
Future work will aim at comparing the relative power

of different amino acid metric spaces within the
PTRStalker framework. In particular we are interested
in those based on PAM matrices [8] and those based on
the vector space mapping approach [9]. Moreover, we
will study the correlations between structural classifica-
tions of protein families (e.g. those in SCOP and

Table 7 P-values for the Wilcoxon signed rank
significance test (one tailed test)

Length Class P-value (1-tail)

300 1.5967199936708E-3

400 2.0342486747627283E-2

500 2.4673807804867205E-4

600 6.36671915517767E-7

700 1.8930737304578085E-5

800 1.8821140025488957E-5

900 7.568768556122764E-6

1000 5.4931640625E-4
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CATH) and the fuzzy tandem repeats found in primary
sequences.

Additional material

Additional file 1: Ab initio detection of fuzzy amino acid tandem
repeats in protein sequences - supplementary information -.
Description of the parameters and settings used in testing the
competing sw for TR detection.
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