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Abstract

Background: Modern analytical methods in biology and chemistry use separation techniques coupled to sensitive
detectors, such as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry
(LC-MS). These hyphenated methods provide high-dimensional data. Comparing such data manually to find
corresponding signals is a laborious task, as each experiment usually consists of thousands of individual scans, each
containing hundreds or even thousands of distinct signals. In order to allow for successful identification of metabolites
or proteins within such data, especially in the context of metabolomics and proteomics, an accurate alignment and
matching of corresponding features between two or more experiments is required. Such a matching algorithm
should capture fluctuations in the chromatographic system which lead to non-linear distortions on the time axis, as
well as systematic changes in recorded intensities. Many different algorithms for the retention time alignment of
GC-MS and LC-MS data have been proposed and published, but all of them focus either on aligning previously
extracted peak features or on aligning and comparing the complete raw data containing all available features.

Results: In this paper we introduce two algorithms for retention time alignment of multiple GC-MS datasets: multiple
alignment by bidirectional best hits peak assignment and cluster extension (BIPACE) and center-star multiple
alignment by pairwise partitioned dynamic time warping (CEMAPP-DTW). We show how the similarity-based peak
group matching method BIPACE may be used for multiple alignment calculation individually and how it can be used
as a preprocessing step for the pairwise alignments performed by CEMAPP-DTW. We evaluate the algorithms
individually and in combination on a previously published small GC-MS dataset studying the Leishmania parasite and
on a larger GC-MS dataset studying grains of wheat (Triticum aestivum).

Conclusions: We have shown that BIPACE achieves very high precision and recall and a very low number of false
positive peak assignments on both evaluation datasets. CEMAPP-DTW finds a high number of true positives when
executed on its own, but achieves even better results when BIPACE is used to constrain its search space. The source
code of both algorithms is included in the OpenSource software framework Maltcms, which is available from http://
maltcms.sf.net. The evaluation scripts of the present study are available from the same source.
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Background

Metabolomics, the study of an organism’s biochemistry,
has become increasingly relevant along with other “omics”
technologies during the last ten years. Some of the tech-
niques of choice to distinguish the metabolites present
in a biological sample of an organism are separation
techniques coupled to sensitive detectors, such as gas
chromatography-mass spectrometry (GC-MS) and liquid
chromatography-mass spectrometry (LC-MS). In contrast
to flame ionization detectors, UV absorbance detectors,
and other one-dimensional detectors, these hyphenated
methods provide high-dimensional data of analyte molec-
ular ions or analyte molecular ion fragments collected
over the runtime of the separation. In the context of
metabolomics, this usually involves the observation of
potentially hundreds of ion signals of different masses
simultaneously in every recorded scan. These numbers
may be even higher for proteomics, owing to the larger
masses of peptides and peptide fragments. Comparing
such data manually to find corresponding signals is very
labour intensive, as each experiment usually consists of
thousands of individual scans. Thus, the goal must be to
obtain a high level of automation during data acquisition
and data processing, allowing scientists to focus on the
informative parts of their data, while still alerting them to
potential errors or problems.

Often it is the goal of a metabolomics experiment to
detect differences between a treated and a control group
of measurements. Therefore, an accurate alignment and
matching of corresponding features in all measurements
is an extremely important part of data preprocessing.
Data matrices representing the detected and aligned fea-
tures across all measurements may be generated in order
to be used for further statistical analysis. It is essen-
tial that an alignment algorithm captures fluctuations
in the chromatographic system that lead to non-linear
distortions of the retention time of individual features
[1,2]. Further, it needs to group those features that are
most similar to each other and to discover whether fea-
tures are present or absent. In the end, a matrix of
grouped peak features of single or related coeluting ana-
lyte ions should be generated to establish relationships
in abundance between different experimental conditions.
Then, based on other characteristics such as parent ion
mass, ion fragments or isotope pattern, an identifica-
tion of those features for integration with downstream
analysis is required. Here we focus on the first few
steps of such an analysis pipeline, including the genera-
tion of a matrix of grouped features for retention time
normalization.

The currently available algorithms for retention time
alignment can be distinguished into two general cate-
gories: peak-based and raw data-based alignment. The
peak-based algorithms require prior peak- or feature-
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finding and often also peak deconvolution to reduce the
effect of overlapping signals, before a score function is
applied to establish correspondence between peaks [3-7].
Raw data-based algorithms on the other hand require
little or no preprocessing, but are computationally very
expensive [8,9]. We will now give a brief characterization
of existing algorithms for the two categories before we
introduce and categorize the algorithms presented in this
paper.

Peak-based algorithms are very sensitive to the correct-
ness of the a priori peak detection. A peak may be defined
as the time-resolved signal intensity trace of an ana-
lyte ion’s corresonding mass matching predefined criteria,
such as the goodness-of-fit to a predefined peak model
shape, together with a signal-to-noise ratio threshold [7].
If a peak is tagged to be absent during preprocessing, it
cannot be aligned by a peak-based algorithm. In order
to handle missing peaks in data matrices for statistical
analysis, Smith et al. [7] then filled the gaps by using
estimates based on prior grouping of the data. Such a
grouping usually consists of at least two groups, e.g. con-
trol and treated group. Then, for a peak missing within
a group, where most other peaks are present, the miss-
ing value can be estimated from the present members of
the group. However, such peak imputation may be erro-
neous if it is only based on the final peak tables and does
not access the original data to ensure that a peak is really
present.

To be able to assign peaks that may not have been
aligned, Krebs et al. [6] proposed an approach based on
prior peak detection and grouping, followed by polyno-
mial interpolation to infer warping in between grouped
peaks. Prince and Marcotte introduced a similar interpo-
lation scheme for raw data-based alignment with dynamic
time warping [8].

A further division of peak-based algorithms may also
be applied concerning the use of mass spectra (MS)
for peak similarity calculation. Warping based on peaks
detected in the total ion chromatogram (TIC) is usu-
ally supplemented by using MS, to increase the number
of true positive peak assignments [4,6,10]. Some algo-
rithms work on a more complete set of extracted fea-
tures, e.g. points of retention time, m/z and intensity
[11,12], but often resort to linear regression in order to
compute a retention time correction, due to the large
amount of points that need to be processed. A more
exhaustive overview of existing feature-based alignment
algorithms to align point sets is given by Lange et al.
[11], especially for the application to LC-MS data in pro-
teomics and metabolomics. Aberg et al. [13] described
the peak correspondence problem for NMR, showing that
there is a significant amount of overlap considering the
algorithms for these, at first sight different, application
domains.
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Raw data-based algorithms operate on the complete col-
lection of (binned) MS data, also termed the uniform
matrix, such as ObiWarp [8], which is based on dynamic
time warping (DTW) with pairwise similarities between
binned mass spectra, or the signal maps approach by
Prakash et al. [9]. Therefore, these algorithms should
find more and possibly better correspondences compared
to the peak-based algorithms, which only have access
to a limited amount of reported peak features. Other
approaches use correlation optimized warping (COW)
[14] for TIC alignment, or generalizations thereof [15,16],
selecting specific mass traces to improve over simple
TIC-based alignment. However, using many mass traces
increases the computational demand, as well as the
amount of data in need of processing, and may also
increase the tendency of aligning noise [15]. Possibly
owing to that computational demand, most raw data-
based algorithms do not consider alignment or matching
of individual points of retention time, m/z and intensity,
but instead only try to correct the retention time devia-
tion for each mass spectrum as a whole. The advantage of
raw data-based methods is that they assign a definite posi-
tion to each mass spectrum together with its corrected
retention time after alignment. They use a pairwise sim-
ilarity function between either TIC or sequences of mass
spectra, finding an optimal global similarity with respect
to their objective function [17-19]. The local correspon-
dences between two raw data sets then allow to select the
mass spectra with the highest pairwise similarities after
the alignment to pinpoint peaks of interest for further
investigation [8].

