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Abstract

Background: The analysis of complex diseases is an important problem in human genetics. Because multifactoriality
is expected to play a pivotal role, many studies are currently focused on collecting information on the genetic and
environmental factors that potentially influence these diseases. However, there is still a lack of efficient and thoroughly
tested statistical models that can be used to identify implicated features and their interactions. Simulations using large
biologically realistic data sets with known gene-gene and gene-environment interactions that influence the risk of a
complex disease are a convenient and useful way to assess the performance of statistical methods.

Results: The Gene-Environment iNteraction Simulator 2 (GENS2) simulates interactions among two genetic and one
environmental factor and also allows for epistatic interactions. GENS2 is based on data with realistic patterns of
linkage disequilibrium, and imposes no limitations either on the number of individuals to be simulated or on number
of non-predisposing genetic/environmental factors to be considered. The GENS2 tool is able to simulate
gene-environment and gene-gene interactions. To make the Simulator more intuitive, the input parameters are
expressed as standard epidemiological quantities. GENS2 is written in Python language and takes advantage of
operators and modules provided by the simuPOP simulation environment. It can be used through a graphical or a
command-line interface and is freely available from http://sourceforge.net/projects/gensim. The software is released
under the GNU General Public License version 3.0.

Conclusions: Data produced by GENS2 can be used as a benchmark for evaluating statistical tools designed for the
identification of gene-gene and gene-environment interactions.

Keywords: Gene-environment interaction, Computer simulation, Complex disease, Epistasis, Genetic, Genome-wide
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Background
Most of the common human diseases with high mortality
rates (such as cancer, heart disease, obesity, diabetes, and
several common psychiatric and neurological conditions)
are classified as complex diseases [1,2]. By definition, a
complex disease is a multifactorial complex trait generally
caused by multiple predisposing loci (possibly interact-
ing) and by the exposure to particular environmental
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factors [3]. Although several genetic and environmental
factors have been shown to affect susceptibility to partic-
ular complex diseases, the intricate sets of relationships
between these factors and disease susceptibility are not
yet exhaustively understood. For this reason, typically,
the proportion of risk accountable to genetics and envi-
ronment remains mostly unpredictable [4]. Explanations
for their unpredictability might include the occurrence of
still unidentified factors and/or the presence of non-linear
interactions among already identified factors; for example,
some combinations of genetic and environmental factors
could have disease risks that are consistently higher than
those predicted by a single component.
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Gene-environment interactions (G×E) are expected to
influence complex phenotypes, for example, disease risk.
Hence individuals with predisposing genetics are more
likely to develop a disease when exposed to a damaging
environment than individuals, exposed to the same envi-
ronment, without predisposing genetics [5,6]. The role
of G×E is so relevant that it is generally accepted that
neglecting them can lead to an underestimation of dis-
ease risk, and may explain some of the inconsistencies in
replications in different studies [7].
Complex phenotypes are regulated by pathways and

biochemical mechanisms that involve many genetic prod-
ucts. Hence, in addition to interactions among genes and
environment, interactions among different genetic loci
(G×G) can also influence disease risk. In particular, G×G
are defined as epistatic when the allelic variations of one
gene alters the effect of variations of another gene [8].
Epistasis has been identified in human diseases [9,10], and
its role in public health has been highlighted [8].
Surprisingly, despite the general agreement on the rel-

evance of G×E and G×G for correct disease risk estima-
tions, only a few epidemiological studies have attempted
to identify them. Indeed, studying the complex interac-
tions among risk factors is a daunting task that requires
large data sets and specific research designs. Furthermore,
the best statistical method for the identification of G×G
and G×E in case-control data sets [11,12] is still widely
debated. The performance of statistical methods that are
used for the identification of G×G and G×E are typi-
cally influenced by many factors: sample size, number of
involved factors, type of interaction, model of inheritance,
allelic frequencies, distributions of the environmental fac-
tors, and relative strength of different factors affecting
disease risk. Unfortunately, only a few of these features
are generally assessable in real populations. A further lim-
itation of the epidemiological studies that have been per-
formed so far, is the limited knowledge about the impact
of linkage disequilibrium (LD) on association statistics in
the presence of G×G and G×E. It has been demonstrated
that when G×G occur and the assayed SNPs are not the
functional ones but SNPs that are in LD with them, com-
mon statistics like r2 are generally inappropriate and tend
to lead to an over/underestimation of disease risk [13].
A possible strategy to assess the performances of statis-

tical methods is to test them against simulated data sets
where the relevant features influencing the disease risk are
known (for a review of genetic simulators see [14] and the
North Shore LIJ Research Institute List of Genetic Analy-
sis Software [15]). With this aim, some of the authors [14]
of the present work proposed a novel approach to simulate
case-control samples based on:

