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Abstract

Background: RNA molecules play critical roles in the cells of organisms, including roles in gene regulation,
catalysis, and synthesis of proteins. Since RNA function depends in large part on its folded structures, much effort
has been invested in developing accurate methods for prediction of RNA secondary structure from the base
sequence. Minimum free energy (MFE) predictions are widely used, based on nearest neighbor thermodynamic
parameters of Mathews, Turner et al. or those of Andronescu et al. Some recently proposed alternatives that
leverage partition function calculations find the structure with maximum expected accuracy (MEA) or pseudo-
expected accuracy (pseudo-MEA) methods. Advances in prediction methods are typically benchmarked using
sensitivity, positive predictive value and their harmonic mean, namely F-measure, on datasets of known reference
structures. Since such benchmarks document progress in improving accuracy of computational prediction
methods, it is important to understand how measures of accuracy vary as a function of the reference datasets and
whether advances in algorithms or thermodynamic parameters yield statistically significant improvements. Our
work advances such understanding for the MFE and (pseudo-)MEA-based methods, with respect to the latest
datasets and energy parameters.

Results: We present three main findings. First, using the bootstrap percentile method, we show that the average
F-measure accuracy of the MFE and (pseudo-)MEA-based algorithms, as measured on our largest datasets with
over 2000 RNAs from diverse families, is a reliable estimate (within a 2% range with high confidence) of the
accuracy of a population of RNA molecules represented by this set. However, average accuracy on smaller classes
of RNAs such as a class of 89 Group I introns used previously in benchmarking algorithm accuracy is not reliable
enough to draw meaningful conclusions about the relative merits of the MFE and MEA-based algorithms. Second,
on our large datasets, the algorithm with best overall accuracy is a pseudo MEA-based algorithm of Hamada et al.
that uses a generalized centroid estimator of base pairs. However, between MFE and other MEA-based methods,
there is no clear winner in the sense that the relative accuracy of the MFE versus MEA-based algorithms changes
depending on the underlying energy parameters. Third, of the four parameter sets we considered, the best
accuracy for the MFE-, MEA-based, and pseudo-MEA-based methods is 0.686, 0.680, and 0.711, respectively (on a
scale from 0 to 1 with 1 meaning perfect structure predictions) and is obtained with a thermodynamic parameter
set obtained by Andronescu et al. called BL* (named after the Boltzmann likelihood method by which the
parameters were derived).

Conclusions: Large datasets should be used to obtain reliable measures of the accuracy of RNA structure
prediction algorithms, and average accuracies on specific classes (such as Group I introns and Transfer RNAs)
should be interpreted with caution, considering the relatively small size of currently available datasets for such
classes. The accuracy of the MEA-based methods is significantly higher when using the BL* parameter set of
Andronescu et al. than when using the parameters of Mathews and Turner, and there is no significant difference
between the accuracy of MEA-based methods and MFE when using the BL* parameters. The pseudo-MEA-based
method of Hamada et al. with the BL* parameter set significantly outperforms all other MFE and MEA-based
algorithms on our large data sets.

* Correspondence: monirh@cs.ubc.ca
Computer Science Department, University of British Columbia, Vancouver,
BC, Canada

Hajiaghayi et al. BMC Bioinformatics 2012, 13:22
http://www.biomedcentral.com/1471-2105/13/22

© 2012 Hajiaghayi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:monirh@cs.ubc.ca
http://creativecommons.org/licenses/by/2.0


Background
RNA molecules are essential to many functions in the
cells of all organisms. For example, these molecules are
involved in gene translation and also act as catalysts and
as regulators of gene expression [1]. Because function is
determined by molecular structure, there is significant
investment in computational methods for predicting
RNA secondary structure, which in turn is useful for
inferring tertiary structure [2].
Our interest is in assessing the merits of some recent

advances in secondary structure prediction in statisti-
cally robust ways. We focus on thermodynamically
informed approaches for predicting pseudoknot free sec-
ondary structures from the base sequence. A widely
used method finds the minimum free energy (MFE)
structure with respect to the nearest neighbour thermo-
dynamic model of Mathews, Turner and colleagues [3].
Some recent advances in secondary structure prediction
are the new maximum expected accuracy (MEA-based)
and maximum pseudo-expected accuracy (pseudo-MEA-
based) methods of Lu et al. [4] and Hamada et al. [5,6].
These approaches generally maximize (pseudo) expected
base pair accuracy as a function of base pair probabil-
ities calculated using a partition function method and
have higher average accuracy than the MFE algorithm
on the Turner and Andronescu et al. energy parameters.
Knudsen et al. [7] and Do et al. [8] also presented

some RNA secondary structure prediction methods
based on probabilistic models of structures. But since
their probabilistic approaches are not determined using
a thermodynamic model, we don’t include their methods
in our later comparisons. Another advance is estimation
of new energy parameters from both thermodynamic
and structural data using state-of-the-art estimation
techniques. Andronescu et al. [9] derived two parameter
sets by inference from energies that were derived from
optical melting experiments as well as from structural
data. The two energy parameter sets are called BL* and
CG*, named after the Boltzmann likelihood and con-
straint generation methods used to infer them. These
parameter sets have yielded significant improvements in
prediction accuracy of the MFE method, compared with
the Turner parameters, with the BL* parameters being
slightly better than the CG* parameters. Here and
throughout, the accuracy of a prediction refers to its F-
measure, which is the harmonic mean of sensitivity and
positive predictive value (see Methods section for defini-
tions of these measures). All of this work assesses algo-
rithm accuracy on specific classes of RNAs, such as
introns or transfer RNAs, as well as overall average
accuracy on RNAs taken over all such classes.
This recent work motivates the following questions.