In this paper we introduce two novel methods for
retention time alignment of multiple GC-MS and LC-
MS experiments, which may be used individually and
in combination as a hybrid method. The first method,
bidirectional best hits peak assignment and cluster exten-
sion (BIPACE), is related to the clique-finding method
described by Styczynski [4], but without relying on decon-
voluted peaks and choosing a different criterion for peak
correspondence and clique coherence, which drastically
decreases computation times. It is a peak-based align-
ment method that automatically finds conserved groups
of peaks among an arbitrary collection of chromatograms,
based on the bidirectional best hit criterion as introduced
by Tatusov et al. [20] and later by Overbeek et al. [21]
for the matching of orthologous genes. Peaks are com-
pared using user-definable similarities based on their mass
spectra, for example with the similarity introduced by
Robinson et al. [10], or by derived similarity functions,
that we will introduce in this work, and are successively
grouped into clusters of best pairwise correspondence.
This method allows to find clusters of arbitrary size, up
to the number of chromatograms under consideration. It
may be applied to different experimental protocols with
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more than just two groups of treatment and control, since
the algorithm requires no prior knowledge of an existing
grouping.

The second method, center-star multiple alignment by
pairwise partitioned dynamic time warping (CEMAPP-
DTW), involves the application of DTW as in [8], but to
all pairs of chromatograms. DTW was first introduced
and used in speech recognition for the alignment of time
dependent feature traces of speech samples [22-24]. One
of the first applications of alignment methods to low-
resolution GC-MS data was performed by Reiner et al.
[25], based on the local squared distance of the TIC.
More recent applications have been reported by Christin
et al. [15], Clifford et al. [17], Prince and Marcotte [8],
and Ramaker et al. [16]. Prince and Marcotte [8] showed
that different local score or cost functions can be used in
order to align data from LC-MS experiments with good
performance. Other methods for the alignment of raw
chromatographic data exist, such as aligning the time
series data to a latent trace, which is constructed from
training series, with an underlying stochastical model [26]
or by different means of regression [27]. We use the
grouped peaks from BIPACE as anchors to constrain the
pairwise DTW alignments, as outlined in a previous pub-
lication [28]. This results in faster computation and at the
same time considerably less memory usage than in the
unconstrained cases through the use of an optimized data
structure, while providing comparable alignment results.
Building on the pairwise alignments, we choose the chro-
matogram with the highest sum of pairwise similarities as
the reference for the final alignment of all remaining chro-
matograms to the reference. We use DTW to compute the
pairwise alignment, due to its applicability to data with
non-linear time scale distortions, its relatedness to classi-
cal sequence alignment algorithms [22-24] and its proven
power to perform retention time correction and signal
alignment [8,15,16].

Methods

First we describe the peak and raw data-based alignment
algorithms BIPACE and CEMAPP-DTW in detail. Then
we combine them to create a new hybrid method that
benefits from the speed and accuracy in peak matching
of the peak-based alignment algorithm, while still provid-
ing a profile multiple alignment of all GC-MS datasets in
reasonable time and space.

BIPACE - multiple alignment by Bidirectional best hits peak
assignment and cluster extension

Given a chromatogram C = {pi,p», .., p¢} as an ordered
set of peaks, we define a peak p = (m,1i,¢) as a triple
of a mass vector m, an intensity vector i, both with the
same dimensions, and a retention time ¢ Peaks can be
matched between chromatograms by exhaustive search,
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if a feasible criterion for their identity exists. Based on
GC-MS electron ionization (EI) fragmentation mass
spectra alone, such a criterion is hard or even impossible
to find especially due to the ambiguity of the mass spectra
of isomers. Additionally, we have to deal with inher-
ent noise, introduced by contaminations of the sample
from external sources (sample preparation) or internal
sources (sample injection, chromatographic system, MS
acquisition). Thus, we use a proven similarity function,
the modified cosine similarity between mass spectra, rep-
resented as (nominal) mass intensity vectors, weighted
by an exponentially penalized difference in retention time
(RT) (acquisition time) of the spectra [10]. For two peaks
p = (my,iy, t,) and g = (my, i, t;) and a retention time
tolerance of D, following [10] we define this similarity
function as:

PRV
fw,q) =sp,q) - em(“’”wi”)), (1)

where s would typically be the cosine value of the angle
between the two peaks’ mass spectral intensity vectors:
s(p,q) = cos L(ip,iz). However, s could also be realized
by any other similarity function defined between two
vectors, such as the negative Euclidean distance, the dot
product, Pearson’s linear correlation or Spearman’s rank
correlation. The similarity function f leads to a good pre-
filtering of candidate peaks for matching throughout our
input chromatograms.

In order to assign peaks to their best corresponding
counterparts, we calculate all pairwise similarites using
the similarity function f between all peaks from dis-
tinct chromatograms. The time required to calculate all
pairwise similarities between peak candidates within the
different chromatograms can be reduced by using a cutoft
for the maximum allowed time deviation. This is achieved
by first calculating the time deviation penalty, whose value
ranges between 0, indicating a large RT difference, and 1
for perfect RT correspondence, and then deciding, based
on that value, whether the proximity indicates a good can-
didate to go on and calculate the cosine score. However,
the overall complexity for this first step remains quadratic
in the number of peaks to be compared.

Apparently, the simplification should only be applied if
the retention time deviation between two chromatograms
is expected to be within a fixed time tolerance and as
long as the order of elution of compounds is roughly pre-
served locally. Otherwise, potential candidates are pruned
too early from the search space. Other similarity functions
than f may also be applicable for some datasets. How-
ever, our experiments show, that f gives the best overall
performance on undeconvoluted spectra with low mass
resolution.
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Assignment of peak pairs

We calculate the pairwise similarities using f as defined
above for all possible pairs of peaks from K different
chromatograms Cj, Cy, ..., Cx (partitions). This allows us
to define a K-partite edge-weighted similarity graph S =
(V,E), where each vertex in one of the K disjoint par-
titions represents a peak from a distinct chromatogram
C; and each edge represents a similarity value of a peak
pair from two different partitions. Ultimately, we want to
enumerate all cliques of S, a problem that relates to the
classic NP-complete problem CLIQUE [29] with a run-
time complexity that is unbearable for realistic problem
sizes. We thus prune S using different heuristics to create
the reduced weighted K-partite graph S’. S’ is then used to
construct the unweighted K-partite bidirectional best hit
graph §”. On this special graph, the CLIQUE problem can
be solved by a polynomial time algorithm since the maxi-
mum degree of each vertex in S” is always smaller or equal
to K [30].

Since only the similarities between peaks of different
chromatograms are considered by our algorithm, we do
not calculate the self-similarity of peaks from the same
chromatogram, which differentiates our method from the
method of Styczynski et al.[4] and allows us to neglect
all edges within partitions. Additionally, we exclude edges
from S if they are outside the maximum retention time
difference window as defined by D, which reduces the can-
didate space for peak matching, but may exclude valid
peak assignments. Figures 1(a) and 1(b) show this exam-
plarily for two peak lists. We then define S’ as the graph
with this reduced edge set £ and V as its vertex set.