1. a Multi-Logistic Model (MLM) that can model any
type of G×G and G×E,

2. a mathematical approach (Knowledge Aided
Parameterization System, KAPS) that can translate
biological and epidemiological information to MLM
parameters, and

3. GENS (Gene Environment iNteraction Simulator), a
software that produces simulated data sets.

Using that approach interactions between one genetic and
one environmental factor only could be simulated; there-
fore, it was not possible to account for epistatic G×G.
Moreover, all simulated loci were considered to be inde-
pendent and thus it was not possible to account for LD
[16].
In the present paper, we describe an extension of the

previous model that overcomes such limitations using
a new strategy that simulates up to two-genes×one-
environment interactions with the possible inclusion of
epistasis. Importantly, the present algorithm can be eas-
ily extended to manage more than two genetic and one
environmental factors. However, to simplify the design of
biologically meaningful interactions, we limited the num-
ber of features (see the Discussion section for details).
Furthermore, the inclusion of two genetic factors (with
epistatic interaction) that in turn interact with a con-
tinuous environmental factor heavily increased of the
complexity of the model. Indeed, statistical methods that
can deal with even two genetic factors are still far from
being functionally useful for real, large data sets [17].
To provide a realistic genetic background to the simu-
lated populations, we implemented our extended model
as a module which can be integrated with simuPOP, a
forward-time populations simulator that reproduces real-
istic demographic and evolutionary features [18].

Implementation
GENS2 workflow
Figure 1 depicts the GENS2 algorithm flowchart that
is used to generate case/control synthetic populations
starting from a set of desired epidemiological parame-
ters (Table 1). The simulation procedure has two main
branches: the definition of genetic and environmental
information for each individual (left side of Figure 1), and
the translation of user desired epidemiological parameters
along with G×E and G×G models into the correspond-
ing MLM parameters (right side of Figure 1). The two
branches merge in the last step of the procedure, where
disease status is assigned to each individual. In the fol-
lowing sections we will describe the three parts of the
algorithm in detail, emphasizing the main advances of the
new software over the previous one.

Generation of the synthetic data set
The generation of the starting sample is carried out by a
series of simuPOP scripts [19] that
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Figure 1 GENS2 work flow. Chart of the steps that were used to
simulate a complex disease in a population using the simuPOP and
GENS2 systems.

• download phased genomic data from the HapMap
public database [20],

• select a subset of SNPs or entire genomic regions, and
• let the population evolve until it reaches the desired

size and frequencies for some disease predisposing
loci (DPLs).

To obtain a synthetic data set, simuPOP drives a forward-
time simulation to obtain a population that is composed of
the desired number of individuals and genotypic frequen-
cies for all the markers. The use of this simulator helps
to retain genetic realism in the final population, in par-
ticular with respect to the patterns of LD (for a detailed
description of this process, please see [19]). When the
genetic information for each individual has been obtained,
GENS2 assigns environmental exposures following a user
defined Gaussian distribution for the disease environ-
mental variable, and several other user defined distribu-
tions (Gaussian, Uniform or Binomial) for a number of
other environmental variables not related with the disease
(environmental-confusing variables).

Definition of the penetrancemodel
The second branch of the simulation procedure (right
side of Figure 1) is implemented in the Knowledge Aided
Parameterization System 2 (KAPS2) subsystem which
accepts the input of some standard epidemiological mea-
sures for the relevant features listed here:

• the expected prevalence of the disease in the sample,
• the id in the input data set of one or two DPLs,
• the allelic frequencies of DPLs (calculated

automatically from the input population),

• the effect on disease risk of each DPL in terms of the
relative risk of the high risk homozygote compared
with the other homozygote,

• the dominance relation of each DPL (W), expressed
as a number in the interval [0 − 1], representing the
dominance relation (W=0 dominant, W=1 recessive,
0<W<1 co-dominant), and

• the distribution parameters and the effect of the
environmental factor on disease risk, expressed as
odds ratio (OR) of the risk related to one-unit
increase in the exposure.

KAPS2 also requires G×E and G×G models when two
DPLs are provided. In particular:

i) G×E models are chosen from a set of four predefined
models, two models of interaction between DPLs and
the environment, and two special models in which
there is no gene-environment interaction but in
which only one genetic or environmental factor
contributes to the disease risk (see Table 2).

ii) G×G models (epistasis) are accepted in the form of
percentage variations on the risk associated with a
maximum number of three (out of the possible nine)
combined genotypes.