Are comparisons of the (pseudo-)MEA-based and MFE
approaches on specific RNA classes reliable when the

size of available datasets is small? Do the MEA- or
pseudo-MEA-based approaches produce significantly
more accurate predictions than MFE on the latest
energy parameter sets? What is the best combination of
algorithm and thermodynamic model? To answer these
questions, we report on the accuracy of both (pseudo-)
MEA-based and MFE methods with respect to two ver-
sions of the Turner parameters as well as the recent BL*
and CG* parameters of Andronescu et al., on datasets
for specific RNA classes as well as large datasets that
combine multiple RNA classes.
We present three main findings. First, we show that F-

measure accuracies on our large datasets are likely to be
reliable estimates of accuracy of a population represented
by such sets, in the sense that high-confidence interval
widths for F-measure obtained using the bootstrap per-
centile method are within a small, 2% range. Average
accuracy on smaller classes is less reliable. For example,
confidence intervals for both MEA and MFE have an 8%
range on a class of 89 Group I introns that has been used
previously in benchmarking algorithms. Second, there is
a clear “winner” in terms of overall prediction accuracy,
namely the pseudo-MEA-based method of Hamada et al.
[6]. However, the relative accuracy of the MFE and
MEA-based approaches depends on the underlying
energy parameters: using a permutation test we find that,
at a statistically significant level, the accuracy of MFE-
based prediction on our large datasets is better on two of
the four energy parameter sets that we consider, while
MEA-based prediction is better than MFE-based predic-
tion on a third parameter set. Finally, both MEA-based
and MFE methods achieve the highest accuracy when
using the fourth parameter set we consider, namely the
BL* energy parameters of Andronescu et al. [9].

Methods
In this section we first describe the datasets, thermody-
namic models, and algorithms considered in this paper.
We then describe the accuracy measures and statistical
methods used in our analyses.

Datasets
We use three datasets, as follows

• S-Full is a comprehensive set of 3,245 RNA
sequences and their secondary structures that has
been assembled from numerous reliable databases
[10]. Sequences in this and our other datasets have
length at most 700 nucleotides; in some cases these
were derived by partitioning larger sequences such
as 16S Ribosomal RNA sequences. The average
length of sequences in S-Full is 270nt.
• MT was used by Lu et al. [4] in their study of the
MEA algorithm and contains RNAs from the
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following classes: 16S Ribosomal RNA, 23S Riboso-
mal RNA, 5S Ribosomal RNA, Group I intron,
Group II intron, Ribonuclease P RNA, Signal Recog-
nition RNA and Transfer RNA.
• MA is a subset of the S-Full set, containing exactly
those sequence of S-Full that are in the RNA classes
included in MT. We formed the MA dataset in
order to compare our algorithms on the same classes
as did Lu et al., while using sets of RNAs from these
classes with as large a size as possible.

An overview of different RNA classes in the MT and
MA data sets is shown in Table 1. This table presents
the number of RNA sequences, the mean and standard
deviation of their lengths and the average of normalized
similarity between RNA structures for each RNA class
in these two data sets (see the later section on accuracy
measures for a definition of normalized similarity).
Lu et al. reported their results on a restricted format

of the MT set in which certain bases of some sequences
are in lower case, indicating that the base is unpaired in
the reference structure. They have used this structural
information in their predictions. However, we have not
employed this information, and therefore our accuracy
measures on the MT set are different from those of Lu
et al. [4].

Thermodynamic Models
A thermodynamic model consists of features–small
structural motifs such as stacked pairs–plus free energy
change parameters, one per feature. The first model we
use, the Turner model [3] called “Turner99”, is the most
widely used energy model for prediction of RNA sec-
ondary structures. The model has over 7600 features,
which are based on Turner’s nearest neighbor rules and
reflect the assumption that the stability of a base pair or
loop depends on its sequence and on the adjacent base
pair or unpaired bases. The model is additive in that the
overall free energy change of a secondary structure for a

given sequence is the sum of the free energy changes
for features of the structure. The parameters of the
model were derived from optical melting experiments,
the most commonly used experimental approach to
determine the free energy change of RNA structures.
We also consider variants of the Turner model, used

by Andronescu et al. [9]. The T99-MultiRNAFold (T99-
MRF) model is derived from the Turner99 model but
includes only 363 features. Parameters for features in
the Turner99 model can be obtained by extrapolation
from the parameters of the T99-MRF model. Using
maximum likelihood and constraint optimization meth-
ods, Andronescu et al. [9] derived new free energy
change parameters for these 363 features; the resulting
models are called BL* (for Boltzmann likelihood) and
CG* (for constraint generation) respectively. We used all
three models, namely T99-MRF, BL* and CG*, in this
work, in order to assess the dependence of algorithm
accuracy on model parameters. We note that in Lu et
al.’s work [4], the parameters of a newer version of
Turner model, called Turner2004, were used for one of
the structural motifs, coaxial stacking. However, for the
rest of structural motifs the parameters of Turner99
model were engaged. So, we also call the parameter set
used for the Lu et al.’s benchmark Turner99 since most
of its parameters are Turner99 ones and also the coaxial
stacking motif is not employed in the other model that
we study. Zakov et al. [11] also obtained parameters
that improve RNA structure prediction. But we don’t
consider their parameters in this work, since those are
not applicable for the partition function calculation and
therefore for the probability calculation required for the
MEA method.

