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Abstract

Background: The advent of high-throughput experimentation in biochemistry has led to the generation of vast
amounts of chemical data, necessitating the development of novel analysis, characterization, and cataloguing
techniques and tools. Recently, a movement to publically release such data has advanced biochemical structure-
activity relationship research, while providing new challenges, the biggest being the curation, annotation, and
classification of this information to facilitate useful biochemical pattern analysis. Unfortunately, the human resources
currently employed by the organizations supporting these efforts (e.g. ChEBI) are expanding linearly, while new
useful scientific information is being released in a seemingly exponential fashion. Compounding this, currently
existing chemical classification and annotation systems are not amenable to automated classification, formal and
transparent chemical class definition axiomatization, facile class redefinition, or novel class integration, thus further
limiting chemical ontology growth by necessitating human involvement in curation. Clearly, there is a need for the
automation of this process, especially for novel chemical entities of biological interest.

Results: To address this, we present a formal framework based on Semantic Web technologies for the automatic
design of chemical ontology which can be used for automated classification of novel entities. We demonstrate the
automatic self-assembly of a structure-based chemical ontology based on 60 MeSH and 40 ChEBI chemical classes.
This ontology is then used to classify 200 compounds with an accuracy of 92.7%. We extend these structure-based
classes with molecular feature information and demonstrate the utility of our framework for classification of
functionally relevant chemicals. Finally, we discuss an iterative approach that we envision for future biochemical
ontology development.

Conclusions: We conclude that the proposed methodology can ease the burden of chemical data annotators and
dramatically increase their productivity. We anticipate that the use of formal logic in our proposed framework will
make chemical classification criteria more transparent to humans and machines alike and will thus facilitate
predictive and integrative bioactivity model development.

Background
Over the hundreds of years of biochemical research,
humanity has encountered myriads of chemical entities
with countless combinations of functional groups that
imparted upon their bearers distinct reactivities and
properties. According to the structure-activity relation-
ship (SAR) principle, grouping these entities into struc-
ture- and property-based classes within a larger
chemical ontology (formal logical specification of a che-
mical hierarchy conceptualization) can enable the reca-
pitulation of or improvements in the prediction of their

biological functionality and chemical reactivity patterns,
thus providing indispensable assistance in understanding
the molecular nature of metabolism, toxicity, and bioac-
tivity [1,2]. In addition to this, the assignment of indivi-
dual chemical entities to a given class within a chemical
ontology or hierarchy may facilitate the inference of the
potential anticipated roles and properties of these enti-
ties. This capacity of chemical ontologies may help sup-
port the development of the rising systems sciences,
such as chemogenomics and systems chemistry [3].
Despite the numerous efforts to develop automated

chemical classification and ontology construction
approaches (discussed below), this process has so far
practically remained firmly within the hands of human
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curators, as exemplified by perhaps the largest chemical
ontology constructed to date - the Chemical Entities of
Biological Interest (ChEBI) database and ontology [4].
As more chemical data becomes readily available from
large-scale experimentation, ChEBI and numerous simi-
lar repositories of biological and chemical information
(e.g. [5-7]) are increasingly coming under strain due to
lack of human curators, the overwhelming wealth and
diversity of the new chemical information, and the
boundlessness of the chemical space. Clearly, a means
to automate and facilitate these classification efforts is
urgently needed if we desire to understand, expose, and
integrate the entirety of available chemical information.
Manual chemical classification efforts frequently

involve the tedious work of multiple human experts
who carefully peruse the relevant chemical literature to
gain competence in assigning chemical entities to a
range of classes. Although the reliance of biochemical
activity-based classification efforts on the predictions or
informed estimates of human experts has been largely
relegated to the informal or speculative domain of scien-
tific communications thanks to the development of
numerous quantitative structure-activity relationship
(QSAR) elucidation approaches [8], chemical hierarchy
construction is still very much a human-dominated
domain. Chemical hierarchies in common use, such as
ChEBI and the Medical Subject Headings (MeSH)
organic chemistry hierarchy [9], are structure-based but
often have the capacity to incorporate chemical classes
that are based on functional chemical attributes, such as
those bearing a certain pharmaceutical activity (e.g.
ChEBI antibiotics). Although structure- and function-
based classification schemes involve somewhat different
approaches for construction, the basic accepted SAR
dogma is that chemical structure and chemical function
are inseparably linked, as noted earlier. Therefore, struc-
ture-based classification efforts could be useful in initiat-
ing the construction of predictive models of small
molecule bioactivity.
The correlation and overlap between chemical topol-

ogy-based and biological function-based chemical hier-
archies is expected since much of biological activity is
enacted through interactions and transformations that
are specific to a particular set of structural features of
small molecules. For instance, most enzymes operate on
a very limited set of chemical structures: carbonyl
reductases, operate on carbonyl and alcohol functional
groups while bacterial transpeptidases bind to and oper-
ate upon structures that resemble the peptide bond,
leading to the potency of beta lactam-based drugs in the
inhibition of their operation. While there may be more
than one 2D chemical structure that results in an inter-
action with a given enzyme (due to its 3D configura-
tion), we claim that there is a finite set of 2D chemical

skeletons that result in a bioactive interaction, and that
given a sufficiently large dataset of compounds known
to be bioactive, it is possible to characterize a class of
functionally active compounds as a collection of classes
with well-defined, consistent structural features. Con-
cerns for the predictive capacity of such classifications,
like the distinction between stereoisomers and a range
of chemical properties such as molecular volume that
may result in disqualifying an otherwise well-suited 2D
skeleton from a bioactivity-inducing interaction can be
laid to rest by explicitly incorporating these features into
class definition. In this work, we demonstrate that given
the logical expressivity afforded by the Web Ontology
Language (OWL) [10], we can automatically create for-
mal logical definitions for a range of topology and prop-
erty-based chemical classes which can then self-
assemble into a chemical ontology.
While manual literature searching and experimental