KAPS2 converts population features andG×E andG×G
models into the corresponding parameters of the MLM in
two steps. First, starting from the provided epidemiologi-
cal parameters, KAPS2 calculates the penetrance of each
combined genotype assuming no interaction between the
genotypes of each locus. Epistasis (if defined) is thenmod-
eled through a deformation procedure, reflecting G×G
variations, of the set of penetrance values that keeps it
coherent with user defined epidemiological parameters.
In this step, when there is more than one way to change
the values of the set (i.e. less than three epistatic varia-
tions are provided), a mathematical optimization system
is employed to find the deformation characterized by the
smallest variation on the values not constrained by user
defined epistatic variations. An example of the results
of the epistasis application is presented in Figure 2. In
particular, the figure shows the disease penetrance for
each combined genotype before (left panel) and after
(right panel) the penetrance of one combined genotype
(namely (3,3)) has increased by 20%. Thus, by following
the procedure presented above, the variations in the dis-
ease penetrance values of other combined genotypes are
automatically distributed.
Consequently, for each combined genotype, KAPS2

computes the coefficients of a penetrance function of the
environmental exposure that is associated with the com-
bined genotype in the MLM. In this step G×E are also
modeled; the Additive model (ADD) assumes that com-
bined genotypes with higher penetrance have a higher
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Table 1 The epidemiologic parameters that were used for the sample simulation

Task Required parameters Description

SimuPOP

1) Starting data (Hap Map) Chromosomes, or chromosome regions, or markers
and marker distance.

The genomic regions containing the loci that will be
simulated

Population (ethnicity) The starting frequency and linkage data to be used
in the sumulation

2) Simulation of sample’s genetic data DPLs (Disease Predisposing Loci) Loci that will influence the disease risk.

Target allelic frequency Final allelic frequencies at the end of simuPOP sim-
ulation

Final sample size Number of individuals that compose the population
by simuPOP

GENS2

Starting sample simuPOP generated sample Sample data generated with simuPOP

Disease prevalence The expected disease prevalence in the whole sam-
ple

Environment Environmental factor distribution Distribution of the environmental exposure in the
whole sample

Environmental factor OR Odds ratio associated with one-unit-increase of the
environmental exposure

Noisy Environmental variables As many as desired confounding environmental
exposures not associated with the disease risk
(gaussian, binomial or uniform distributed)

Genetics DPLs These are the same DPLs as selected in the simuPOP
simulation

High risk alleles The allele, for each DPL, associated with the highest
disease risk

DPLs genotypic RR The relative risk of the high risk homozygote versus
low risk homozygote, for each DPL

Dominance The relationship of the risk associated with the het-
erozygote with that associated with the homozy-
gotes (recessive, dominant, codominant)

Epistasis model (G×G) Percent increase of the risk associated with each
combined genotype

Gene Environment interaction G×E model One of the four predefined interaction models

basal disease risk, while the risk associated with the envi-
ronmental factor is just added. On the other hand, in
the modulative model (GEM), combined genotypes with

Table 2 Predefined gene-environment interactionmodels
in GENS2

Interaction
model

Description

Genetic Model
(GEN)

Disease risk depends only on the genetics of
an individual

Environmental
Model (ENV)

Disease risk depends only on environmental
exposure of an individual

Gene Environ
ment interaction
Model (GEM)

The genetics modifies the effect of the envi-
ronment in modulating the disease risk

Additive Model
(ADD)

The effects of environment and genetics are
independent and sums in modulating the
disease risk

higher penetrance have the same basal risk although they
are more ’sensitive’ to the effect of the environment (see
the Methods section).

Disease risk of an individual
In the final step the two branches of the procedure
(Figure 1) join. Once the genetics and the environmental
exposure for each individual are given, its disease risk can
be obtained by evaluating the penetrance function associ-
ated with its combined genotype. The risk is then used to
assign a disease status using a random process.