Algorithms
We analyze four RNA secondary structure prediction
algorithms. The first predicts secondary structures that
have minimum free energy (MFE) with respect to a
given thermodynamic model. The second is the

Table 1 Overview of the different RNA classes in MT and MA data sets

RNA class No. in MT mean ± std of length Avg. similarity No. in MA mean ± std of length Avg. similarity

16S Ribosomal RNA 89 377.88 ± 167.18 0.60 675 485.66 ± 113.02 0.62

23S Ribosomal RNA 27 460.6 ± 151.3 0.53 159 453.44 ± 117.85 0.57

5S Ribosomal RNA 309 119.5 ± 2.69 0.88 128 120.98 ±3.21 0.88

Group I intron 16 344.88 ± 66.42 0.63 89 368.49 ±103.58 0.63

Group II intron 3 668.7 ± 70.92 0.70 2 578 ± 47 0.72

Ribonuclease P RNA 6 382.5 ± 41.66 0.74 399 332.78 ±52.34 0.72

Signal Recognition RNA 91 267.95 ± 61.72 0.71 364 227.04 ± 109.53 0.65

Transfer RNA 484 77.48 ± 4.8 0.96 489 77.19 ± 5.13 0.95

Total 1024 2305

Overview of different RNA classes in the MT and MA data sets, including the number of RNAs, the mean and standard deviation of the length and the average
normalized similarity between RNA sequences in these two data sets for each RNA class.
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maximum expected accuracy (MEA) algorithm as intro-
duced by Lu et al. [4], which maximizes expected base
pair accuracy as a function of base pair probabilities cal-
culated using a partition function method. We imple-
mented the MEA algorithm for use with the
MultiRNAFold models. As a result, we worked not only
with the algorithms of Lu et al., which we refer to as
rsMFE and rsMEA, but also with the MFE algorithm of
Andronescu et al., referred to as ubcMFE, and a new
implementation of MEA which we developed, called
ubcMEA. Lu et al.’s benchmark [4] showed that rsMEA
gives the best prediction accuracy when its g parameter
(which controls the relative sensitivity and positive pre-
dictive value) is equal to 1. Accordingly, we also set g to
be 1 in ubcMEA.
The third algorithm that we analyze is the generalized

centroid estimator method of Hamada et al. [5]. This is
similar to the MEA method, but uses a somewhat differ-
ent objective function, namely a gamma-centroid esti-
mator, to infer a structure from base pair probabilities.
This method, which we refer to as gC-g1, employs a
parameter g to balance sensitivity and positive predictive
value; based on the results of Hamada et al., we set g =
1. The fourth method is another algorithm of Hamada
et al. [6] that generalizes the centroid estimator by using
a pseudo-expected accuracy maximization technique
that automatically selects g to balance sensitivity and
positive predictive value for a given input. We refer to
this algorithm as gC-pMFmeas (for generalized centroid
maximized pseudo-expected accuracy).
The rsMEA and rsMFE algorithms always use the

parameters of Turner99 model as their free energy para-
meter set, while ubcMEA and ubcMFE use parameter
sets in the MultiRNAFold model format, namely the
BL*, CG* and T99-MRF sets. The gC-g1 and gC-
pMFmeas algorithms also employ BL* parameters using
a Turner99 format.

Accuracy Measures
We use three measures for determining the structural
prediction accuracy, namely sensitivity (also called preci-
sion or precision rate), positive predictive value or PPV
(also called recall), and F-measure, which combines the
sensitivity and PPV into a single measure.
Sensitivity is the ratio of correctly predicted base pairs

to the total base pairs in the reference structures. PPV is
the fraction of correctly predicted base pairs, out of all
predicted base pairs. F-measure is the harmonic mean
of the sensitivity and PPV. This value is equal to the
arithmetic mean when sensitivity and PPV are equal.
However, F-measure becomes smaller than the arith-
metic mean as one of the numbers approaches 0 (while
the other is fixed). The possible values for these three

measures are between 0 and 1; the closer to 1, the better
prediction.
The F-measure is widely used measure in the litera-

ture; it is also the common measure in the studies by
Hamada et al. and by Lu et al., to which refer in our
study. Mostly to facilitate comparison of their results to
ours, we decided to use the F-measure rather than the
Matthews correlation coefficient (another well-known
measure of accuracy predominantly used to assess bin-
ary classification methods).

sensitivity =
number of correctly predicted base pairs

number of base pairs in the reference structure

PPV =
number of correctly predicted base pairs

number of predicted base pairs

F - measure =
2 × sensitivity × PPV

sensitivity + PPV

Throughout this paper, we calculate three types of
averages for a given measure “M“ (which can be any of
PPV, sensitivity, or F-measure), namely unweighted
averages, weighted averages and S-weighted averages,
defined below. The weighted average counts each
sequence equally, regardless of which class it belongs to.
The unweighted average, on the other hand, counts
each class equally and was used by Lu et al [4]. A
potential problem with the unweighted average is that
an RNA class with many highly similar sequences can
have disproportionate influence on the overall accuracy,
relative to its sequence diversity. Therefore, we intro-
duce the S-weighted average, which takes into account
the similarities between RNA sequences in each RNA
class and gives a weight to each one according to its
average normalized similarity, in such a way that classes
with highly similar sequences have lower weight.
The three averages are defined as follows when there

are n RNA classes, C1, C2, ..., Cn, with cardinalities l1,l2,
...,ln, respectively. For the remainder of our study, n = 8,
and the classes are those listed in Table 1).