Bidirectional best hits merging
In order to identify all bidirectional best hits (BBHs), that
are all cliques of size 2 of §’, we look up for each pair of
peaks p € C and g € C’ from distinct chromatograms C
and C’, the peak with highest similarity to p in C’, denoted
q’, and the peak with highest similarity to ¢ in C, denoted
p.Ifp = p and g = ¢/, then p and g are BBHs of each
other and all peak similarities of p to other peaks in g’s
parent chromatogram and of g to other peaks in p’s par-
ent chromatogram are set to a minimum similarity value,
while the similarity of the two associated peaks p and ¢ is
retained. We then define V” as the set of all vertices that
are part of at least one BBH and define S” = (V’,E”) as
the reduced K-partite graph with V” as its vertex set and
E” as its unweighted BBH edge set. We now want to enu-
merate all maximal cliques of S”, a problem that is known
to be solvable in polynomial time on graphs with a polyno-
mial bound on the number of maximal cliques contained
in the graph [30], as is the case for $” by construction.

We proceed greedily by trying to merge each pair of
BBHs into a clique containing at least k and at most K
peaks, where k > 2 is the minimal clique size (MCS)
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Figure 1 Schematic of the forward and reverse similarity
calculation phase of BIPACE. The hard retention time difference
limit is depicted by shaded cones with dashed outline. Individual
Gaussian retention time penalty functions are mean centered on
each peak’s apex retention time (rt). (@) BIPACE with a Gaussian
retention time penalty function for peaks A through D from
chromatogram 1 to chromatogram 2. (b) BIPACE with a Gaussian
retention time penalty function for peaks A through D from
chromatogram 2 to chromatogram 1 (reverse direction).

parameter. Merging is only performed if the new clus-
ter remains a complete subgraph, which is equivalent to
all peaks within the cluster being BBHs of each other.
Otherwise, we select the largest common fully connected
subgraph and omit all peaks that are not fully connected.
We continue merging until all BBHs have been processed.
Finally, we report cliques with at least k peaks ordered by
their median retention time in a multiple alignment table.
The clique finding is illustrated for three chromatograms
and a limited number of peaks in Figure 2(a) for a maximal
bidirectional-best hit clique and for a non-maximal clique
with one not completely connected peak in Figure 2(b).

Time and space complexity of BIPACE

We need (12()62 comparisons to calculate all pairwise peak
similarities between K chromatograms with £ peaks each,
using a symmetric similarity function f(p,q) = f(q,p).
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Figure 2 Cliques after bidirectional-best hits have been
evaluated with BIPACE. Cliques after bidirectional-best hits have
been evaluated with BIPACE. Subfigure (a) shows a complete clique of
bidirectional-best hits of peak C in all three chromatograms. Subfigure
(b) shows an incomplete case, where peak C in chromatograms 1 and
2,and in chromatograms 2 and 3 has a bidirectional-best hit.
However, peak B in chromatogram 3 is only a bidirectional-best hit of
peak C in chromatogram 1, destroying the possible complete clique
of bidirectional-best hits between peak C in all three chromatograms.

Thus, the calculation of similarities requires O (K?¢2) time
and space, if we need to keep all pairwise similarities,
e.g. for plotting purposes. However, we can save space by
recording for every peak p from chromatogram C; only
its best hit set of size K — 1, containing the best match-
ing peaks g1, 42, ..., gk, where each g; is from a different
chromatogram Cj,j # i. Then, the total size of all best hit
sets is proportional to the number of peaks, K¢, multiplied
by the number of partitions a peak can have best hits for,
K — 1, giving a total space requirement of O(K2¢) for S’

Finding the bidirectional best hit for each peak p of the
K¥ peaks in S” requires that we retrieve p’s best hit g and
q’s best hit p’, and test whether p = p’. This amounts to
O(K%) comparisons for all peaks.

In order to identify all maximal cliques, we employ
a greedy, bottom-up approach based on the BBHs of
each peak. Storing all BBHs clearly requires O(K¥) space.
Then, for each pair of peaks (p,q) from different parti-
tions, we try to merge their corresponding cliques. This
requires checking whether all peaks in the candidate
cliques P and Q are fully connected, which takes 2|P||Q|
comparisons per pair. Since |P| 4 |Q| < |K]|, this amounts
to O(K?¢?) time.

In total, BIPACE requires O(K?¢?) time and O(K*) space.

Multiple alignment projection
Up to now, only the grouped peaks have been aligned,
so we have a peak-based multiple alignment. For a full



Hoffmann et al. BMC Bioinformatics 2012, 13:214
http://www.biomedcentral.com/1471-2105/13/214

multiple alignment of the complete datasets, all unas-
signed signals should also be aligned. In this situation,
one could choose to implement an approach like the
one proposed by Krebs and co-workers [6], selecting a
representative chromatogram as alignment reference and
calculating a cubic spline or other higher order polyno-
mial, to interpolate between the aligned peaks. However,
such a method can only work well if the number of aligned
peaks is high and there are no large areas of unknown peak
assignments in the chromatograms. To circumvent these
problems, we will show in the next section how to use
dynamic time warping (DTW) to calculate signal assign-
ments in between paired peaks, using the same similarity
function as in BIPACE. Additionally, we show how the
aligned pairwise peak groups from BIPACE, or any other
peak alignment method, can be used as alignment anchors
for DTW, before using the pairwise DT'W scores to auto-
matically select a reasonable alignment reference using
the center-star heuristic.

CEMAPP-DTW - Center-Star Multiple alignment by Pairwise
Partitioned Dynamic Time Warping

In this section, we introduce an improved version of
DTW for series of time-resolved feature vectors, as
they occur in GC-MS and LC-MS data processing. In
[28], we described how to speed up DTW using pre-
defined anchors of features which could be matched
a priori with high confidence, while still allowing the
alignment flexibility by defining a neighborhood radius r
around the positions of the anchors. Here, we extend this
approach and show how anchors can also be combined
with other constraints, such as the Sakoe-Chiba Band
constraint [23] to save both execution time and space,
using an optimized data structure for alignment matrix
storage.

Pairwise DTW is a global alignment of two series A =
(a1,a,...ap) and B = (b1, by, ..., by) of lengths M and
N, respectively, where a;,b; € R are the individual fea-
ture vectors of equal dimension L. In the context of GC-
and LC-MS, a feature vector corresponds to a binned mass
spectrum of intensities, a base peak ion intensity or a TIC
value. We assume that mass resolution and range are equal
for the experiments to align, thus only the intensity dis-
tribution over a fixed range of mass channels is used as
feature vector.

The common definition of DTW involves a local dis-
tance function and a global distance or objective function
that should be minimized [17]. To be consistent with
our previous notation, we use an equivalent formulation
using similarities, which then requires maximization of
the objective function. Since A and B are series sampled
at discrete intervals, we seek an optimal matching of ele-
ments (i,j) connecting every element in A to at least one
element in B and vice versa, termed a path or simply
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alignment. In order to find an optimal alignment of A and
B,an (M + 1) x (N + 1) alignment matrix Q is set up,
in which the optimal similarity value for aligning the pre-
fixes (a1, ...,a;) and (b1, .., b)) is stored at position Q(%, ).
A path P = (py1,..., px) thus consists of elements py =
(i,7), where the path length K is bounded by 1 < K <
2 - max(M, N) for non-empty A and B.