Software
To create simulated populations, we employed an existing
tool, SimuPOP, and the implementation of the above
described algorithm. Using SimuPOP it is possible to drive
a forward-time simulation that results in a population
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Figure 2 Example of application of epistasis. Disease penetrance for combined genotypes before (left panel) and after (right panel) the
application of an epistasis model with an increment of 20% of the risk associated with the (CC-TT) composed genotype. The x- and y- axes plot the
reported genotypes of the two DPLs; the z-axis plots the risk associated with each combined genotype.

composed by the desired number of individuals and hav-
ing specified genotype frequencies for a set of markers.
To be usable in GENS2, populations should be created
in SimuPOP as described previously [19]. This procedure
generates a data set that contains genotypic data as a set
of bi-allelic loci, for each individual in the population.
GENS2 accepts as input a population produced by

SimuPOP and the ids of the DPLs chosen from those
present in the data set. For each DPL, the penetrance
values are provided as relative risk (RR) and domi-
nance model (see [14]). RR is calculated as the risk
ratio of the high over the low risk homozygotes. For
each combination of DPL genotypes, the percentage vari-
ation of the penetrance value if epistasis occurs can
be assigned. GENS2 assigns environmental factor expo-
sure on the basis of a user-defined Gaussian distribu-
tion. Any remaining non-implicated loci can be consid-
ered as background noise. Similarly, GENS2 can produce
an arbitrary number of non-associated random envi-
ronmental exposures, following a Gaussian, uniform or
binomial distribution, that act as further background
noise.
On the basis of the selected type of G×G and

G×E, GENS2 calculates the coefficients of the MLM as
described in the Method section.
For each individual, GENS2 assigns the disease status

(affected or unaffected) on the basis of its disease risk by
applying the MLM and using a random process.
The main output of the software can be either a sin-

gle file or several files for a set of subpopulations of a
given size produced by means of a subsampling proce-
dure. Subsampling allows bootstrapping procedures to
be executed on data sets produced with the same fea-
tures. The output of GENS2 is in the form of a table in
which each row represents an individual and the columns
contain, from the left to the right, disease status, gen-
der, environmental exposures and genotypes for each
individual.

Two possible formats for the genetics output are avail-
able: phased haplotypes or genotypes. In both output for-
mats the initial columns are identical to those described
above; however, they differ in the way the genetic infor-
mation for each individual is represented. In the phased
haplotype format, there are two columns for each SNP
that report the allele status (either A, C, T or G) on each
chromosome. In the genotype format, each SNP is rep-
resented by one number (1, 2 or 3), where 2 represents
the heterozygote and 3 represents, for DLPs, the high risk
homozygote or, for all the other SNPs, the lower frequency
homozygote.
In addition to the main output file, GENS2 outputs a

log file that contains an extensive report of all the inter-
mediate steps in the procedure and the values used to
obtain the populations. Optionally, a file containing the ID
and genomic position of the SNPs in the data set can be
returned.
GENS2 is designed to be used either from the command

line as a Python script, or through a graphical user inter-
face, similar to a wizard, that prompts the user in the spec-
ification of all required parameters [see Additional file 1].
Overall, the computational time complexity of the sim-

ulation procedure depends by both simuPOP and GENS2.
For GENS2, the procedure is dominated by the assign-
ment of the disease status to all individuals in the pop-
ulation. Indeed, after the KAPS2 module has performed
the translation of user provided parameters into MLM
parameters in bounded constant time, the time complex-
ity becomes linear in the number of individuals and the
number of represented variables (genotypes and envi-
ronmental exposures) for each individual in the simu-
lated population. On the other hand, the amount of time
required to perform a simulation with simuPOP depends
on the size of the simulation and scales roughly linearly
with the number of markers and individuals that are
used [19]. GENS2 is written in Python and is completely
open-source. The software is freely available from [21].
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Results and discussion
Here we describe a method based on the MLM to simu-
late two genetic and one environmental factors interacting
in the determination of a disease risk. The method is
implemented in GENS2, a software that is freely available.
To test populations produced by GENS2, we performed

a set of analyses on some representative populations. The
aim was to emulate a case in which GENS2 was used to
assess the performances of a feature selection method. In
particular, all the analyses were performed using a logis-
tic regression (glm function in R) with a different model
for each test and considering the status as the dependent
variable.
The first test was a single-marker analysis on a popu-

lation of 1,000 cases and 1,000 controls with two DPLs
in two distinct genomic regions, with no epistasis and an
additive G×E model. The association of each marker with
the status was tested using logistic regression analyses
with model: disease risk = genetic factor + environmental
factor. As expected, the most significant associations were
those of DPLs [see Additional file 2]. The result showed
that the environmental variable was also associated with
the disease (p < 10−6). Furthermore, non-causative mark-
ers in LD with the two DPLs also showed a significant
association that was roughly proportional to the value of
r2 with the DPLs.
The second test was similar to the first, except that