Unweighted Average ofM =

1
n

(∑
∀C1i∈C1

M(C1i)

l1
+

∑
∀C2i∈C2

M(C2i)

l2
+ · · · +

∑
∀Cni∈Cn

M(Cni)

ln

)
,

(1)

Weighted average of M =∑
∀C1i∈C1

M(C1i) +
∑

∀C2i∈C2
M(C2i) + ... +

∑
∀Cni∈Cn

M(Cni)

l1 + l2 + ... + ln
,

(2)

and

S - Weighted average of M =

l−s1
1 · ∑∀C1i∈C1

M(C1i) + l−s2
2 · ∑

∀C2i∈C2
M(C2i) + ... + l−sn

n · ∑
∀Cni∈Cn

M(Cni)

l1−s1
1 + l1−s2

2
+ ... + l1−sn

n

,
(3)

where si is the mean of the normalized similarities
measured between the reference structures of any two
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of RNA sequences in the corresponding RNA class Ci.
Our normalized similarities were computed using the
SimTree procedure by Eden et al. [12], which takes into
account secondary structure similarities in addition to
sequence similarities. The average normalized similari-
ties are reported in Table 1 and always fall between zero
and one, where an average normalized similarity of one
means that all sequences in the set are identical. The S-
weighted average equals the weighted average when si is
zero for all RNA classes, and it equals the unweighted
average when si is one for all classes. For the remaining
cases, the value of the S-weighted average would fall
between that of the unweighted and weighted averages.

Bootstrap Percentile Confidence Intervals
We calculated the confidence intervals of average F-
measure for various RNA classes, by using the bootstrap
percentile method [13,14] following the recent work by
Aghaeepour and Hoos [15]. We first took 104 resamples
with replacement from the original F-measure values
obtained by the prediction method under investigation
on the given reference dataset, where all resamples had
the same size as the original sample. We then computed
the average F-measures of the resamples and employed
these into the bootstrap distribution. Finally, we deter-
mined the lower and upper limits of the 95% bootstrap
percentile confidence interval as the 2.5th and 97.5th
percentile of the bootstrap distribution, respectively.
These calculations were all performed using the “boot”
package of the R statistics software environment [16].
We verified that the bootstrap distributions are close

to Gaussian, using the Anderson-Darling test, which
indicates that the bootstrap percentile intervals can be
expected to be reasonably accurate [14].

Permutation Test Method
To assess the statistical significance of the observed per-
formance differences, we used permutation tests, follow-
ing Aghaeepour and Hoos [15]. Since Lu et al. [4] and
Hamada et al. [5] reported that the MEA-based methods
outperform MFE, we used a one-sided permutation test
[14] to determine whether MEA-based methods have
significantly better accuracy than MFE on our parameter
sets.
The test that we applied proceeds as follows. First, we

calculated the difference in means between sets of F-
measure values obtained by the two given structure pre-
diction procedures, an MEA-based method and MFE.
For simplicity, we call these two sets A and B and we
denote their sizes as nA and nB, respectively. Then we
combined the F-measure values of sets A and B. Next,
we calculated and recorded the difference in sample
means for 104 randomly chosen ways of dividing these
combined values into two sets of size nA and nB. The p-

value was then calculated as the proportion of the sam-
ple means thus determined whose difference was less
than or equal to that of the means of sets A and B.
Then, if the p-value is less than the 5% significance
level, we reject the null hypothesis that MFE and the
MEA-based method have equal accuracy and thus
accept the alternative hypothesis that the MEA-based
method has significantly better accuracy than MFE.
Otherwise, we cannot reject the null hypothesis and
therefore we cannot accept the alternative hypothesis.
Furthermore, to assess whether the difference in accu-

racy between the MEA-based methods and the MFE
method on a given parameter set is significant, we per-
formed a two-sided permutation test. This test works
exactly like the one-sided permutation test, except that
its p-value is calculated as the proportion of the sampled
permutations where the absolute difference was greater
than or equal to that of absolute difference of the means
of sets A and B. Then, if the p-value of this test is less
than the 5% significance level, we reject the null hypoth-
esis that MFE and MEA have equal accuracy, otherwise,
we cannot reject the null hypothesis.
All of these calculations were performed using the

“perm” package of the R statistics software environment.

Results and Discussion
In this section, we investigate to which degree the pre-
diction accuracy of the energy-based methods studied in
this paper is dependent on different datasets and differ-
ent thermodynamic parameter sets used for prediction.
We start by considering how the size of a dataset will

influence the accuracy achieved by RNA secondary
structure prediction methods. We then study the depen-
dency of prediction accuracy of the MFE, MEA, gC-g1,
and gC-pMFmeas algorithms on the thermodynamic
parameter sets that they use.