Pairwise DTW usually performs a global alignment of
two series of features, requiring that the start and end of
both series have to be aligned: p; = (1,1) and px =
(M, N). However, this constraint can be relaxed for sub-
sequence matches to gain the equivalent of a free-end
gaps alignment [8]. Note that DT'W allows mapping of an
element to multiple counterparts, which differentiates it
from classical sequence alignment, where an element can
only map to at most one counterpart [24]. Additionally, a
continuity constraint requires that P must move only to
directly adjacent cells of the alignment matrix vertically,
horizontally or on the diagonal, such that if px = (i,j), and
Pry1 = (@,)), theni —i < 1landj —j < 1 must hold.
A third constraint requires monotonicity of the path, such
thati/ —i > 0andj —j > O hold, and (' —i) + (/ —j) > 0.

An optimal alignment path satisfying the above con-
straints maximizes the sum of pairwise similarities. This
allows us to define the optimal DTW alignment between
non-empty A and B through the following expression:

M(AYB)( > Q(m)) (2)

DTW(A,B) :== max
DiEP

where P is the set of all possible global alignment paths of
A and B.

Maximization alone would favor the highest number
of steps to align A to B, given the above constraints,
resulting in alternating combinations of vertical and hor-
izontal steps. Hence, additional weighting factors need
to be included to treat diagonal (match), vertical (expan-
sion) and horizontal (compression) steps equivalently [24].
Expansion and compression are similar to insertion or
deletion in classical sequence alignment. We thus define
three weight parameters, Wyasci, Weomp and Wexp, which
allow to vary the degree of flexibility of the alignment
between overadaptation and the shortest possible align-
ment.

Finding an optimal warping path to actually recover the
mapping between A and B can be achieved by applying
the dynamic programming principle and tabulating inter-
mediate optimal results. We thus calculate the value of
each Q(i, j) by applying Equation 3 recursively, with f cor-
responding to the same similarity function as used in the
section about BIPACE. Initialization of row 0 and column
0 with —oo is required to only allow a global alignment,
effectively forcing the alignment of (a3, by).



Hoffmann et al. BMC Bioinformatics 2012, 13:214
http://www.biomedcentral.com/1471-2105/13/214

— o
(G,)) =
Q) QUi = 1,j = 1) + Warenf (@i, b)
max { Q@G,j—1) + Wcompf(ﬂir b})
QG —1,j) + Wexpf(ﬂix bj)

The optimal score can then be found in the bottom-right
entry of the alignment matrix Q, such that DTW (A4, B) =
Q(M,N). We finally correct the optimal score for the
weights to achieve a score that can be used to compare
series of different lengths [8].

Postprocessing - obtaining bijective maps

As described in [8], the obtained map from DTW may not
be bijective, depending on the similarity function used.
The authors of [8] describe a method to select bijective
anchors as control points for a polynomial fit, in order to
interpolate in between the anchors. In CEMAPP-DTW,
however, we choose to define path weights that either
boost diagonal moves by user-definable factors, resulting
in a less or more adaptive alignment path. For symmetric
DTW, these factors can be used to efficiently reduce the
problem of overadaptation of the path, when maximizing
a similarity function and avoiding the need to predeter-
mine additional gap penalties. CEMAPP-DTW reports a
list of the maxima of the similarity function found along
the alignment trace, which coincide with aligned, highly
similar mass spectra.

An efficient datastructure for pairwise DTW alignment with
anchors

The unconstrained pairwise DTW algorithm requires
O(N?) time and space, where N is the number of fea-
ture vectors to be compared. Additionally, due to the
pairwise similarity used, the method requires another
factor of L for each pairwise similarity calculation. For
long feature vectors, L may be larger than N. However,
most regions of the calculated pairwise similarities are
never needed in practice, as chromatograms tend to be
distorted most around the diagonal of such a pairwise
similarity matrix. In practice, the Sakoe-Chiba band [23]
or the Itakura parallelogram [22] constraints are often
used to prune regions that are too far away from the
diagonal.

These constraints still do not capture the chromato-
graphic reality, where retention time distortion is mostly
caused by large peaks eluting from the column, shifting
all subsequent peaks by a nonlinear factor [1]. We there-
fore introduced easily identifiable peaks as anchors to
DTW [28]. These anchors define regions within which the
alignment is calculated exactly, whereas outside of these
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if i=j=0,
if i=0and 0<j<N
if j=0and 0<i<M
3)

for 1<i<N,1<j<M

regions no calculations are performed at all. In order to
implement this idea, here we introduce a partitioned array
data structure to store only those elements that are con-
tained in the anchor-constrained regions. This requires
the previous association of anchors, e.g. by BIPACE or
other methods.

Efficient storage of partitioned array

We use the row compressed storage (RCS) technique
to store all elements of an alignment matrix in a lin-
ear array d, where each element is accessed via an offset
index array idx for each row in the virtual matrix and

P LA

L L

BV
t

Figure 3 Schematic alignment matrix of partitioned dynamic
time warping. Schematic of a pairwise alignment matrix of
partitioned dynamic time warping for two arbitrary chromatograms A
and B. The light shaded region represents the unconstrained
alignment matrix, whereas the dark shaded areas represent the
constrained partitions. For every pair of predefined anchors, in this
case depicted as mass spectra, a small region around the anchor is
kept to allow the alignment a higher degree of flexibility. Each
partition is additionally constrained by a local Sakoe-Chiba band
constraint. The intersection of all constraint sets £ defines the final
layout of the pairwise alignment matrix and thus the number of
elements that are compared and stored.
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=

——

Figure 4 Workflow for evaluation of BIPACE and CEMAPP-DTW. (a) Sequence of preprocessing commands for evaluation of BIPACE. (b)
Sequence of preprocessing commands for evaluation of CEMAPP-DTW. Path indicated with (A) with and (B) without anchors.

a length len for the number of elements stored contigu-
ously in that row. An element of the virtual matrix at
row i and column j can be accessed using the index k =
idx(i) + j in array d. Iteration for virtual row i can be
performed from idx(i) to idx(i) + j,j < len(i). Query of
elements outside of the defined regions returns a config-
urable default value, such as positive or negative infinity.
Setting of such elements has no effect, since the lay-
out is static and determined before initialization of the
matrices.

Layout calculation

The layout of the partitioned array is determined
by explicit constraints, regarding the elements that
require evaluation during the alignment. These con-
straints are defined by geometric primitives within
the 2-dimensional plane, e.g. rectangular regions
defined by the alignment anchors, as well as trape-
zoid or arbitrary other regions. However, the layout
needs to satisfy the monotonicity and continuity con-
straints of DTW. Thus, directly neighbouring adjacent

anchors and anchors with inverted order are detected
and removed.

The final shape of the partitioned array is determined by
the intersection of the set of constraints £, where £ con-
sists of all pairs (i, j) for which the alignment is calculated.
This may lead to a less optimal alignment concerning the
optimization function, but allows for further speedup and
smaller memory footprint. One option here is to include
either a global or a local Sakoe-Chiba band constraint
between successive anchors. The width w for such bands
can be defined by the user either for the whole alignment
matrix (global) or for every partition (local).