10,000 cases and 10,000 controls and a modulative G×E
model for the DPLs were used. For this test, the logis-
tic regression was used by considering both an additive
model (disease risk = genetic factor + environmental fac-
tor) and a multiplicative model (disease risk = genetic
factor * environmental factor). None of the markers, when
tested by additive model, reached a Bonferroni corrected
significance level [see Additional file 3, middle panel].
Conversely, DPLs were found to be significant when
the multiplicative model was explicitly considered. Non-
causative markers in LD with them were also found to be
significant. Notably, this more complex model required a
10-fold increase in the sample size to achieve the same
significance level as the previous test.
Finally, we tested an example of two DPLs with no

marginal risk, an epistatic interaction (+20% penetrance
for the (3,3) combined genotype) and an additive G×E
model in a population of 5,000 cases and 5,000 controls.
Because of the higher computational cost of this analy-
sis, we performed the test on only a subset of about 1,200
markers surrounding the two DPLs. The results are dis-
played in Figure 3. The top panel shows the results of
a single-marker analysis. As expected, no markers were
found to be significantly associated when tested individ-
ually. Thus, all possible 2-markers interactions (bottom
panel) were tested. Only the gene-gene interactions of
DPLs and of markers in strong LD with them were found

to be significantly associated with the status after a Bon-
ferroni correction (red dots).
The model described here can handle, in principle, any

number of DPLs and environmental variables. However,
we chose to limit the implementation to a relatively small
number of factors (two genetic and one environmental)
so that setting up the model does not become too com-
plicated for the user. In this way, we reached a balance
between the complexity of the represented phenomena
and simplicity in the definition of the model. Moreover,
the best strategy to identify even simple interactions as
single G×G and G×E with binary environmental vari-
ables it is still debated (for an example of the debate,
see the report on the 2009 Genetic Analysis Workshop
[11,12,17]). For this reason, we believe that a set of simu-
lated populations in which all features are known provides
an important tool for the identification of the best strategy
to identify and study G×G and G×E.
Several methods simulating genetic data have been pro-

posed, many of them also handle complex LD patterns
and polygenic traits [22,23]. For example, HAPGEN2 [22]
simulates multiple polymorphic loci that are in LD and
in the same chromosomal region. HAPGEN2 can simu-
late G×G, including epistasis, between two loci; however,
the available models are limited to a predefined set. More-
over, this program cannot handle G×E and the number
of cases and controls that are produced cannot be con-
trolled. Another tool, gs [23], similarly simulates multiple
loci with a realistic pattern of LD; it can modulate a quan-
titative trait (as disease risk) and can also manage G×G
and G×E. In gs the user can define G×G between two
loci in two ways: one, by providing a penetrance matrix
for combined genotypes or, two, by selecting a penetrance
matrix from a predefined set of G×G models. However,
both these approaches have some limitations. Although
the first allows great control over the penetrance of each
genotype, it easily leads to a loosening of control on
marginal effects, making the replication of real popula-
tions difficult. The second approach, on the contrary, is
too restrictive and does not allow any possible interac-
tion to be simulated. For simulation of G×G, gs allows
the user to input a list of rules regarding specific combi-
nations of genotypes and levels of environmental values,
and the corresponding risk levels. Again, this approach
makes it very difficult to control the overall characteristics
of populations in terms of marginal effects of genetic and
environmental factors. The approaches described above
can simulate complex interactions by loosening control
on overall population characteristics or, alternatively, can
keep the overall population characteristics under con-
trol by limiting the freedom to specify the interactions.
Another strategy to simulate G×G and G×E is to man-
ually write functions or sets of rules that associate each
combination of genes and environmental factors to a risk
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Figure 3 Association test for the case of epistatic interaction. The population comprised 5,000 cases and 5,000 controls. Two DPLs with no
marginal risk (RR=1), an epistatic interaction (+20% penetrance for the (3,3) combined genotype) and an additive G×E model (odds ratio (OR)=1.2)
were used. The two DPLs are in two distinct genomic regions (Chr 8: 117,948,182 - 119,256,695 in yellow; Chr 10: 114,408,939 - 115,256,799 in cyan). In
the upper panel, the Manhattan plot shows the significance of the association (− log10 (p-value)) of each marker when tested individually (each dot
represents a different marker). The red dashed line represents the significance threshold (0.05 after Bonferroni correction) and the green dashed lines
mark the position of DPLs. In the middle panel, the r2 of each marker with the DPL in the same region is shown. In the bottom panel, the significance
of the association for each 2-loci interaction (grey scale, nonsignificant; red scale, significant at a 0.05 level after Bonferroni correction) is shown.