Dependency of the Energy-based Methods on Data
Characteristics
Results of the Energy-based Methods on Different Data Sets
Because measures of accuracy on reference datasets are
used to assess the quality of prediction achieved by var-
ious algorithms, it is important to understand how such
measures vary depending on the reference datasets used.
Later in this section we also consider how accuracy
measures vary depending on the energy model used.
The baseline data in Tables 2 and 3 show that there

can be significant differences in accuracy of a given
algorithm on RNA classes within the MA versus MT
sets. For example, on Ribonuclease P RNA, when using
the BL* parameter set, ubcMEA achieves an F-measure
of 0.471 on the MT dataset (Table 2, fourth column,
sixth row) and 0.643 on the MA set (Table 3, fourth
column, sixth row), an absolute difference of about 17%.
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Using data from Tables 2 and 3, Figure 1 illustrates the
difference between accuracy measures on the MT versus
MA datasets on both the Ribonuclease P RNA and the
Group I intron classes, for the ubcMEA, ubcMFE and
gC-pMFmeas algorithms, using the BL* parameters, as
well as for rsMEA and rsMFE using the Turner99 para-
meters. In the figure, the further the points are from the
dotted diagonal line, the larger the difference (algorithms
for which there are no difference in average F-measure
on the MT and MA sets would correspond to points on
the main diagonal of the plot). Of the ten data points
shown, only one represents a difference smaller than
3.2%. These data clearly indicate that, based only on pre-
diction accuracy and without further statistical analysis,
one cannot draw meaningful conclusions about the aver-
age accuracy of a particular algorithm on the overall
population of an RNA class, based only on the average
accuracy on currently available datasets.
Bootstrap Confidence Intervals for the Prediction Accuracy
of the Energy-based Methods on different RNA Classes
Following the work of Aghaeepour and Hoos [15], we
use bootstrap percentile confidence intervals to assess

the accuracy of the average F-measures obtained by a
secondary structure prediction procedure on a given
RNA dataset; these provide a measure of the overall
average accuracy on the whole population from which
the dataset is drawn (see Methods for a detailed descrip-
tion of bootstrap percentiled confidence intervals). We
chose to calculate confidence intervals using weighted
average F-measure. We note from the data of Table 3
that on the MA dataset, all three averages (i.e., weighted,
unweighted, and S-weighted) are qualitatively similar in
the sense that if the F-measure accuracy of one algo-
rithm is better than another with respect to one average,
then the same is true with respect to the other averages.
Thus, we would expect the same qualitative conclusions
if we had used a different average.
Figure 2 shows 95% bootstrap percentile confidence

intervals for the ubcMEA and ubcMFE algorithms using
the BL* parameter set, on individual RNA classes and
on the MA and S-Full datasets. Figure 3 also indicates
95% bootstrap percentile confidence intervals for the
ubcMFE and gC-pMFmeas algorithms using the BL*
parameter set. Table 4 shows the confidence intervals

Table 2 F-measure prediction accuracy of the MEA, MFE, gC-g1, and gC-pMFmeas algorithms on the MT dataset

RNA class Class size Mean ± std of length F-meas (BL*) F-meas (Turner99)

ubcMEA ubcMFE gC-g1 gC-pMFmeas rsMEA rsMFE

16S Ribosomal RNA 88 377.88 ± 167.18 0.649 0.621 0.640 0.659 0.574 0.539

23S Ribosomal RNA 27 460.6 ± 151.3 0.711 0.683 0.693 0.733 0.681 0.646

5S Ribosomal RNA 309 119.5 ± 2.69 0.739 0.743 0.725 0.746 0.625 0.642

Group I intron 16 344.88 ± 66.42 0.705 0.650 0.674 0.708 0.627 0.599

Group II intron 3 668.7 70.92 0.720 0.739 0.683 0.750 0.744 0.703

Ribonuclease P RNA 6 382.5 ± 41.66 0.471 0.460 0.519 0.495 0.517 0.522

Signal Recognition RNA 91 267.95 ± 61.72 0.641 0.621 0.633 0.637 0.518 0.557

Transfer RNA 484 77.48 ± 4.8 0.718 0.775 0.727 0.782 0.726 0.727

Unweighted Average 0.669 0.662 0.662 0.689 0.627 0.617

Weighted Average 0.710 0.732 0.707 0.743 0.660 0.665

S-Weighted Average 0.670 0.652 0.660 0.684 0.612 0.598

Table 3 F-measure prediction accuracy of the MEA, MFE, gC-g1, and gC-pMFmeas algorithms on the MA dataset

RNA class Class size Mean ± std of length F-meas (BL*) F-meas (Turner99)