data analysis is often involved in the classification of
chemical entities into functional classes, structure-based
hierarchy construction is much more well-defined and
easily amenable to automation. In constructing struc-
ture-based chemical classes, a modern curator would
familiarize themselves with any existing informal class
definitions, as well as any known chemical class mem-
bers. Based on this expertise, the curator would then
define a class, create a short textual or pictorial descrip-
tion of this class, and add child/parent relationships to
the other classes, as well as including several representa-
tive entities. In essence, this approach requires the
resulting ontology to consist of a formalisation of expert
domain knowledge in the area, while providing no
means for this knowledge to be captured in a machine-
understandable format. The result of this is a lack of
facile re-use of the work of human curators in classifica-
tion and annotation of novel entities and establishing
child/parent relationships for newly added classes when
the ontology grows or is modified. Unfortunately, the
majority of chemical ontologies, such as ChEBI database
and ontology, MeSH chemical classifications, and
LIPIDMAPS [11], suffer from this, resulting in artificial
discipline-specific barriers to research, since none of
these can be easily or automatically integrated. As the
chemical ontologies grow in size and the range of rela-
tionships covered, manual ontology development
becomes increasingly difficult due to the multiplying
number of consistency checks that have to be performed
for each new class and relationship added.
To date, automated chemical classification has mostly

belonged to the domain of QSAR studies which involve
the characterization of a training set of chemical entities
with respect to a particular set of computable or mea-
surable molecular features, as well as the property of
interest, such as biochemical activity or biomedical
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potency [8]. The features that are used for training are
often selected such that the cost of their acquisition is
significantly lower than that of the modelled property.
This feature set is then used to construct a predictive
model using one of many available mathematical proce-
dures, including the creation of decision trees [12], mul-
tidimensional parametric fits [13], or three-dimensional
pharmacophore models [14], to name a few. The resul-
tant models are then verified for their capacity to ade-
quately classify molecules into a range of classes of
interest using a test set of compounds not used in
model creation. While the resultant models may often
achieve a great degree of accuracy, the vast majority of
such models are not readily amenable to human under-
standing or automated incorporation into a chemical
hierarchy. In order to fully appreciate the structural and
physicochemical molecular features of relevance to a
particular functional or structural classification, post-
processing of the resultant mathematical models is often
required. Although we have recently demonstrated the
conversion of decision tree-based QSAR models into
formally axiomatized OWL chemical ontologies [15], the
problem of integration of disparate, problem-specific
functional chemical classifications into a single chemical
ontology is still largely unsolved. Compounding this
problem is the fact that chemical class definitions
derived using statistical machine learning approaches
are often inherently probabilistic - that is, no class
membership requirement is formally stated as a neces-
sary or sufficient condition. In order to derive a truly
self-organizing chemical ontology, a deterministic classi-
fication in terms of well-defined features and their com-
binations is necessary.
While function-based chemical hierarchy construction

has not been adequately addressed, methods to generate
structure-based chemical ontologies have been studied
in the past to some extent. For example in [16], a very
early attempt at formalizing chemical classes and their
relationships for chemical inference has been carried
out, but never practically implemented for any large-
scale classification exercise. In [17], a chemical ontology
has been manually constructed with classes formally
defined as containing molecules that possessed a parti-
cular functional group or a set of functional groups.
While this work has been successfully applied for practi-
cal chemical functionality analysis through chemical
semantic similarity identification enrichment, the basic
ontology construction still followed a manual process
and was limited to a set of pre-defined functional
groups, insufficient for characterizing a number of more
complex chemical classes. Furthermore, the lack of a
formal, accessible framework for chemical classification
(in the form of OWL) has resulted in limited logical
chemical class axiom expressivity, therefore limiting the

applicability of the approach for characterizing some
chemical classes (e.g. those requiring cardinality restric-
tions, such as dienes). Finally, the work of [18] has
resulted in a structure-based chemical ontology that
employed combinations of chemical substructures of
increasing complexity to produce increasingly specia-
lized chemical classes, with the aim of improving the
structural analysis and pattern identification in sets of
biologically active compounds.
Unfortunately, a framework or approach for fully

automated construction of chemical ontologies has
never been achieved. In this work, we propose a radi-
cally novel approach for structure-based chemical classi-
fication automation by abstracting and automating the
majority of chemical curation to construct machine- and
human-understandable, formally axiomatized chemical
class definitions in OWL. Further, we use these automa-
tically generated chemical classes to enable machine rea-
soning over the ontology and demonstrate ontology self-
organization, as well as classification of individual che-
mical entities represented using the Chemical Entity
Semantic Specification formalism [19]. Finally, we
demonstrate that certain functionally-relevant classes
can be defined unambiguously using our approach, and
integrated into the overall chemical ontology seamlessly.

Results
We have reduced the activity of a human curator to sev-
eral steps, namely a) the identification of high-confi-
dence chemical class members, b) identification of
consensus chemical patterns that have to be present in
a given compound to qualify for membership in a given
class, c) creation of formal chemical class definition
axioms, and d) chemical classification and class relation-
ship assignments based on the acquired expertise (Fig-
ure 1). The ontology that we aim to generate with the
framework we have developed is primarily based on, but
not limited to, chemical structure. We operate on the
premise that chemical class sub-specialization is enabled
through chemical structure extension. We claim that for
each class, a collection of functional groups exist that
are necessary for a molecule to be considered a member
of this class. This forms the basis for the self-organiza-
tion of our automatically generated chemical ontologies.

Automated Derivation of Formal Chemical Class
Definitions
Given a set of chemical entities known to be members
of a given chemical class, our framework is capable of
abstracting and generalizing a set of consensus molecu-
lar sub-graphs and features that are present in all repre-
sentative members of this class (see Methods). In
identifying such features, we consider not only the che-
mical graph that is formed by the overlap of several
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smallest class representatives, but also the chemical sub-
graphs formed by the fragmentation of class members,
and atomic features, such as ring membership, aromati-
city, and connectivity. Therefore, we generate a set of
both, canonicalized SMILES [20] and canonicalized
SMARTS [21] patterns (see Methods) that are present
in a given molecule. Canonicalization of SMILES and
SMARTS patterns is important because the fragmenta-
tion of chemical structures and their generalized forms
often yields chemical patterns that are equivalent, but

can be written down as valid SMILES or SMARTS in
multiple ways. Canonicalization of consensus patterns
ensures that each pattern has exactly one definition,
thus allowing for facile integration and comparison of
consensus fingerprints from multiple class definition
generation procedures.
The defining features, or chemical structural motifs,

that are present in every member of a given class are
deemed to be necessary for class membership and are
termed consensus chemical features and their collection