We then define Q as the DT'W recursion to calculate Q
using the constraint set L:

s oo ifGHEL
QG,)) = Q(i,j) otherwise. (4)

A schematic of the corresponding partitioned array with
a constraint set £ using anchors and a local Sakoe-Chiba
band constraint is shown in Figure 3.
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Figure 5 Boxplots of the runtimes of BIPACE and CEMAPP-DTW
for the Leishmania dataset. Boxplots of the runtimes of (a) BIPACE
and (b) CEMAPP-DTW for the Leishmania dataset.

Multiple alignment of chromatograms

In order to capture machine dependent fluctuations in
retention times and signal intensities, multiple chro-
matograms are usually measured from the same origi-
nal sample as technical replicates. These often exhibit
notable, but rather small deviations in retention times and
intensities, when compared pairwise.

However, biological replicates show larger deviations
due to the heterogeneity of the sampled population and
corresponding differences in the metabolic state of cells at
the time of harvesting [15].

When comparing the metabolic response of an organ-
ism under different conditions, deviations are even larger,
as some metabolites may not occur at all, and others
occur in different quantities, depending on the affected
pathways of the organism. Thus, a multiple alignment
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algorithm needs to handle all of these aspects as good as
possible.

Reference selection

A general method for multiple alignment of chro-
matograms does not necessarily require a reference to
align to. However, most published algorithms either use a
manually selected reference [3], or construct a reference
by adding otherwise unassigned peaks [5] or by averaging
over total ion chromatograms [17]. Automatic selection
of a reference among the available chromatograms is sel-
domly reported [31] but is beneficial to methods using a
manually defined reference [10] that can introduce a bias
in the process of alignment early on.

In metabolomics and proteomics applications, the num-
ber of measurements typically ranges from dozens to hun-
dreds, such that a multiple alignment algorithm should
scale well and be as memory efficient as possible, since
file sizes may approach several hundred MBytes or even
GBytes per raw data file. To avoid a direct multiple align-
ment, we calculate pairwise DT'W scores between all pairs
of chromatograms first. These scores can be obtained
from the pairwise DTW scores, but faster methods can
also be used to estimate the true scores, e.g. based on
peak-matching and scoring as performed by BIPACE,
although these may not be as accurate. Then, we select
the chromatogram that has the highest sum of scores to
all other chromatograms as the alignment reference. All
remaining chromatograms are then aligned to this center
chromatogram independently of each other [28]. Other
authors report to use comparable clustering methods
[5,15].

Multiple alignment construction

The construction of the multiple alignment differs slightly
from the approach taken in standard sum-of-pairs mul-
tiple sequence alignment, since we use DTW, which is
potentially a non-metric similarity function [32]. Addi-
tionally, every pairwise alignment is a global alignment
without gaps, so in principle we can not worsen the multi-
ple alignment by introducing gaps. However, since DTW
uses compressions and expansions, chromatograms hav-
ing peaks which are absent in the selected reference may
artificially decrease the quality and score of the alignment.
Hence, we can not guarantee that the multiple alignment
will be within a specific error bound of the optimal mul-
tiple alignment. Nontheless, our method performs well in
practice, which will be discussed in detail in the Results
section.

We finally obtain a dense matrix of aligned feature vec-
tor indices, e.g. of the binned mass spectra, or derived
figures, such as the retention time of each mass spectrum
for all chromatograms. In case of CEMAPP-DTW, and in
contrast to BIPACE, there are no missing features within
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ment false positives and true positives for the D and T parameters.
tives and true positives conditioned on retention time tolerance D

the table, as all features are aligned. These matrices will be
used for evaluation of the alignment performance.

Time and space complexity of CEMAPP-DTW

Following the notation for time and space complexity of
BIPACE, we need O(K?¢?) comparisons to calculate all
pairwise alignments between K chromatograms with £
mass spectra each. Using the pairwise DTW alignment
similarities, we select the center chromatogram in O(K)
time and align all remaining K — 1 chromatograms to it
in O(K?) time. If we store the pairwise alignments, they
can be reused at this point, otherwise, they need to be
recalculated in O(K¢?) time. Thus, the calculation of all
unconstrained pairwise DTW alignments takes O (K2£2)
in time and space.

For partitioned DTW, the runtime and space require-
ments for each pairwise alignment are a function of the
partition length s and of £. We then need O({s) time and
space to calculate each pairwise alignment. Using an addi-
tional local Sakoe-Chiba band constraint with width w,
the space and time requirements for partitioned DTW are
O(fw). In total CEMAPP-DTW then requires O(K2¢w)
time and space.

Results

In this section, we first give a short review of exist-
ing strategies for the evaluation of peak and profile-
based multiple alignment algorithms in the context
of metabolomics. We then describe our approach and
define useful metrics to compare alignment quality
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before we evaluate BIPACE and CEMAPP-DTW on two
metabolomics datasets. In order to evaluate our meth-
ods we need to define what a good alignment is. To
achieve this, we can use a ground truth of highly con-
served and putatively grouped peaks, which are confirmed

by MS/MS. For LC-MS in the domain of metabolomics
and proteomics, such data sets were prepared and used
for the evaluation of alignment algorithms [11]. However,
the ground truth defined by these datasets is only well
defined for feature-based alignments and also requires a
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Figure 8 Scatter plots for BIPACE for the Leishmania dataset with alignment precision and recall. The retention time penalized variant of
BIPACE performs better than the plain variant using the rank or linear correlation similarities. The published alignment of Robinson [10] performs

best using a time penalized dot product similarity.
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Figure 9 Scatter plots for CEMAPP-DTW for the Leishmania dataset with alignment true positives and false positives. SubFigure 9(a) shows
alignment true positives and false positives conditioned on anchor radius (columns) and alignment match weight (rows). It is clearly visible that an
anchor radius of R = 0 combined with a match weight of W = 2.25 gives the best results for linear correlation and the dot product. SubFigure 9(b)
shows alignment true positives and false positives conditioned on Sakoe-Chiba bandwidth constraint as relative number of scans (columns). Rows
show whether the constraint was applied globally, indicated as FALSE, or locally, indicated as TRUE. The best results were obtained for a local

window of SC = 0.1 - max{|Al, |B|}.

grouping of individual mass-to-charge ratio (m/z), reten-
tion time (rt) and intensity features, which are currently
not provided by either BIPACE or CEMAPP-DTW. For
GC-MS metabolomics data, Robinson et al. [10] compare
their method against a ground truth defined by a human
specialist.

Each alignment evaluation requires ground truth files,
containing grouped features, such as triples of m/z, rt
and intensity in the case of Lange et al. [11], and sim-
ply rt in the case of Robinson et al. [10]. In the first case
one scan may have multiple features, while in the second
case a scan is a feature that is only identified by its rt. In

order to perform the evaluation, we focused on the cor-
rectly assigned rts and the corresponding scan indices,
since those will usually have the largest deviation across
samples.

The ground truth peak group defines whether a peak
is present in a sample or absent. The results of an align-
ment algorithm are then tested in turn against each
ground truth group. If the alignment algorithm reports
an aligned peak group, we count all of the group’s peaks
that are present in the corresponding ground truth group
as true positives (TP). Peaks that are absent in the
ground truth group and in the reported peak group are
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Figure 10 Boxplots of the runtimes of BIPACE and CEMAPP-DTW
for the wheat dataset. Boxplots of the runtimes of (a) BIPACE and
(b) CEMAPP-DTW for the wheat dataset.

counted as true negatives (TN). A peak that is reported
as absent in the ground truth group, but as present in
the alignment algorithm’s reported group, is recorded
as a false positive (FP). Finally, if a peak is reported as
present in the ground truth peak group, but as absent
in the reported peak group, it is reported as a false
negative (FN).