value. Although this strategy provides more freedom, it
is very difficult to set up when the control of marginal
effects of single factors is desired. We believe that GENS2
provides a better balance between the freedom to define
possible interactions among factors and the control of the
overall population characteristics.
The simulated populations produced with GENS2 can

be thought of as a sampling of an ideal infinite popula-
tion that has the characteristics specified by the user. From
this point of view, it is easy to understand that fluctua-
tions of observed values around the expected ones can
occur. Among the elements that mostly affect these fluctu-
ations, are sample size, allele frequencies, and penetrance
values. In particular, small sample sizes increase the effect
of sampling error and thus, as expected, these fluctua-
tions tend to vanish as the sample size is increased [see
Additional file 4]. This property can be used to test statis-
tical methods because it allows the user to assess how well

the methods perform as population and sample features
change; conversely, it helps to assess the statistical power
of methods in the presence of population features that can
only be presumed.
Although the GENS2 part of the simulation process is

reasonably fast, the procedure to simulate large popula-
tions using simuPOP takes time to complete. It would be
difficult to simulate a large number of samples without a
cluster system, unless multiple (small) samples are drawn
from the same large population.

Conclusions
GENS2 allows the simulation of gene-gene and gene-
environment interactions among two genetic and one
environmental factor in relation to the risk to develop a
complex disease. It is based on data with a realistic pat-
tern of LD and it has no limitations either on the number
of individuals that can be simulated or on the number



Pinelli et al. BMC Bioinformatics 2012, 13:132 Page 8 of 11
http://www.biomedcentral.com/1471-2105/13/132

of genetic and environmental factors within a simulated
data set. Furthermore, a large amount of effort has been
channeled into allowing the input of parameters as stan-
dard epidemiological quantities so that the software is
immediately usable by the biomedical community.
GENS2 provides large biologically realistic data sets

with known features that can be used to challenge, and
eventually improve, the statistical tools that are designed
to identify those interactions.

Methods
Here we present the mathematical background underly-
ing the extension of the earlier model [14] to the case of
two (possibly interacting) DPLs. For simplicity, we have
described the case of two DPLs and one environmental
factor. Thus, we can generally assume that:

1. the genetics can influence the disease risk either
directly or by modifying the effect of the
environment.

2. the genetic loci can have independent effects (no
epistasis) or can interact in an epistatic manner, and

3. the DPLs are not in LD.

The Multi-Logistic Model
To model these situations we applied the MLM, here
briefly summarized, that uses a different logistic func-
tion for each combination of the two genotypes [14]. The
dependent variable of the functions is the disease risk
while the independent variable is the environmental expo-
sure. For diploid loci, denoted by A and B two disease
predisposing alleles, there are three distinct genotypes for
each locus, namely AA, Aa, aa and BB, Bb, bb. For an indi-
vidual carrying a combined genotype (ga, gb) (with ga ∈
GA = {AA,Aa, aa} and gb ∈ GB = {BB,Bb, bb}) who
is exposed to the environmental level x, the disease risk
is defined under the MLM by the conditional probability
P

(
affected

∣∣ga, gb, x) , which is parameterized as:

P
(
affected

∣∣ga, gb, x) =[
1+exp

{
α(ga,gb) + β(ga,gb) x

}]−1

(1)

where α(ga,gb) and β(ga,gb) are free parameters determined
by the genetic factors that determine the shape of the
function.
To simulate a population, the coefficients α(ga,gb) and

β(ga,gb) of the logistic functions that produce the desired
population features have to be determined. This task is
performed by the KAPS2 module that finds the corre-
sponding MLM coefficients by considering all the desired
population features within a set of biological constraints.

Determination of MLM parameters
Let Pga and Pgb be the genotypic frequencies for variables
A and B and letm be the prevalence of the disease. Starting
from these values and using the independence hypothe-
sis for the variables A and B, the probability P(ga,gb) for
an individual to carry the genotype (ga, gb) is the prod-
uct Pga Pgb . If for each combined genotype (ga, gb) the total
risk for the disease insurgence TR(ga,gb) is known, then this
parameter represents the probability for an individual to
be affected given the carried genotype (ga, gb). The value
of this parameter is obtained with the MLM as

P(affected|ga, gb)=
∫
X

PE(x)[
1+exp

{
α(ga,gb)+β(ga,gb) x

}] dx
≡ TR(ga,gb) (2)

where X is the domain of the environmental variable.
Because every logistic function in MLM is character-

ized by its own parameters, the 3 × 3 pairs of values
(α(ga,gb),β(ga,gb)) that satisfy the constraints expressed by
equation (2) need to be found.