Figure 1 An abstract view of the curation effort for structure-based chemical hierarchies.
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may be viewed to constitute a consensus chemical fin-
gerprint for a given chemical class. The consensus che-
mical features that contain but are not contained in
other consensus chemical features are termed by us
principal characteristic substructures. These substruc-
tures can be used directly by curators for quick valida-
tion of the automatically generated class definition. For
instance, for the ChEBI Peptide class (CHEBI:16670),
one would expect the principal characteristic substruc-
ture to constitute the amino acid backbone (Figure 2),
which is indeed the case.
In the process of determining principal characteristic

substructures, we have identified certain classes for
which our algorithm could not converge on an expected
substructure set. Surprisingly, this was observed for car-
boxylic acid esters, where only the pattern associated
with a carboxylic acid, but without extension to create
an ester was found. Upon closer investigation, we have
discovered that these difficulties in convergence were
exclusively due to errors in the manual curation of
input data. In the case of carboxylic acid esters, the fail-
ure of convergence was due to the inclusion of a mole-
cule containing RC(= O)ONR pattern instead of the RC
(= O)OCR pattern in the training set. Technically, car-
boxylic acid esters conform to a pattern RC(= O)OR’,
where both, R and R’ are aryls or alkyls [22], meaning

that the inclusion of the nitrogen-linked ester derivative
was erroneous. This was a very fortunate development,
since this identified one possible method to verify the
consistency and correctness of human curators.
Our second premise is that for one class to be consid-

ered a child class of another chemical class, it has to
contain all the consensus structural features of the par-
ent class, and some additional features specific to it only
(most likely, but not necessarily, principal characteristic
substructures). Therefore, while the principal character-
istic substructures will be useful in establishing the
unique structural identity of a given class, the rest of
consensus structural features are useful in establishing
the class hierarchy (Figure 3). This basic premise applies
to both, simple consensus structural fingerprints, and
the formal logical definitions of chemical classes and
forms the foundation of the self-organizing nature of
the chemical ontology generated by our framework.
The next step in self-organizing chemical ontology

generation is the formalization of chemical class defini-
tions based on the consensus structural fingerprints. For
this, we generate and maintain a single OWL ontology
that is constantly updated with the unique consensus
chemical substructures that are identified as a result of
class analysis, using previously reported principles of
unique, canonical, and invariable URIs for each

Figure 2 Some of the consensus structural features identified for the class of peptides using the proposed methodology. Note that in
the two consensus fragments that are not contained in other consensus fragments, the basic peptide backbone is conserved, even for proline, a
highly exotic amino acid, since ‘N’ in SMARTS does not necessarily mean an NH3 in practice.
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functional group class [19]. The functional groups
defined in this ontology are then used in converting the
consensus structural fingerprints. For instance, a class of
‘Organic Alcohols’ is found to contain the consensus
structural features expressed in SMARTS notation as
[#6] (any carbon atom, aromatic or not), [#8] (any oxy-
gen atom), [#6][#8] (carbon and oxygen in a single
bond), and [#6][OX2H] (carbon connected to an OH
group). This can be translated into the following equiva-
lent class statement in OWL using the Manchester DL
query syntax [23], which states that an instance of the
class of organic alcohols is exactly defined by being an
instance of a molecular entity and having at least one
(keyword: some) instance of each of the four functional
groups:
’Organic Alcohols’
EquivalentTo
’Molecular entity’
and ‘has part’ some ‘[#6]’
and ‘has part’ some ‘[#8]’
and ‘has part’ some ‘[#6][#8]’
and ‘has part’ some ‘[#6][OX2H]’
Clearly, this specification is human-readable, and can

be further enriched by adding annotations on the func-
tional groups involved, including graphical representa-
tions or textual descriptions for the various functional
groups, in order to facilitate chemical class definition
understanding.
Further, if one wishes to handle cases where more

expressive logical statements are necessary, this is always

an option. Consider, for example, the class of Glycols
(also sometimes referred to as Diols), which require the
presence of a minimum of two alcohol functional groups
in a given molecule. Please note that we state that diols
contain at least two alcohol functional groups, since in
our approach, triols should be identified as simply a sub-
class of diols. The cardinality restriction to at least two
alcohol functional groups allows for this. Thus, diols can
be defined as follows. Please also note that cardinality is
not currently screened for by the framework proposed
here and all the cardinality restrictions in our automati-
cally generated ontologies were added manually.
Diols
EquivalentTo
’Molecular entity’
and ‘has part’ some ‘[#6]’
and ‘has part’ some ‘[#8]’
and ‘has part’ some ‘[#6][#8]’
and ‘has part’ min 2 ‘[#6][OX2H]’
Attributes and molecular descriptors can also be

handled with such definitions. For instance, we may find
out that a given enzyme catalyzes the oxidation of
organic alcohols that are no heavier than 500 Daltons.
This mixing of chemical sub-graphs and physicochem-
ical attributes is also possible, using the principles and
concepts defined in the CHEMINF ontology [24].
’Reactive Diols’
EquivalentTo
’Molecular entity’
and ‘has part’ some ‘[#6]’
and ‘has part’ some ‘[#8]’
and ‘has part’ some ‘[#6][#8]’
and ‘has part’ min 2 ‘[#6][OX2H]’
and ‘has attribute’ some (’molecular weight’ and ‘has

value’ [= < 500] and ‘has unit some ‘Dalton’)
Using the dataset of diols annotated with their com-

puted molecular weight with the concepts from the CHE-
MINF ontology, we were able to correctly identify that all
14 diols in the ChEBI training set for this class were
indeed ‘Reactive Diols’ as per the logical definition above.

Self-Organizing Chemical Ontology
In order to test the integrative capacity and accuracy of
our chemical classification framework, we have manually
generated a dataset containing 40 ChEBI and 60 MeSH
chemical classes, for a total of 100 classes with at least 7
and at most 20 representatives in each chemical class.
To demonstrate the self-organizing chemical ontology
creation from a specific source, we have created a
stand-alone self-organizing ontology for each, the ChEBI
and the MeSH data sets, containing the formal class
definitions derived from consensus chemical fingerprints
of each class (Figure 4). Upon application of the Pellet
reasoner to classify these ontologies, we observed self-