We then use the following commonly applied measures
to assess the quality of a multiple alignment:

. TP
Precision = ————— (5)
TP + FP
P
Recall = ——_ ©)
TP + FN

Precision - Recall

F1=2 )

"Precision + Recall
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We evaluate the performance of BIPACE and Robinson’s
method using precision and recall, as well as the total TP
and FP numbers. For CEMAPP-DTW, however, the TN
and FN values are not available, since CEMAPP-DTW
reports an alignment for all peaks, so we will compare
CEMAPP-DTW only using absolute TP and FP numbers.

The three major configurations that we will evalu-
ate are schematically shown in Figure 4. We evaluate
each of BIPACE and CEMAPP-DTW individually, before
we evaluate CEMAPP-DTW using the BIPACE align-
ment with the highest F1 score as a constraint set.
The actual alignment is preceded by a preprocessing
phase, in which the peak features are imported and
converted for use in our pipeline. Then, BIPACE is
applied with its processing steps to calculate a multi-
ple alignment, before CEMAPP-DTW is used first with-
out anchors and then with the anchors as defined by
the best multiple alignment of BIPACE. Throughout all
evaluations, we used five different local similarities to
compare the binned mass spectra, namely the cosine
(cosine), the dot product (dot), the negative Euclidean dis-
tance (euclidean), Pearson’s linear correlation (linCorr),
and Spearman’s rank correlation (rankCorr), each with
and without a retention time penalty, as defined in
Equation 1.

Evaluation of BIPACE and CEMAPP-DTW on a reference
dataset

We evaluated the BIPACE method on the Leishmania par-
asite raw data and peak lists published in [10], using as
ground truth the manual multiple alignment reference
from the same paper.

Data preparation and parameter settings
Preprocessing was performed by removing intensites
linked to the derivatization agent at masses 73 and 147.
Due to lack of access to the manually edited peaks lists, we
used the ChemStation (Agilent Technologies) peak data
provided as supplementary material directly and imported
them as peak annotations into our processing pipeline.
The peak data files contained between 169 and 174 peaks
and were stored in tab delimited format. A line in such
a file reported the apex scan index of the correspond-
ing peak for retrieval of the raw mass spectra from the
8 different ANDI-MS/netCDF chromatogram files. Each
of these files contained approximately 2780 centroided
mass spectra. The spectra were binned with nominal mass
accuracy in a range from 50 to 550 Dalton for further
processing.

The reference manual alignment containing 173 aligned
peak groups was then used in order to calculate
the classification performance numbers, as defined in



Hoffmann et al. BMC Bioinformatics 2012, 13:214
http://www.biomedcentral.com/1471-2105/13/214

Page 14 of 20

6000 -
5000
4000
3000 —
2000 -
1000

6000
5000
4000
3000
2000
1000

L1

G201

6000
5000
4000
3000
2000
1000

S0:L

6000
5000
4000

0 3000
2000
1000

Similarity
cosine

dot

SL0:L

euclidean

linCorr

6000
5000
4000
3000
2000
1000

I B B |

6000
5000
4000
3000
2000
1000

I T B |

rankCorr

601

S60:L

6000
5000
4000
3000
2000
1000 -

VN ‘L

T T T T

100 -
150 -
200 -
100 -
150 -
200 -
150 -
200 -

T
=]

100
150
200

T
(=3 (=3 (=] (=]
° o rs) © w ° o

250

250 -

250
-
3100 -

100 —
150 -
200 -

T
o

150 -
200 -
100 —
150 -
200 -

o
(=] (=] (=]
° 5 2 S B B

250 -
250 -
250
250 -

Figure 11 Scatter plots for BIPACE for the wheat dataset with alignment false positives and true positives. Scatter plots for BIPACE for the
wheat dataset with alignment false positives and true positives conditioned on retention time tolerance D (columns) and retention time threshold T
(rows). Instances without retention time penalized similarity function are shown in the NA row/column for reference. It is visible that the unpenalized
instances perform consistently worse on true positives, while they perform better with regard to the number of false positives.

Equation 5. This was performed for each multiple align-
ment reported by either BIPACE or CEMAPP-DTW indi-
vidually, or in conjunction, where CEMAPP-DTW used
the multiple alignment of BIPACE as anchors, following
Figure 4.

We varied the minimum clique size (MCS) parameter
from 2 to 8 chromatograms in order to control the size
of the smallest clique that should be reported by BIPACE.
Other varying parameters for the time penalized instances
included the width parameter D of the retention time
penalty function, as defined in Equation 1. We also used
a threshold parameter T on the value of this function
so that the costly pairwise similarity function was only
evaluated if the retention time penalty function’s value
was greater or equal to 7. This pruning leads to lower

runtimes of BIPACE and CEMAPP-DTW, visualized in
Figure 5.

For CEMAPP-DTW, we assessed two different
approaches, one without any anchors from BIPACE,
and one using the anchors as reported by the best
BIPACE instance, as determined by the F1 measure. Each
CEMAPP-DTW configuration was further parameter-
ized on the weight W used for diagonal matches and
on the Sakoe-Chiba band constraint BC, given as the
percentage of scans from a chromatogram. For those
CEMAPP-DTW instances which used the best BIPACE
anchors, we additionally varied the use of the Sakoe-
Chiba band to be applied globally or locally and the size
of the radius around anchors. In total, we evaluated 3106
different parameterizations.
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The exact configuration and evaluation results for all
parameterizations together with memory usage details are
available in Additional file 1.

Results of BIPACE
Our results for BIPACE show good performance for the
time-penalized dot product, which was also used for
Robinson’s method, but also for the time-penalized vari-
ants of Pearson’s linear correlation (/inCorr) and Spear-
man’s rank correlation (rankCorr). All instances using a
time-penalized variant of the similarity function are indi-
cated in the similarityFunction column of Additional file
1: Table S1 and are shown in Figure 6 for varying T and
D parameters. The impact of the different similarity func-
tions on the runtime of BIPACE can be seen in Figure 5(a),
showing that for BIPACE the runtime median was close
to 38 seconds, while it was reduced for BIPACE with
retention time penalty D and threshold T to less then
10 seconds. Our best result is achieved for BIPACE with
Pearson’s linear correlation as pairwise similarity using
the time penalized variant with a minimum clique size
of MCS = 2, T of 0.25 or 0.0 and D of 2.5 seconds.
The results of the cosine similarity function are equal. For
these best cases, we achieve 1206 true positives, 26 false
positives, 28 false negatives and 84 true negatives. This
results in a precision of 0.98, a recall value of 0.977, and a
F1 value of 0.978. Figure 7 indicates that, for the best per-
forming similarities, the choice of the MCS parameter is
not critical, unless a false positive number of 0 is wanted.
Figure 8 shows that Robinson’s [10] result performs bet-
ter than any of our parameterized instances and achieves
1264 true positives and at the same time only 3 false
positives. Additionally, 3 false negatives and 114 true neg-
atives improve the precision to 0.9976 and the recall to

0.9976, giving an F1 value of 0.9976. An explanation for
this result can be found in our best performing align-
ments. There we see a larger number of false positives,
meaning that our method reports more potential matches,
which are scored as false positives against the given refer-
ence, but would otherwise be true positive matches. Thus,
we suspect that Robinson’s manually defined ground truth
that we evaluate against is probably not error-free. Addi-
tionally, our best parameterizations report a number of
potential aligned peak groups with significant sizes, which
are not contained in the reference at all and are thus
not assignable for the evaluation. If only the number
of false positives is important, for example to retrieve
only highly conserved peak groups with as few errors
as possible, a number of parameterizations achieve that
goal with 488 true positives and only 1 false positive
assignment with maximum clique size of 8, a reten-
tion time threshold T of 0.9 and retention time penalty
D of 0.1.