Modeling G×E
In general, equation (2) admits infinite solutions. How-
ever, the G×E model imposes some constraints on the
coefficients. Thus, by fixing the value of one of the coef-
ficients β(ga,gb), hereafter denoted as βAB, the number of
degrees of freedom of the system can be reduced, draw-
ing one solution from the equation system. By convention,
we chose to associate βAB to the genotype with highest
risk; it is easy to show that this value corresponds to the
natural logarithm of the odds ratio of the risk which is
related to the increase of one unit of the environmental
exposure. Constraints imposed on the system by each one
of the proposed gene environment interactions model are
summarized below:

• Genetic effect (GEN): α(ga,gb) �= 0 and β(ga,gb) = 0
∀ (

ga, gb
) ∈ GA × GB and

¬[α(ga,gb) = α(gx,gy)∀
(
ga, gb

)
,
(
gx, gy

) ∈ GA × GB].
• Environmental effect (ENV): α(ga,gb) = α(gl ,gk) and

β(ga,gb) = β(gl ,gk) = βAB �= 0
∀ (

ga, gb
)
,
(
gl, gk

) ∈ GA × GB.
• Modulative effect (GEM): α(ga,gb) = α(gl ,gk) and

β(ga,gb) �= 0 ∀ (
ga, gb

)
,
(
gl, gk

) ∈ GA × GB.
• Additive effect (ADD): α(ga,gb) �= 0 and

β(ga,gb) = βAB �= 0 ∀ (
ga, gb

) ∈ GA × GB.

When the interactionmodel, thematrix containing total
risk values for each combination of genotypes, namely
TR(ga,gb), and the value for the coefficient βAB have been
defined, a set of six transcendent equations can be written
with the coefficients of the logistic functions (except βAB)
as the unknown variables; these equations admit exactly
one solution [14].
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Modeling G×G
To determine TR(ga,gb), further assumptions concerning
the role played by G×G are required. First, the values that
are used need to be consistent with the provided disease
prevalencem, namely

P(affected) =
∑

ga∈GA

∑
gb∈GB

TR(ga,gb)P(ga,gb) ≡ m (3)

Moreover, the total risk values associated with the geno-
types of a single locus are related to those of combined
genotypes via marginalization:

P(affected|ga) = 1
Pga

∑
gb∈GB

TR(ga,gb)P(ga,gb) ≡ TRga (4)

P(affected|gb) = 1
Pgb

∑
ga∈GA

TR(ga,gb)P(ga,gb) ≡ TRgb (5)

In general, once the marginals TRga and TRgb are given,
there are infinite choices for the matrix TR(ga,gb) that sat-
isfy the constraints imposed by Eq.s (4) and (5); each
matrix is representative of a particular G×G model. Of
the possible choices, the case of no epistasis represents
a situation where TR(ga,gb) is determined starting from
the fixed values of TRga and TRgb only. In such a model,
genetic factors independently contribute to the probabil-
ity of being affected and are conditionally independent
given the disease status. Under these assumptions the fol-
lowing relationship which satisfies the constraints of Eq.s
(4) and (5) is easily obtained:

TRI
(ga,gb) = TRga TRgb

m

Notice that the superscript “I” is a reminder that the
independent polygenic model has been assumed.
Using an independent polygenic model and a deforma-

tion procedure, epistatic interactions among DPLs can be
modeled to obtain a matrix TRE

(ga,gb) (where superscript
“E” stands for epistatic) that still complies with constraints
(4) and (5). In this approach, epistasis is modeled as a
departure from the independent polygenic model via a
change (positive or negative) in one or more entries of
TRI

(ga,gb).
Let � ∈ R3×3

[−1,1] be a matrix with the same dimen-
sionality as TRI , where each entry �(ga,gb) represents the
variation of the element TRI

(ga,gb) as a result of the epistatic
interaction of the combined genotypes (ga, gb). By defini-
tion TRE

(ga,gb) = TRI
(ga,gb) + �(ga,gb) and must satisfy the

condition

0 ≤ TRE
(ga,gb) ≤ 1 ∀ (

ga, gb
)

(6)

Using the expressions in Eq.s (4) and ( 5) we get

∑
gb∈GB

(TRI
(ga,gb) + �(ga,gb))Pgb = TRga (7)

∑
ga∈GA

(TRI
(ga,gb) + �(ga,gb))Pga = TRgb (8)

Because by construction, the matrix TRI
(ga,gb) already sat-

isfies the constraints (4) and (5), the two following consis-
tence conditions can be derived,

∑
gb∈GB

�(ga,gb)Pgb = 0 (9)

∑
ga∈GA

�(ga,gb)Pga = 0 (10)