Figure 3 Establishing a chemical class hierarchy through direct
observation of consensus structural fingerprints is similar to
logical hierarchy construction. It is possible to infer parent/child
relationships based solely on the consensus features of a class.
Formal logic affords much more powerful expressions.
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organization of the formally axiomatized chemical
classes into chemical ontologies with a hierarchy (Fig-
ures 5 and 6). Each child-parent inference was screened
by a curator to identify that the automatically generated
ontologies were consistent for both datasets. In this
screening, we have considered the structural viewpoint -
that is, it was permissible for ethylamines, for example,
to be classified as the child class of methylamines, since
an ethylamine constitutes a structural extension of a
methylamine, and because the training sets obtained for
these classes (from MeSH in this case) included among
methylamines chemical entities that were derivatized on
the carbon atom that should have otherwise been term-
inal (a CH3 carbon). While we do not make any claims
with respect to the validity of this approach, we note
that this sub-classification inference in our work mirrors
the manually assigned sub-classification in the MeSH
hierarchy of organic chemicals.
Because both ontologies were built using one central

functional group ontology and the CHEMINF ontology
for chemical descriptors, we were then able to trivially
import the ChEBI ontology into the MeSH ontology
within Protégé 4.1 [25] by specifying direct ChEBI ontol-
ogy import within the MeSH ontology, and to apply the
Pellet machine reasoner [26] to the resultant ontology
to reconstitute a unified chemical ontology with 100
chemical classes (Figure 7). Thus, for the first time, we
were able to automatically and trivially integrate and re-
use the manual curation efforts from multiple data
sources in order to construct a single seamless chemical
ontology. Manual analysis of the class relationship

inferences was carried out to ensure that the inferred
chemical hierarchy was consistent and coherent from
the viewpoint of chemical structure.

Chemical Classification Accuracy
For a demonstration of chemical classification, we have
randomly selected a set of 200 chemical entities and
employed the integrated ontology in order to classify
each individual compound. Because each chemical
entity could be classified into multiple classes, the
number of class membership inferences (452) exceeded
the number of tested chemical entities. Within this
dataset, 91% of chemical entities received inferences
that exactly matched their annotation within the test
set and additional 8.5% were matched to classes con-
sistent with their test set-assigned class. For example,
if a compound was a member of the alcohols in the
test set, but actually contained two OH groups, this
compound was correctly identified as belonging to
diols or glycols, without the explicit specification of its
membership among the alcohols, even though this
membership is implied.
Overall, 92.7% of the entity inferences were correct

(Table 1). Most of the observed errors were in the
classes that necessitated the definition of negations. For
example, a carboxylic acid is a structural derivative of
an alcohol, but is strictly speaking not one. From a
structural perspective, classification of a carboxylic acid
as an alcohol is not incorrect. However, from a classical
organic chemistry viewpoint, this is an incorrect classifi-
cation, and has been noted as such in this work. In

Figure 4 An example of a ‘flat’ chemical ontology with chemical class definitions, within the Protégé 4.1 ontology editor. No
classification has been carried out.
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addition to this, we have observed that identifying incor-
rect inferences in some cases led to facile identification
of adjustment of the training sets to automatically gen-
erate a more accurate chemical entity description or

suggested manual refinements to definitions (e.g. glycols,
diols, and alkadienes with cardinality restrictions). An
additional table shows the classification results in more
detail (see Additional file 1).

Figure 5 MeSH chemical class hierarchy automatically inferred using the Pellet reasoner. Please note that all ‘is-a’ relationships except
those to ‘molecularentity’ are inferred automatically. Please note that all classes deal with organic chemicals.
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The entire classification process for 200 compounds
took 34 minutes and 10 seconds, running on a Core i7-
870 machine with 6GB of RAM, executed serially, while
the computational time to classify non-populated ontol-
ogies was negligible.

Seamless Integration of Novel Chemical Classes: Enzyme
Substrates
In order to demonstrate the flexibility and facile amen-
ability of our ontology to the incorporation of novel

chemical classes, and especially chemical classes of bio-
logical relevance, we have created a stand-alone class of
chemical entities that are substrates to yeast alcohol
dehydrogenase, using information in the BRENDA data-
base [27]. Because this data was experimentally derived
and the reactions indicated were confirmed to occur in
nature, no human curation (beyond eliminating redun-
dant entries) was necessary for the training set com-
posed of 23 unique chemical entities. Upon the
repetition of the exercise described above with this

Figure 6 ChEBI chemical class hierarchy automatically inferred using the Pellet reasoner. Please note that all ‘is-a’ relationships except
those to ‘molecularentity’ are inferred automatically. Please note that all classes deal with organic chemicals.
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chemical class, we have, unsurprisingly, discovered that
the resultant class of yeast alcohol dehydrogenase sub-
strates was a subclass of alcohols, with the added
requirement of possessing an oxygen atom connected to
one hydrogen atom and a non-aromatic carbon atom.

Discussion
Here, we have presented a radically streamlined frame-
work and approach to chemical ontology construction
based on explicit formal semantic specification of che-
mical classes and rooted in chemical graph analysis. By
eliminating the manual assertion of ancestry relation-
ships between the various chemical classes and instead
emphasizing the adequate curation of the limited (as
small as five entities) training set of the starting chemi-
cal class representatives and the automatically generated
logical class definitions, we have greatly simplified the

work of human curators, thus potentially improving
their productivity and making the annotation and classi-
fication of the rapidly multiplying chemical information
more manageable.
One may argue that curators may also easily define

chemical patterns in order to define a given chemical
class instead of starting with identifying a diverse set of
compounds that would then be used to automatically
derive the relevant patterns. While this is indeed true,
automated consensus chemical structure identification
has numerous benefits, including the exhaustive identifi-
cation of primitive structural features that are useful in
constructing class hierarchies, as well as in the inher-
ently objective identification of the structural patterns of
interest. Manual supplementation of class definitions is
always possible, as we have shown with class customiza-
tion, and is sometimes required, in cases where our

Figure 7 The chemical class hierarchy inferred for an ontology that has resulted from the automated integration of the MeSH and
ChEBI ontologies. Please note that all classes deal with organic chemicals.
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Table 1 Summary statistics for the results of automated classification of chemical entities in the test set

Tested Category Total Inferences Direct Inferences Correct Inferences

Acetamides 13 4 (30.8) 13 (100.0)

Acetic Anhydrides 11 5 (45.5) 9 (81.8)

Acrylamides 20 4 (20.0) 19 (95.0)

Alcohols 9 4 (44.4) 9 (100.0)

Aldehydes 6 2 (33.3) 6 (100.0)

Alkadienes 8 5 (62.5) 8 (100.0)

Amides 2 1 (50.0) 2 (100.0)

Amines 9 0 (0.0) 9 (100.0)