Results of CEMAPP-DTW

The best scoring CEMAPP-DTW result using the dot
product as a pairwise similarity with diagonal match
weight W of 2.25, a local Sakoe-Chiba band of BC
0.1 and D = 3, using the anchors as defined by the
best-scoring BIPACE instance with an anchor radius of
0 achieves 1149 true positives and 219 false positives.
However, the number of false positives is potentially exag-
gerated since the manual reference alignment contains
absent peaks, which are of course reported by CEMAPP-
DTW and are thus counted as false positives. The best
CEMAPP-DTW result used the dot product without
using anchors and a match weight of 2.25, a global Sakoe-
Chiba band of BC = 0.1 and D = 2.5 and achieved
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Figure 13 Scatter plots for BIPACE for the wheat dataset with alignment precision and recall. The retention time penalized variant of BIPACE
using the dot product performs better than the plain variant using the cosine as the similarity function. The evaluation results of some instances
report neither false positive nor false negative assignments, leading to precision and recall values of 1. These instances in general report only about
one third of the maximum number of true positives reported for other parameterizations.

739 true positives and 549 false positives. The results for
CEMAPP-DTW are visualized in Figure 9(a) for varying
match weight W and anchor radius R and in Figure 9(b)
for varying global or local (BCScope) Sakoe-Chiba band
constraint BC.

Evaluation of BIPACE and CEMAPP-DTW on a real world
dataset

In order to assess the quality of BIPACE and CEMAPP-
DTW with and without BIPACE anchors on a GC-MS
dataset of a more realistic size, we used samples from
a plant metabolomics experiment [33]. Spring wheat
(Triticum aestivum L.) was grown under atmospheric and
increased CO, concentration conditions [34] in a free-air
carbon dioxide (CO;) enrichment (FACE) field experi-
ment. The wheat was grown, harvested, and sampled at
maturity in two successive years (2005, 2006), and pre-
pared for analysis with GC-MS according to the proto-
col published in [33] in order to determine whether the
plants showed a metabolic response in their grains evident
through CO; enrichment.

Our evaluation was based on a total of 40 chro-
matograms and 10 interspersed blank chromatograms.
Each year was represented by 20 chromatograms, divided
into two groups of 5 chromatograms each, with one
technical replicate per chromatogram, summing to 10

chromatograms per condition and year. Blank runs were
excluded from this evaluation. The chromatograms con-
tained between 4615 to 4685 centroided mass spectra.
The maximal scan difference that we found was around
50 scans which amounts to a maximum retention time
deviation of 32 seconds between the groups of 2005 and
2006.

Data preparation and parameter settings

The acquired raw data was exported using the ANDI-
MS/netCDF export function of the Xcalibur software
(Thermo Fisher Scientific Inc.). For all further prepro-
cessing steps, we used our framework Maltcms. The data
was first binned along the mass axis with nominal mass
accuracy by arithmetic rounding to create a dense sig-
nal matrix. Then, for each signal matrix individually, the
intensities were normalized to length one for each column
(binned mass spectrum) to remove linear scaling effects in
intensities.

In order to assess the grouping performance, we per-
formed a peak detection with XCMS [7], using the
matched filter method with a signal-to-noise ratio of 5 and
full-width at half height of 5 in order to find well repre-
sented peaks. The peak finding step reported between 410
and 465 peaks per chromatogram. The apex scan indices
for each chromatogram’s peaks were stored in one tab
separated value file for each chromatogram.
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Figure 14 Scatter plots for CEMAPP-DTW for the wheat dataset with alignment true positives and false positives. SubFigure 14(a) shows
alignment true positives and false positives conditioned on anchor radius (columns) and alignment match weight (rows). It is clearly visible that an
anchor radius of R = 0 combined with a match weight of W = 2.25 gives the best results for linear correlation and the dot product. SubFigure 14(b)
shows alignment true positives and false positives conditioned on Sakoe-Chiba bandwidth constraint BC as relative number of scans (columns).
Rows show whether the constraint was applied globally or locally (BCScope). The best results were obtained for a local window of 0.1 - max{|A|, |B|}.

We then chose signals within a retention time win-
dow of 4+/ — 30 seconds. To be counted as a com-
plete group, the scans corresponding to the tags were
required to have a pairwise cosine similarity between
their binned mass spectra of > 0.99 throughout all
chromatograms and a maximum mass deviation of
0.01 Dalton. The selection process lead to 184 peak
groups containing peaks appearing in all chromatograms,
which defined our ground truth for the evaluation
of the multiple alignments produced by our methods.
This reference selection and grouping was performed
by a profiling method, which was recently added to
MeltDB [35].

The evaluation was then performed following the
flowchart in Figure 4. BIPACE was run using the raw
ANDI-MS/netCDF files as input together with the tab
separated value peak lists. Subsequently, the CEMAPP-
DTW instances without anchors from BIPACE were run,
before finally the CEMAPP-DTW instances using the
BIPACE anchors from the best scoring multiple peak
alignment were executed.

The reference data was then compared to the align-
ment results generated by the three separate eval-
uation workflows for BIPACE, CEMAPP-DTW, and
BIPACE+CEMAPP-DTW using the five different similar-
ity functions mentioned at the beginning of the Results
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section, all of them plain and in combination with a reten-
tion time penalty, as described by Robinson ez al. [10],
who only report use of the time penalized dot product. We
combined each similarity function with the time penalty
function as in Equation 1.

In order to assess the precision of BIPACE, we started
with a minimum clique size (MCS) parameter value of 40
chromatograms, meaning that only those groups that con-
tained exactly one peak from each file were reported. For
the time penalized instances we varied the width parame-
ter D of the retention time penalty function. We also used
the threshold parameter T on the value of this function
so that the costly pairwise similarity function was only
evaluated if the retention time penalty function’s value
was greater than or equal to 7. The positive effect of this
pruning on the runtime of BIPACE and CEMAPP-DTW
is visible in Figure 10.

For CEMAPP-DTW, we assessed two different
approaches, one without any anchors from BIPACE,
and one using the anchors as reported by the best
BIPACE instance, as determined by the F1 measure. Each
CEMAPP-DTW configuration was further parameter-
ized on the weight W used for diagonal matches and
the Sakoe-Chiba band constraint width BC, given as the
percentage of scans from a chromatogram. For those
CEMAPP-DTW instances which used the best BIPACE
anchors, we additionally varied the use of the Sakoe-
Chiba band to be applied globally or locally and the size
of the radius around anchors.

The exact configuration and evaluation results for
all 1641 parameterizations including memory usage are
available in Additional file 2.

Results of BIPACE

The results for BIPACE on the wheat dataset show
very good performance in absolute and relative numbers.
Figure 11 shows the absolute numbers of true positive
versus false positive assignments for varying T (rows)
and D (columns) parameters. The overall best result
is achieved using the dot product (dot) for instances
using the time penalty function, and the cosine (cosine)
for instances not using the time penalty function. The
instances using no additional retention time penalty are
visible at the bottom left of Figure 11. These do not
achieve as many true positives as the time penalized
variants, however, they tend to produce fewer false posi-
tives as well. The negative Euclidean distance (euclidean)
in combination with a time penalty, produces the
fewest number of false positives, regardless of the value
of D.