ubcMEA ubcMFE gC-g1 gC-pMFmeas rsMEA rsMFE

16S Ribosomal RNA 675 485.66 ± 113.02 0.625 0.645 0.630 0.665 0.561 0.521

23S Ribosomal RNA 159 453.44 ± 117.85 0.645 0.643 0.626 0.664 0.588 0.562

5S Ribosomal RNA 128 120.98 ± 3.21 0.782 0.780 0.763 0.782 0.616 0.630

Group I intron 89 368.49 ± 103.58 0.644 0.631 0.642 0.670 0.576 0.550

Group II intron 2 578 ± 47 0.540 0.609 0.524 0.582 0.472 0.471

Ribonuclease P RNA 399 332.78 ± 52.34 0.643 0.603 0.656 0.678 0.615 0.575

Signal Recognition RNA 364 227.04 ± 109.53 0.730 0.721 0.680 0.708 0.609 0.625

Transfer RNA 489 77.19 ± 5.13 0.706 0.764 0.719 0.773 0.727 0.726

Unweighted Average 0.668 0.676 0.655 0.690 0.596 0.583

Weighted Average 0.672 0.682 0.669 0.708 0.618 0.600

S-Weighted Average 0.658 0.660 0.648 0.681 0.588 0.568
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for five algorithms, namely ubcMEA, ubcMFE, rsMEA,
rsMFE and gC-pMFmeas. Because the Group II intron
class contains only 2 RNAs, it had to be excluded from
this analysis. Based on these results, we make several
observations.
First, the confidence intervals of all algorithms on the

MA and S-Full sets have a width of at most 0.018, indi-
cating that the average accuracy measured on these sets
is likely to be a good estimate - within 1% - of the accu-
racy of a population of RNA molecules represented by

these sets. However, the interval widths on individual
classes can much higher, e.g., 0.075 for ubcMEA on the
Group I intron class, suggesting that average accuracy is
not a reliable measure of a method’s overall accuracy on
such classes. We note that, without the use of rigorous
statistical methods, a 0.02 difference in accuracy is con-
sidered significant in some related work [4].
Second, the confidence interval widths of RNA classes

do not strictly decrease as the size of the class increases
(i.e., the number of RNAs in the respective part of the
reference set). For example, as shown in Table 4, for the
ubcMEA (ubcMFE) algorithm the confidence interval
width of the Ribonuclease P RNA class is 0.01 (0.013)
less than the interval width for the Transfer RNA class,
even though the Transfer RNA class contains roughly
1.2 times as many RNAs as are in the Ribonuclease P
RNA class. Thus factors specific to the classes, other
than class size, must account for confidence interval
widths.
One possibility is that classes with greater similarity

among structures would have smaller confidence inter-
vals, since in the limit, if all sequences in a class are
identical then the confidence interval has zero width.
However, data from Tables 1 and 4 did not support
such a correlation between average normalized similarity
and confidence interval width, even for classes not too
different in size. For example, the Ribonuclease P and
Transfer RNA classes in the MA set have relatively simi-
lar sizes (399 and 489 sequences, respectively), with the
Ribonuclease P RNA class having lower normalized

Figure 1 Relative performance of the MEA and MFE algorithms
on the MT and MA datasets for Ribonuclease P RNAs and
Group I introns.
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Figure 2 95% bootstrap percentile confidence intervals for the
F-measure average of the ubcMEA and ubcMFE algorithms.
95% bootstrap percentile confidence intervals are shown for the F-
measure average of the ubcMEA (dashed red bars) and ubcMFE
(solid black bars) algorithms on the MA and S-Full sets and also
different RNA classes in MA.
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Figure 3 95% bootstrap percentile confidence intervals for the
F-measure average of the gC-pMFmeas and ubcMFE
algorithms. 95% bootstrap percentile confidence intervals are
shown for the F-measure average of the gC-pMFmeas (dashed red
bars) and ubcMFE (solid black bars) algorithms on the MA and S-
Full sets and also different RNA classes in MA.
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similarity (0.72) than the Transfer RNA class (0.95), as
one might expect; yet, for ubcMEA, the confidence
interval for the Ribonuclease P RNA class is narrower
(0.030) than those for the Ribonuclease P RNA class
(0.040).
Understanding class-specific factors underlying differ-

ences in prediction accuracy remains a goal for further
study.
Third, for any given dataset (either a specific RNA

class or the MA or S-Full sets), the confidence interval
width for the ubcMFE algorithm is close to that for ubc-
MEA and gC-pMFmeas, even though the location of the
interval (i.e., the prediction accuracy values) can be
quite different. For example, the average F-measure of
ubcMEA and ubcMFE on the Ribonuclease P RNA class
differ by 0.04, but the confidence interval widths are
identical. As another example, the smallest and largest
confidence interval widths of the 16S Ribosomal RNA
class among all four algorithms are, respectively, 0.026
and 0.030, which indicates a difference of less than 0.01
in the interval widths for this class (see Table 4). Figure
4 shows the width of confidence intervals versus the
size of different RNA classes for the ubcMEA, ubcMFE
and gC-PMFmeas methods. As one can see, almost all
of the points for these three methods are coincident,
indicating that ubcMEA, ubcMFE, and gC-PMFmeas
have identical width in the corresponding sizes.
The other important observation from this figure is

that, as one could expect, the width of the confidence
interval tends to decrease with increasing number of
RNAs of a given type in the reference set, but (as pre-
viously noted) there are notable exceptions to this trend
for sets of size below 500.
The final interesting observation from Figure 3 and

Table 4 is that the gC-pMFmeas method using the BL*
parameter set outperforms all the other methods on
most RNA classes and also on our large MA and S-Full

sets. Hamada et al. [5] also showed that on a small set
of 151 RNAs, gC-pMFmeas achieves better prediction
accuracy than MFE and the other MEA-based methods
when using the BL* parameter set. Our results confirm
their finding on our large MA and S-Full data sets.
Similar graphs for the rsMEA and rsMFE algorithms

are provided in the additional files. Additional files 1
and 2, Figures S4 and S5 support findings similar to
those reported for ubcMEA, ubcMFE and gC-PMFmeas.
Since the overall results on the gC-g1 algorithm were
roughly the same as the results of the ubcMEA method,
we report its prediction accuracies only in Tables 2 and
3 and did not study it further.