Amino Alcohols 7 3 (42.9) 7 (100.0)

Aminopyridines 12 3 (25.0) 10 (83.3)

Anhydrides 5 3 (60.0) 5 (100.0)

Aza Compounds 3 1 (33.3) 3 (100.0)

Benzaldehydes 11 4 (36.4) 11 (100.0)

Benzyl Alcohols 10 4 (40.0) 10 (100.0)

Benzylamines 10 4 (40.0) 10 (100.0)

Boron Compounds 8 5 (62.5) 7 (87.5)

Butylamines 11 5 (45.5) 11 (100.0)

Carbodiimides 2 1 (50.0) 2 (100.0)

Carboxylic Acids 9 0 (0.0) 4 (44.4)

Chlorohydrins 11 5 (45.5) 10 (90.9)

Cyanates 4 3 (75.0) 4 (100.0)

Cyclohexylamines 6 3 (50.0) 6 (100.0)

Diazonium Compounds 15 5 (33.3) 10 (66.7)

Ethers 6 5 (83.3) 6 (100.0)

Ethylamines 4 2 (50.0) 4 (100.0)

Fatty Alcohols 2 2 (100.0) 2 (100.0)

Formamides 7 5 (71.4) 7 (100.0)

Glycols 6 2 (33.3) 3 (50.0)

Guanidines 15 5 (33.3) 15 (100.0)

Hydrazines 11 3 (27.3) 11 (100.0)

Hydroxylamines 14 5 (35.7) 13 (92.9)

Imides 21 5 (23.8) 21 (100.0)

Imines 7 2 (28.6) 7 (100.0)

Isocyanates 10 5 (50.0) 7 (70.0)

Ketones 6 5 (83.3) 6 (100.0)

Lactams 17 4 (23.5) 17 (100.0)

Lactones 10 5 (50.0) 10 (100.0)

Methylamines 7 3 (42.9) 7 (100.0)

Nitrates 6 2 (33.3) 6 (100.0)

Nitriles 8 5 (62.5) 8 (100.0)

Nitrites 5 5 (100.0) 5 (100.0)

Nitro Compounds 22 5 (22.7) 17 (77.3)

Nitroso Compounds 13 4 (30.8) 11 (84.6)

Organic Compounds 2 1 (50.0) 2 (100.0)

Organophosphorus Compounds 18 5 (27.8) 16 (88.9)

Organoselenium Compounds 6 3 (50.0) 6 (100.0)

Organosilicon Compounds 6 5 (83.3) 6 (100.0)
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algorithms cannot identify a consensus pattern despite
the best efforts of the curators to include only valid
structures in the training sets.
For example, classes that include much variability

within the key structural elements may not be ade-
quately characterized by our algorithm as it stands cur-
rently. For example, the IUPAC-recommended
interpretation of the term ‘ester’ includes compounds
that conform to C(= O)OC (i.e. carboxylic esters) and C
(= S)OC patterns, among others [22]. If entities repre-
senting both of these patterns were grouped into a sin-
gle training set, a single descriptive pattern would not
be identified with our current algorithm, since there is
variation on the central atom. In this case, a human
curator’s intervention may be necessary to include a pat-
tern such as C(=[O,S])OC that describes both cases.
Although this is a difficult problem to address, it is

not unavoidable with future improvements to the con-
sensus chemical pattern identification algorithms. For
example, had we not considered the atomic ring mem-
bership property in the generation of our consensus
chemical patterns, we would not have been able to ade-
quately model the class of cyclic organic compounds.
One approach around this would be to manually define
a feature [#6;R] and screen for this feature to identify
whether it is a consensus chemical feature for a given
class. Another, much more labour-intensive approach
would be to identify the cyclic organic compound sub-
classes and explicitly enumerate them in the definition
of this class, as follows.
’Cyclic Organic Compounds’
EquivalentTo ‘ Molecular Entity’ and ‘has part’ some

Cycle
’Three-Membered Cycle’ subClassOf Cycle
’Five-Membered Cycle’ subClassOf Cycle
Fortunately, our algorithm currently identifies and

screens for the presence of a number of ring features
and abstracts chemical structures so as to include con-
siderations for atoms’ hydrogenation state (such as OH
versus O, CH3 versus other forms of carbon atom), ring
membership, aromaticity, general type (such as [#6] is
any carbon atom), as well as combinations of these attri-
butes. Thus, the feature [#6;R] is automatically identified
by our algorithm by examining the chemical entities in

the training set. In addition to this, we screen for 396
pre-defined patterns designed to capture the nuanced
chemical class definitions, such as the general ester fea-
ture discussed above, and we screen each class with all
the previously-generated consensus patterns in the other
class definitions. This allows us to handle the definition
of many more classes than just those with automatically
generated consensus substructures, including, for exam-
ple, bicyclic molecules, which are composed of two
fused rings and are characterized, among other automa-
tically identified features, with the manually pre-defined
[R2] SMARTS pattern, which defines any atom con-
tained within two rings simultaneously.
While some cases can be handled automatically in

principle, for some classes of compounds such as Nano-
tubes (CHEBI:50796) or Polycyclic Cages
(CHEBI:33640), manual curation is unavoidable, as we
do not yet have the capacity to adequately characterize
the requisite consensus chemical feature information in
terms of SMILES, SMARTS, or properties, but only
some very complex logical expressions or expressions in
some molecular query languages. This may potentially
be handled automatically in the future by screening for
the requisite higher-order chemical graph features and
patterns using seamlessly integrated semantic web ser-
vices with the SADI framework [28-30], but is not
handled by us at present.
Another aspect that we would like to address in the

future is the automated identification of consensus che-
mical feature values in order to investigate the handling
of more biologically relevant chemical classes, as
demonstrated for the ‘Reactive Diols’ class. While we
have already demonstrated the learning and formal logi-
cal encoding of biological activity and toxicity decision
trees, we have not yet connected that effort to struc-
ture-based classification. In addition to this, classes of
biologically active compounds are rarely as well defined
as they are for the alcohol dehydrogenase substrates.
For instance, structurally distinct compounds may some-
times engage in a number of productive binding or
interaction modes with the same enzyme. While such
annotation is not our primary focus, we claim that each
individual binding mode should be amenable to topol-
ogy-based and consensus feature-based logical

Table 1 Summary statistics for the results of automated classification of chemical entities in the test set (Continued)

Organothiophosphorus Compounds 8 5 (62.5) 8 (100.0)