Once the quantities TRga , TRgb , Pga and Pgb are given, the
constraints (9) and (10) define a convex region in R3×3

in which the elements are assignments for the entries of
matrix �(ga,gb). The specification of an epistatic model
is, therefore, made through the definition of an incre-
ments matrix �(ga,gb) that complies with the constraints
(9) and (10) and that also satisfies the positivity condition
for TRE

(ga,gb). It can be difficult for a user to specify such a
matrix in a way that does not violate the above constraints.
However, the number of entries of �(ga,gb) that the user
has to provide (paying attention to avoiding extreme or
off-range values) can be reduced by letting the system find
the remaining entries.
More precisely (in the two variables case), given the con-

straints of Eq.s (9) and (10) from one up to three entries
for�(ga,gb) can be provided following the rule that any pair
must lie on the same row or in the same column. If the user
correctly provides three values, the system admits only
one assignment for unspecified values of�(ga,gb); however,
if the user provides less than three values, there are an
infinite number of ways to choose the remaining entries
of �(ga,gb). In such a case, instead of randomly choosing a
solution, a solution that maximizes an “objective function”
is chosen. The problem of fixing the remaining values of
�(ga,gb) can be represented as a continuous mathemat-
ical programming problem with decision variables that
are the non-user-provided entries of �(ga,gb) and whose
admissible region can be determined by Eq.s (9), (10) and
(6).
An objective function can be used to minimize the

variance of the set of ratios �(ga,gb)/TRI
(ga,gb) computed

∀ (
ga, gb

)
corresponding to non-user-assigned �(ga,gb).

Such a function is suitable for use in all situations in which
the relationships between existing variables for which the
user does not provide increments are to be maintained as
far as is possible.
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Establishing the disease status
Once the coefficients of the MLM are fixed, the disease
risk for each individual in a population can be established
by substituting the coefficients associated with the carried
genotype into Eq. (1) and then by evaluating the resulting
logistic function forthe exposure level of the environ-
mental disease factor. Finally, to assign the disease status
to each individual, the disease risk is compared with a
random number drawn from a uniform distribution.

Availability and requirements
Project name: Gene-Environment iNteraction Simulator
2
Project home page: http://sourceforge.net/projects/
gensim/
Operating system(s): Platform independent
Programming language: Python
Other requirements: SimuPop, OpenOpt, wxPython
(optional)
License: GNU GPLv3
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Additional file 1: The GENS2 graphic user interface. Flowchart
showing a typical way of using GENS2 through its graphical user interface.
Portable Network Graphics (.png) image file.

Additional file 2: Association test in the case of additive G×E. The
population comprised 1,000 cases and 1,000 controls. Two DPLs (RR=1.6,
W=0.5) in an additive G×E model (OR=1.2) with no epistatic interaction
were present. The two DPLs are in two distinct genomic regions (Chr 8:
115,755,575-120,750,913 in yellow; Chr 10: 112,253,020-117,247,095 in
cyan). In the upper panel, the Manhattan plot shows the significance of the
association (− log10 (p-value)) of each marker when tested individually
(each dot represents a different marker). The red dashed line represents the
significance threshold (0.05 after Bonferroni correction) and the green
dashed lines mark the position of the DPLs. In the bottom panel, the r2 for
each marker with the DPL in the same region is shown. Portable Network
Graphics (.png) image file.

Additional file 3: Association test in the case of modulative G×E. The
population comprised 10,000 cases and 10,000 controls. Two DPLs (RR=1.6,
W=0.5) in a modulative G×E model (OR=1.2) with no epistatic interaction
were present. The two DPLs are in two distinct genomic regions (Chr 8:
115,755,575-120,750,913 in yellow; Chr 10: 112,253,020-117,247,095 in
cyan). In the upper panel, the two Manhattan plots show the significance
of the association (− log10 (p-value)) of each marker when tested
individually (each dot represents a different marker), using a multiplicative
and an additive model in the logistic regression. The red dashed line
represents the significance threshold (0.05 after Bonferroni correction) and
the green dashed lines mark the position of DPLs. In the bottom panel, the
r2 of each marker with the DPL on the same region is shown. Portable
Network Graphics (.png) image file.

Additional file 4: Expected and observed penetrance values plotted
for each combined genotype and for different sample sizes. In each of
the panels one of the possible combined genotypes is shown. The
genotypes (1, 2, and 3) are ordered according to their predicted affect on
the overall disease risk. The x-axes show the sample size and the y-axes
show the risk. The green lines represent the expected risk, the blue lines
show the median observed risk, and the red dashed lines indicate the
minimum and maximum observed disease risk in 100 replicates. Portable
Network Graphics (.png) image file.
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