Dependency of the Energy-based Methods on
Thermodynamic Parameters
The accuracy of algorithmic methods achieved by
energy-based secondary structure prediction approaches,
such as gC-PMFmeas, MEA and MFE, depends on the
underlying thermodynamic parameter sets. Lu et al.
showed that the accuracy of MEA is better than that of

Table 4 Confidence intervals obtained by the bootstrap percentile method for the MA and S-Full sets and different
RNA classes in MA

RNA class Class size Confidence Interval (CL = 0.95)

ubcMEA ubcMFE rsMEA rsMFE gC-pMFmeas

16S Ribosomal RNA 675 (0.611, 0.639) (0.630, 0.660) (0.548, 0.574) (0.507, 0.536) (0.652, 0.679)

23S Ribosomal RNA 159 (0.609, 0.677) (0.607, 0.677) (0.556, 0.618) (0.530, 0.593) (0.633, 0.693)

5S Ribosomal RNA 128 (0.754, 0.807) (0.751, 0.806) (0.573, 0.657) (0.586, 0.671) (0.758, 0.804)

Group I intron 89 (0.605, 0.680) (0.594, 0.666) (0.540, 0.611) (0.513, 0.587) (0.634, 0.704)

Ribonuclease P RNA 399 (0.629, 0.659) (0.588, 0.618) (0.602, 0.628) (0.561, 0.588) (0.665, 0.690)

Signal Recognition RNA 364 (0.708, 0.750) (0.698, 0.742) (0.583, 0.635) (0.599, 0.651) (0.685, 0.728)

Transfer RNA 489 (0.683, 0.723) (0.742, 0.785) (0.707, 0.747) (0.705, 0.748) (0.754, 0.791)

MA 2305 (0.664, 0.680) (0.673, 0.691) (0.610, 0.627) (0.591, 0.609) (0.700, 0.715)

S-Full 3246 (0.673, 0.688) (0.678, 0.694) (0.615, 0.631) (0.598, 0.616) (0.704, 0.718)

Confidence intervals are obtained by the bootstrap percentile method for the MA and S-Full sets and different RNA classes in MA (except Group II intron) when
ubcMEA and ubcMFE use the BL* parameter set and rsMEA and rsMFE use the Turner99 parameter set and the confidence level (CL) is set to 0.95.

Figure 4 Confidence interval width versus RNA class size in the
MA set for the ubcMEA, ubcMFE and gC-pMFmeas methods.
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MFE when using the Turner99 parameter set (on the
MT reference set of RNAs). But does MEA or gC-
PMFmeas outperform MFE on other published para-
meter sets? If so, is the difference in accuracy statisti-
cally significant? We address these questions in the
following.
Table 5 presents prediction accuracy achieved for the

various parameter sets on the S-Full dataset along with
the associated 95% percentile confidence intervals. Addi-
tional file 3, Table S8 also shows similar results on S-
Full-Test. Since the rsMEA and rsMFE algorithms use
the Turner model, their prediction accuracies on the
parameter sets of the MultiRNAFold model, which do
not match the energy model underlying the rsMEA and
rsMFE algorithms, cannot be obtained. Likewise,
because the ubcMEA and ubcMFE algorithms use the
MultiRNAFold model, their prediction accuracies on the
parameter set of the Turner model cannot be obtained.
We note that according to the results by Hamada et al.,
gC-pMFmeas achieves the highest prediction accuracies
when using the BL* parameter set. Table 5 shows that
there is no overlap between the confidence interval for
gC-pMFmeas and those for the other algorithms, and
that gC-pMFmeas has the highest average prediction
accuracy.
In contrast, the relative accuracy of MEA versus MFE

varies, with MFE being slightly better than MEA in two
cases, MEA being slightly better than MFE in one case,
and both having approximately the same accuracy in
one case, namely BL*. To assess whether MEA has sig-
nificantly better accuracy than MFE on our parameter
sets, we first performed the one-sided permutation test
(see Methods) with the alternative hypothesis that MEA
yields higher prediction accuracy than MFE. As
recorded in Table 6, the resulting p-value falls below the
standard significance threshold of 0.05 only for
Turner99, indicating that only for this parameter set,
MEA outperforms MFE, and its performance, only on
this parameter set, can be considered better than MFE.
In contrast, the p-values obtained for the other

parameter sets, namely CG*, T99-MRF and BL* are
above 0.05, indicating that we cannot conclude that
MEA outperforms MFE for these parameters sets.
We next performed the two-sided permutation test on

all mentioned parameter sets. The results, as recorded
in Table 7, indicate that for the BL* parameter set, the
performance difference between MFE and MEA is not
statistically significant (at the standard significance
threshold of 0.05), while the performance differences for
the other two parameter sets, CG* and T99-MRF, are
statistically significant; we note that in both cases, MFE
achieved higher prediction accuracy than MEA and
their confidence intervals don’t overlap (see Table 5).
Furthermore, the results in Table 5 show that of the

parameter sets we considered, BL* gives the highest pre-
diction accuracy, regardless of whether the MEA or
MFE prediction algorithm is used. This is consistent
with earlier results by Andronescu et al. [9] regarding
the performance of ubcMFE using the BL* parameter
set.
Finally, we observe that for a given class of RNAs,

depending on the energy model, MFE sometimes per-
forms better than MEA and vice versa (see Table 4 and
Figure 2). For example, when considering our set of 16S
Ribosomal RNAs and using the BL* parameter set, MFE
outperforms MEA by 0.02, while for the Full Turner 99
parameters, MEA outperforms MFE by 0.04 (both per-
formance differences are statistically significant based on
a permutation test with significance threshold 0.05).
Overall, we conclude that the relative performance of