Peroxides 5 5 (100.0) 5 (100.0)

Phenols 8 5 (62.5) 8 (100.0)

Total 452 182 (40.3) 419 (92.7)

The direct inferences are class inferences that are identical to the annotations in the test set. Correct inference counts include the direct inferences and
inferences that were deemed correct by a curator. Please note that a lack of direct inferences does not reflect an error - merely the presence of another class
whose definition was a closer match for a given molecule than its original class. More than one inference was possible for a given molecule. Percentages of total
inferences for each class are given in brackets for each category.
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characterization as a sub-class of the broader enzyme
substrate class. Failing that, as we have demonstrated,
the existing chemical graph-based class definitions can
always be easily augmented with various chemical prop-
erty and geometric characterization restrictions
manually.
Unfortunately, certain aspects of chemical class defini-

tion formulation are difficult to address in principle. Of
particular concern is the negation of chemical state-
ments in some class definitions. For instance, some peo-
ple may argue that fatty acids constitute a class of
compounds that should not contain any rings, among
other features. This negative relationship is rather diffi-
cult to capture with the proposed methodology, and in
fact, the majority of cases where classification of small
molecules was incorrect were due to the lack of automa-
tically generated negations in the class definitions. To
name just one example of the consequences of this
behaviour, due to the lack of negation detection, esters
are inferred to be a subclass of ethers. While it is possi-
ble to correct this manually by including statements
regarding the necessity of the absence of certain struc-
tural features in the class definition for ethers, automatic
identification of such structural features is still challen-
ging. The difficulty here is not posed so much by the
identification of the features that are consistently absent
from every member of a given class, as it is by the iden-
tification of which of the numerous features identified
as absent from every member of a class should truly be
absent. Of course, given a diverse enough training set
for a given class, many of the chemical features would
be eliminated from the list of forbidden features. How-
ever, one may never be entirely certain that the groups
still on the list should indeed be forbidden in a given
class, until all the possible class members have been
included in the training set, thus defeating the purpose
of automated classification.
The final aspect where human curation still has an

edge is human-created, arbitrary or otherwise necessarily
diverse groupings, such as is the case for vitamins and
many natural products, or terms that refer to broad
functional roles rather than chemical structure. Cer-
tainly, this is still very much a domain of subjective
human classification where humans are irreplaceable,
and will likely never be wholly replaceable by automated
and objective chemical classification approaches. Thus,
human involvement is necessary in our proposed mode
of chemical ontology construction and refinement, but
it is also more subtle, nuanced, and much more produc-
tive than it has ever been in any of the on-going chemi-
cal ontology construction efforts.
Having discussed the limitations and caveats of the

proposed framework as it currently stands, let us exam-
ine more closely what it enables. By providing chemical

class definitions in a logical and objectively consistent
manner, we have created a means by which chemical
hierarchies can be seamlessly integrated and new, pre-
viously uncharacterized classes can be added without
necessitating a manual review of the whole ontology
structure. The process of annotation of chemical entities
has been greatly simplified and reduced to merely che-
mically fingerprinting a molecule and importing its
CHESS-encoded fingerprint for facile automated classifi-
cation with machine reasoning agents, all of which can
be done on-the-fly as the chemical entities are loaded
into a given ontology.
Finally, there is no further reason for compartmentali-

zation and erection of artificial barriers between the
ontologies derived by distinct chemical classification
efforts. In principle, all chemical hierarchies can be
fused into a single, consistent, and self-organized ontol-
ogy, where chemical class equivalences and relationships
are automatically inferred and reconciled. We have
demonstrated this with the automatic integration of che-
mical classifications derived from multiple, indepen-
dently-curated data sets, one using the MeSH-annotated
PubChem molecules, and one that relied on ChEBI
small molecule annotations. Previously, classification
efforts in either manually created hierarchy stressed the
manual establishment of explicit parent/child relation-
ships between the various chemical classes, as well as
potentially formulating a short description regarding
what exactly went into deciding whether certain com-
pounds should be annotated as members of a given
class. In this regard, ChEBI is, beyond comparison,
superior to the MeSH classification, because unlike
MeSH it includes a programmatically examinable, for-
mal ontology of chemical classes that can be queried for
small molecule class membership. In addition to this,
the ChEBI ontology is understandably includes many
more terms and specific classes of biological interest.
Unfortunately, neither of the two chemical ontologies

currently has means for facile integration with each
other, nor facile class extension and inclusion of pre-
viously uncharacterized chemical classes. For both
ontologies, the precise location of novel class addition is
performed using subjective human assessment and
examination of the possible child and parent classes.
When a decision is made for the location of the class in
the context of the chemical hierarchy, no formal justifi-
cation is provided for the decision, meaning that the
location of the class is a subject to errors and interpreta-
tion. On the other hand, in the formally specified ontol-
ogies that we generate by screening the data that is
already available with PubChem and ChEBI, every sub-
class inference is explainable logically and amenable to
facile correction through corrections in formal chemical
class definitions rather than an unexplainable reshuffling
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of the class relationships in the current ontologies.
Furthermore, the effort of adding a novel class into the
ontology is limited to defining the class itself, rather
than analyzing all the other existing classes for their
potential role as parent classes or sub-classes of a given
novel class. This is the principal reason for the ease of
the integration of the MeSH and ChEBI ontologies. To
summarize, the principal benefits of our proposed
approach are i) the ease of chemical class integration
into existing hierarchies, ii) facilitated chemical class
definition and characterization, and iii) logically explain-
able and therefore easily correctable chemical class hier-
archy assignments. Furthermore, to generate the
hierarchies presented in this work, we have essentially
re-used the previous work done by annotators on the
ChEBI and MeSH projects already, with slight screening
modifications of the existing data sets. This gives hope
that the existing chemical hierarchies can be somewhat
easily converted into their logically encoded forms.
The automatically generated ontology that we present