Figure 12 shows the dependency of true and false pos-
itives with regard to the MCS parameter. This parameter
shows the relation of a small MCS value to a high num-
ber of true positives, but also to more false positives,
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since a larger number of small cliques with lower indi-
vidual support are reported. Larger cliques have a high
support for each contained peak and are thus more influ-
ential for the total number of true positives, but they occur
less often, as is visible for MCS = 40, where each peak
group must contain peaks from all 40 chromatograms.
Again, as in Figure 11, dot product and cosine give the
best results in absolute numbers of true and false positive
assignments.

The precision and recall plot in Figure 13 does not
clearly visualize a superior parameterization, but from
Additional file 2: Table S2 we see, that the dot prod-
uct is the best similarity function for retention time
penalized instances with MCS = 10, 6891 true pos-
itives, 36 false positives, and 433 false negatives. The
best parameterization without retention time penalty also
used the cosine with MCS = 2, resulting in 5357 true
positives, 39 false positives and 1924 false negatives.
However, the retention time penalized variants tend to
have a lower runtime, depending on the T parameter
used.

There are no true negatives reported for the wheat eval-
uation, as there were no missing peak annotations in the
ground truth. This explains the high number of false neg-
atives for BIPACE, due to not completely connected peak
groups, which prohibits BIPACE to form larger cliques.
The peaks which could not be assigned to any cliques are
consequently missing from the reported multiple align-
ments.

Results of CEMAPP-DTW

For CEMAPP-DTW, the results are comparable to those
obtained for the Leishmania dataset. Without the anchors
defined by BIPACE, CEMAPP-DTW has fewer true pos-
itive results and more false positive results. Here, the
time penalized variant of the dot product with D =
30 seconds, BIPACE anchors, a local Sakoe-Chiba band
constraint of BC = 0.1, and a matchWeight = 2.25
achieves the best result with 6459 true positives, 387
false positives and 514 false negatives. The best result
using no anchors from BIPACE uses the dot product
with D = 1 seconds retention time penalty, a global
Sakoe-Chiba band constraint of 0.1, match weight W =
2.25, achieving 5017 true positives, 2194 false positives
and 149 false negatives. These results are illustrated in
Figure 14, showing the dependencies of true and false pos-
itives on the different parameters. Figure 14(a) shows that
a small anchor radius R = 0 combined with a match
weight W = 2.25 yields the highest number of true pos-
itives. In Figure 14(b), the dependency between the use
of a global or local (BCScope) Sakoe-Chiba band ver-
sus different values for the band width parameter BC is
shown. In general, a local band of width 0.1 yields the
best results.
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Discussion

The results of BIPACE and CEMAPP-DTW presented in
the previous sections show the advantage of using a reten-
tion time penalty as an additional criterion together with
the mass spectral similarity function. The runtime box-
plots in Figures 5(a) and 10(a) show the advantage of
using the T parameter as a threshold on the retention
time penalty function. If the value of the retention time
penalty function is larger than the 7, then the costly sim-
ilarity functions are applied, otherwise, the calculation is
stopped immediately for that peak pair.

Therefore, tuning of the T parameter is one possible
option to speed up the calculation of both BIPACE and
CEMAPP-DTW. Since the time penalized similarity vari-
ants consistently perform better than the non-penalized
ones, it is also advisable to check on the T parameter. Our
results show that this parameter should initially be set to
a rather small number, since it does not directly corre-
spond to the expected retention time deviation. Finally,
the minimum clique size MCS is an important parameter
for BIPACE and influences the number of cliques that are
reported in the multiple alignment. Using a high value for
MCS returns only those cliques whose peaks are all bidi-
rectional best hits of each other and thus support each
other as members of the clique. Lower values for MCS
return more cliques, but at the expense of returning a
higher number of smaller cliques with potentially more
misaligned peaks.

CEMAPP-DTW on the other hand has a few other
parameters to tune. Our results show that the most impor-
tant ones are the use of anchors and an anchor radius of 0,
meaning that the DTW alignment must pass through the
anchor positions for example defined by BIPACE . Addi-
tionally, the use of a local Sakoe-Chiba band constraint
and a match weight of 2.25 are beneficial for the number
of true positives CEMAPP-DTW is able to achieve.

Concerning the best similarity function to use, there is
no decisive answer possible from our results. In accor-
dance with [8], Pearson’s linear correlation and Spear-
man’s rank correlation give good results in terms of low
false positive numbers, but time penalized dot product
and cosine tend to give significantly higher true positive
numbers. Using the time penalty function as a pre-filter
for the actual similarity function seems to reduce the dif-
ferences of the individual similarity functions. However,
the instances using a correlation-based similarity have a
significantly longer runtime (Figures 5 and 10), than the
ones using the dot product or cosine similarity.

Conclusions

We have introduced a fast and accurate method for
multiple peak alignment of GC-MS data, BIPACE, that
is capable of finding groups of similar peaks between
chromatograms from different experimental groups (e.g.
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treatment and control), achieving a high number of true
positive and a very low number of false positive assign-
ments. Our method achieves results comparable to that
of Robinson et al. [10], while being easily tunable to a
very low false positive rate via the minimum clique size
parameter.

With the use of the peak groups aligned by BIPACE as
anchors within partitioned DTW, we address one major
issue of similar profile-alignment algorithms, namely their
quadratic time and space complexity by partitioning the
pairwise alignment matrix into adjacent regions. Thus,
strong peak candidates, such as reference compounds
with unique mass traces (LC-MS) or characteristic frag-
mentation patterns (GC-MS) are definitely aligned, while
weaker peaks that were not discovered during peak find-
ing are also aligned, but with more flexibility.

We have shown that the partitioned DTW algorithm
used in CEMAPP-DTW on its own is able to calcu-
late a profile-based multiple alignment in less time and
with fewer space requirements when compared to uncon-
strained DTW. Combining CEMAPP-DTW with the
aligned peak groups from BIPACE as alignment anchors
allowed us to improve both on the runtime, as well as on
the number of true positives recovered by the alignment.
This combination of the two algorithms is feasible if a def-
inite alignment is not the main requirement, but instead
the output of CEMAPP-DTW is used for a subsequent
retention time correction of the profile data. For a definite
multiple peak alignment BIPACE is the better alternative.

Additional files

Additional file 1: Archive containing evaluation tables for the
Leishmania parasite dataset. The complete evaluation table giving the
parameters and classification results for BIPACE, CEMAPP-DTW and
Robinson'’s [10] method for the Leishmania parasite dataset is contained in
a zip-archive along with the corresponding figures. Table S1 in the
manuscript corresponds to the file ‘evaluation.csv' in this archive.

Additional file 2: Archive containing evaluation tables for the wheat
dataset. The complete evaluation table giving the parameters and
classification results for BIPACE and CEMAPP-DTW for the Wheat dataset is
contained in a zip-archive along with the corresponding figures. Table 52
in the manuscript corresponds to the file ‘evaluation.csv’ in this archive.
The corresponding raw dataset together with experimental parameters,
peak lists and reference multiple peak alignment is available from the
Metabolights database at http://www.ebi.ac.uk/metabolights/MTBLS21.
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