MEA versus MFE depends on the thermodynamic para-
meter set used, and that both ubcMEA and ubcMFE
with the BL* parameter set have significantly better
accuracy than rsMEA with the Turner99 parameter set.

Conclusions
Improvements both in algorithmic methods and in ther-
modynamic models lead to important advances in sec-
ondary structure prediction. In this work, we showed
that gC-pMFmeas with the BL* parameter set

Table 5 Accuracy comparison of different prediction algorithms with various parameter sets on the S-Full set

Algorithm F-Measure

T99-MRF BL* CG* Turner99

ubcMEA 0.582 (0.574,0.591) 0.680 (0.673,0.688) 0.636 (0.628,0.644) n/a

ubcMFE 0.601 (0.592,0.609) 0.686 (0.678,0.694) 0.671 (0.663,0.679) n/a

rsMEA n/a n/a n/a 0.623 (0.615,0.632)

rsMFE n/a n/a n/a 0.607 (0.598,0.615)

gC-pMFmeas - 0.711 (0.704, 0.718) - -

The table presents the prediction accuracy of different algorithms with different thermodynamic sets in terms of F-measure. The 95% percentile confidence
intervals of their accuracies are also shown in parentheses. The parameter set T99-MRF refers to the Turner99 parameters in MultiRNAFold format. BL* and CG*
are the parameter sets obtained by the BL and CG approaches of Andronescu et al. [9], respectively. Also, the Turner99 parameter set is the parameter set
obtained by Mathews et al. [3]. “n/a” indicates cases in which a given algorithm is not applicable to a parameter set, since that does not match the energy
model underlying the algorithm. The highest accuracies for MEA and MFE are shown in bold.
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significantly outperforms the other MFE and MEA-
based methods we studied. However, the relative perfor-
mance of MEA-based and MFE methods vary depending
on the thermodynamic parameter set used. For example,
MEA-based methods significantly outperform minimum
free energy (MFE) methods for the Turner99 model but
the opposite is true for other models and in fact the dif-
ference in performance between MEA-based and MFE
methods is negligible on our best thermodynamic
model, BL*. Our findings suggest that, as thermody-
namic models continue to evolve, a diverse toolbox of
algorithmic methods will continue to be important.
We also showed the importance of using large datasets

when assessing accuracy of specific algorithms and ther-
modynamic models. Specifically, we showed that bootstrap
percentile confidence intervals for average prediction
accuracy on our two largest datasets, MA and S-Full, have
narrow widths (at most 0.018), indicating that the average
accuracies measured on these sets are likely to be good
estimates of the accuracies of the populations of RNA
molecules they represent. In contrast, interval widths for
several of the specific RNA classes studied in the paper
were much larger, with no clear correlation between confi-
dence interval width and either class size or average nor-
malized similarity. It may be the case that confidence
interval widths are correlated with the distribution of evo-
lutionary distances among the class members, rather than
on the more simplistic average normalized similarity that
we consider in this paper; studying this further would be
an interesting direction for future research. Regardless,
our analysis shows that larger datasets are needed to
obtain reliable accuracy estimates on specific classes of
RNAs, underscoring the importance of continued expan-
sion of RNA secondary structure data sets.
Our work illustrates the use of statistical techniques to

gauge the reliability and significance of measured
accuracies of RNA secondary structure prediction

algorithms. We hope that this work will provide a useful
basis for ongoing assessment of the merits of RNA sec-
ondary structure prediction algorithms.

Additional material

Additional file 1: 95% bootstrap percentile confidence interval
graphs for the F-measure average of the rsMEA and rsMFE.95%
bootstrap percentile confidence intervals are shown for the F-measure
average of the rsMEA (dashed red bars), and rsMFE (solid black bars)
algorithms on the MA and S-Full sets and also different RNA classes in
MA.

Additional file 2: Confidence interval width versus RNA class size in
the MA set for the rsMEA and rsMFE methods. The figure shows the
confidence interval width of RNA classes in the MA set for the rsMEA
and rsMFE methods.

Additional file 3: Accuracy comparison of different prediction
algorithms with various parameter sets on the S-Full-Test set. The
table presents the prediction accuracy of different algorithms with
different thermodynamic sets in terms of F-measure. The parameter set
T99-MRF refers to the Turner99 parameters in MultiRNAFold format. BL*
and CG* are the parameter sets obtained by the BL and CG approaches
of Andronescu et al. [9], respectively. Also, the Turner99 parameter set is
the parameter set obtained by Mathews et al. [3]. “n/a” indicates cases in
which a given algorithm is not applicable to a parameter set, since that
does not match the energy model underlying the algorithm. The highest
accuracies for MEA and MFE are shown in bold.
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