here also removes much subjectivity and ambiguity from
chemical class assignments and annotation of individual
small molecules. It is no longer necessary to manually
adjust the annotation of every small molecule that needs
to be classified. This is of critical importance as the
ChEBI effort transitions to the classifications of hun-
dreds of thousands compounds present in the ChEMBL
database, and the PubChem database experiences con-
stant exponential growth of millions of new, partially
characterized or completely uncharacterized compounds.
The classification procedure for the novel small mole-
cules presented here is highly accurate, and when each
class is screened using a testing set, classification incon-
sistencies are highly visible and easily correctable. For
example, the classes of alkadienes and diols necessitated
cardinality restrictions in their formal definition to
account for the fact that these classes required a given
molecule to contain two alkene or two alcohol groups,
respectively. Upon screening these classes with a test set
of known positives and known negatives, the misclassifi-
cation of known negative compounds containing only
one of these groups has alerted us to the omission of
cardinality restriction in the definition of these classes.
While we anticipate adding automatic cardinality restric-
tion identification in future work, this feature is cur-
rently not implemented and appropriate class definitions
had to be manually corrected. Thus, awareness of the
formal definition of these classes has alerted us to an
omission in our work. On the other hand, there is no
capacity or provision for explaining chemical classifica-
tions and annotations in the major chemical ontology
building efforts, which means that any errors in chemi-
cal entity annotation assignment have to be manually
identified by the users of these hierarchies, discussed by

curators, and then manually corrected, in a further
time-consuming endeavour. We shall reiterate: in the
proposed framework, only class definitions need to ever
be adjusted, while chemical entity classification is auto-
matically inferred, and can be generated at will, for any
arbitrary compound, and the chemical hierarchy is dyna-
mically reconstructed.
We must note that the high degree of accuracy of

automated small molecule classification is not surprising
since we were operating on structurally-derived classes
and we have performed a nearly exhaustive characteriza-
tion of chemical structure to identify unambiguous,
deterministic class definitions. This is in sharp contrast
with the inherently probabilistic, ‘black box’ training
approaches based on artificial neural networks or sup-
port vector machines, where features of chemical enti-
ties in a given training set are incorporated into (often
difficult to interpret) mathematical expressions which
are expected to be correct only a fraction of time, and
due to the statistical nature of these approaches may
involve chemical features that may have little to do with
the proper classification of a given compound into a
given class, in reality. Our task is very much simplified,
as we do not concern ourselves with chemical features
that only appear in a fraction of compounds within a
given class, but rather admit to class definition only the
consensus features.

Conclusions
Based on our own experiences in constructing the che-
mical hierarchies presented here, we envision a new
iterative approach to chemical ontology development
(Figure 8). In this scheme, curators are primarily con-
cerned with the assimilation of a representative set of
chemical entities for each chemical class based on
whether the desired principal chemical substructures for
a given class have been identified. Manual adjustment of
some class definitions and adjustment of other defini-
tions to explicitly include disparate classes that may
contain a set of well-defined, but disparate and non-
overlapping sub-classes may also be performed. How-
ever, explicit specification of class membership or che-
mical ontology hierarchy is possible but not
recommended in this approach to maintain the self-
organizing and objective nature of the chemical
hierarchy.
With the rising of systems sciences to prominence, we

believe that chemical annotation and classification fra-
meworks, such as the one presented here, shall increas-
ingly rise in prominence and importance. The already
impressive collection of chemical data on the Semantic
Web and its fruitful applications in chemical research
suggest that semantically enabled chemical classification
systems are of immediate applicability and importance.
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Furthermore, the ability to formally specify and
exchange chemical class definitions can open new doors
to collaboration in chemical and biological research,
driving new innovations and discoveries.

Methods
Training and Testing Data Sets
For our proof of principle work, we have identified 60
MeSH classes and 40 ChEBI classes that were subjec-
tively identified as potentially related by a curator and
which would thus be expected to either have equivalent
logical definitions or identified as sub- or super-classes
of each other. For MeSH-defined chemical classes, we
have used PubChem to identify all compounds pre-
viously annotated with a given MeSH chemical class
term. The resultant set of chemical structures was care-
fully manually screened by a curator to assure that the
MeSH term has been correctly assigned in the training

data and that the representative class instance set ade-
quately covers the full spectrum of compounds included
in the class. For ChEBI classes, we have used the ChEBI
API to select only the high-confidence (three-star in the
ChEBI star system) annotated chemical entities that
were identified as instances of a given ChEBI chemical
class. In order to assure complete adherence to the
ChEBI class definition in the class instances, a curator
was assigned to manually screen these instances with
the same criteria as those for the MeSH data set. This
resulted in 766 chemical entities manually screened for
the MeSH data set and 606 chemical entities manually
screened for the ChEBI data set. The screening process
involved not only the querying of the appropriate data-
bases for members of a given class, but also consultation
with the existing literature on the definition of each
class, as class definitions in ChEBI, and especially in
MeSH were often lacking in detail. The training data

Figure 8 A novel approach to chemical hierarchy construction, maintaining human involvement and supplemented with automated
cheminformatics algorithms developed in this work.
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sets are available from the project website [31] as well as
attached with this paper (see Additional file 2).

Identification of Consensus Molecular Fragments and
Patterns
For the identification of consensus chemical substruc-
tures, structural patterns, and molecular skeletons, we
have created custom software that relied upon the
Chemistry Development Kit version 1.2.4 [32] and
OpenBabel version 2.2.3 [33]. The software we have cre-
ated is freely accessible upon request (see the project
website [31]). For each class, the set of representative
chemical entities is partitioned into a training set which
contains at least five least complex representatives (in
terms of the number of atoms and bonds) of the investi-
gated class (manually assuring a complete coverage of
the class), and a test set which is used to assess the
accuracy of formal class definition. The assumption that
allowed selecting the least complex class representatives
for training is that the smallest class members have to
contain all the consensus structural patterns that the
rest of the class contains. This allows us to save on
computational time.
A chemical substructure, pattern, or molecular skele-

ton is considered to be a consensus one for a given
class if it is found to be present in all members of the
training set. In order to identify chemical features to
consider as candidates for consensus features, we
employ a hybrid approach involving limited molecular
fragmentation, subgraph isomorphism detection, prede-
fined chemical feature detection, and the fragmentation
of chemical entities with atoms that are annotated for
full hydrogenation state (indicating a terminal atom in a
chain, e.g. CH3 or OH), ring membership, aromaticity,
general atom type, as well as binary combinations of
these attributes including aromatic and fully hydroge-
nated atoms, ring and fully hydrogenated atoms, and
general atom types and fully hydrogenated atoms.
To identify smaller consensus substructures, we have

carried out only a limited molecular fragmentation since
we were limited by the apparent and highly perceptible
combinatorial explosion of possible fragmentation
choices on large and ring-containing molecules. We
have therefore limited the fragmentation to exhaustively
consider all the possible fragmentation patterns resulting
from cutting all possible combinations of up to four
bonds in every molecule. If the fragmented compound
was the native SMILES-encoded structure, each frag-
ment was then canonicalized using OpenBabel and only
the unique fragments were collected. For SMARTS-
transformed compounds, the procedure was somewhat
more involved (see below).
To identify principal characteristic substructures for

each class, we have employed Chemistry Development

Kit in order to compute the maximal common substruc-
tures in binary combinations of the five smallest class
members. Again, the selection of a limited number of
the smallest class members has been made in order to
eliminate unnecessary computational expense. The prin-
cipal characteristic substructure for a given class has to
be present in every member of a given class, including
the smallest members. This also means that one class
member in the curated set should be selected such that
it contains the smallest set of features while still qualify-
ing as a class member. For example for the class of alco-
hols, this could be methanol.
The resultant collection of maximal common sub-

structures was then used to derive the maximal com-
mon substructures of the maximal common
substructures. That is, even if the smallest class mem-
bers did not contain the one smallest member that is
still representative of a given class, this procedure would
have identified the principal characteristic substructure
for a given class. Consider, for example, the class of
Benzenes, which is composed of benzene and its deriva-
tives. The principal characteristic substructure is the
benzene ring. However, if we included among the smal-
lest substructures only three different products of addi-
tion to the benzene ring, the ring itself would have been
still identified as a result of this procedure. We
accounted for all three smallest structures involving
consensus features (such as if all were aniline-based) by
also fragmenting the maximal common substructure
thus identified using the fragmentation approach
described above.
Finally, each member of the training set was screened

for the presence of each feature identified using frag-
mentation and maximal common substructure analysis,
along with 396 manually pre-defined features, obtained
from a number of collections. The positive responses
were tallied and the fraction of compounds that con-
tained every given substructure or structural pattern was
then computed. If this fraction was below 1.0 for a
given fragment or pattern, it was discarded from the
consensus fragment list. If, on the other hand, this frac-
tion was 1.0, a given fragment or pattern was identified
as a consensus structural pattern or fragment.

SMILES and SMARTS Pattern Canonicalization
Canonicalization is important since, among other things,
it helps prevent repetition and unnecessary screening of
the chemical entities for features multiple times. The
SMILES patterns obtained using the above approaches
were canonicalized using the OpenBabel software. For
SMARTS patterns, the situation was complicated by the
fact that, to the best of the authors’ knowledge, there is
no single piece of software that can canonicalize
SMARTS patterns. To accomplish this, we have used
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the fact that atomic mass has a bearing on the ordering
of atoms within a canonical SMILES representation, as
generated in OpenBabel. Thus, we have represented
each atomic feature as a separate isotope type (e.g. a
ring carbon is 14C, while an aromatic carbon is 15C)
and used such SMILES strings in order to determine a
canonical atom ordering using the normal SMILES
canonicalization procedure in OpenBabel. After obtain-
ing the canonical isotopic SMILES string for a given
fragment, we converted it using a lookup table into a
SMARTS pattern specification. This gave us a robust
canonical form for every SMARTS pattern we generated.

Chemical Class Definitions Encoding in OWL
In order to translate the consensus chemical fingerprints
to OWL-based axioms, we have used the OWL Java
API, version 3.2.3. We have set up a central ontology of
functional groups and structural features, which is refer-
enced by every ontology that contains chemical class
definitions generated using the proposed methodology.
This allows for facile chemical hierarchy integration
from multiple distinct efforts. In the functional group
ontology, all the functional groups are merely declared
with a canonical URI, which is generated using reprodu-
cible SHA1 40-character hashes of the canonical func-
tional group SMILES or SMARTS pattern. This
ontology contains no hierarchy, but only the instances
of functional groups and their labels (SMILES or
SMARTS).
The ontologies containing chemical class definitions

are generated by iterating over every consensus feature
and adding class restrictions to the definition, through
the ‘has attribute’ object property defined in Seman-
ticscience Integrated Ontology, and using the ‘some
values from’ restriction on this property. Cardinality
restrictions were added manually to the existing ontolo-
gies using the Protégé 4.1 ontology editor, only for a
very limited set of classes that required these
restrictions.

Chemical Classification Accuracy Evaluation
The accuracy of chemical class hierarchy was assessed
by applying the Pellet reasoned, version 2.2, to each gen-
erated ontology, and then recording all the pairwise
child-parent relationships within the resultant automati-
cally generated hierarchies. The relationships that con-
formed to the hierarchies from which they were derived,
as well as relationships that were acceptable according
to the judgement of a curator were tallied up, and this
score divided by the total number of the inferred rela-
tionships was reported as classification accuracy.
In order to classify chemical compounds using the for-

mally axiomatized chemical class definitions, we

represented 200 randomly selected chemical compounds
from the MeSH data set (previously removed from
training) using Resource Description Framework-based
CHESS formalism, with the Jena Java API version 2.6.2
[34]. Each compound was screened to detect the pre-
sence of each of the chemical features defined in the
central functional group ontology. Unique occurrences
of functional groups within each chemical entity were
individually instantiated and mereological relationships
between these functional group instances and their con-
taining chemical entity instance were defined. Each
instantiated entity was identified explicitly as distinct to
allow classification into cardinality restriction-containing
classes. For the chemical entities that were used to
demonstrate chemical class definition extension, we
have also generated CHESS-encoded molecular weight
descriptors. After this instance data in the RDF/XML
form was imported into the ontology received from the
integration of the MeSH- and ChEBI-derived ontologies,
the Pellet reasoner was used again to realize the ontol-
ogy with instances. Each chemical class inference was
then manually screened by a curator and scored for
exact matches to the test set data, correct classifications,
and incorrect classifications.

Availability and requirements
The source code for our generator, the input data and
the generated ontologies for this study are available
from the project website [31].

Additional material

Additional file 1: Detailed analysis of results of automated chemical
annotation by human curators. This file contains the results of
automated chemical entity classification as well as the assessment of
these classifications by a human curator as correct and direct (inferred
classification is identical to training set classification). Comments on
decisions to view a particular classification as erroneous or correct are
also included.

Additional file 2: Chemical entities to train and assess definitions
for each class. This file contains the complete collection of chemical
entities collected by human curators to compute chemical class
definitions as described (see Methods). The names for each class as used
in this work are also reported, along with the class ID for the ChEBI
classes.
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