
METHODOLOGY ARTICLE Open Access

Faster Smith-Waterman database searches with
inter-sequence SIMD parallelisation
Torbjørn Rognes1,2,3

Abstract

Background: The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic
methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD
technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further
speed could be gained by other approaches to parallelisation.

Results: A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues
from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue
query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650
six-core processor system, which is over six times more rapid than software based on Farrar’s ‘striped’ approach.
SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in
speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST
was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on
processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public
License.

Conclusions: Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman
database searches more than six times faster than before. The approach described here could significantly widen
the potential application of Smith-Waterman searches. Other applications that require optimal local alignment
scores could also benefit from improved performance.

Background
The alignment of two biological sequences is a funda-
mental operation that forms part of many bioinformatics
applications, including sequence database searching,
multiple sequence alignment, genome assembly, and
short read mapping.
Smith and Waterman [1] described a simple and gen-

eral algorithm requiring O(N3) time and O(N2) memory
to identify the optimal local sequence alignment score
using a substitution score matrix and a general gap pen-
alty function. Gotoh [2] showed that with affine gap
penalties the optimal local alignment score could be
computed in just O(N2) time and O(N) memory.
When the optimal alignment score needs to be com-

puted many times, for example when searching a

sequence database, the computation time becomes sub-
stantial. Several approaches have been pursued to
reduce the time needed. Heuristic approaches like
BLAST [3,4] are considerably faster, but are not guaran-
teed to discover the optimal alignment.
Reconfigurable hardware in the form of FPGA (Field-

Programmable Gate Array) can also accelerate the speed
of alignment score computations. Li et al[5]. reported
speeds equivalent to about 23.8 billion cell updates per
second (GCUPS) with DNA sequences, on a state-of-
the-art FPGA board. Search speed is often reported in
GCUPS, which indicates the billion (giga) number of
cells in the alignment matrix (query sequence length
times total number of database residues), processed per
second.
The algorithm can also be implemented with various

forms of parallelisation in software running on more
common hardware. Pairwise alignment of separate
sequences is in principle “embarrassingly” parallel

Correspondence: torognes@ifi.uio.no
1Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-
0316 Oslo, Norway
Full list of author information is available at the end of the article

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

© 2011 Rognes; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://dna.uio.no/swipe/
mailto:torognes@ifi.uio.no
http://creativecommons.org/licenses/by/2.0

because the computations for each pair of sequence are
completely independent. Alpern et al[6]. suggested
improving speed by performing several independent
alignment score computations in parallel by dividing the
bits of wide registers into several narrower units and
using instructions to perform arithmetic operations on
these units individually. This form of parallelism within
a register was later made much simpler and easier by
microprocessor manufacturers with the introduction of
technologies like MMX, SSE, SSE2, MAX, MVI, VIS,
and AltiVec, which are now generally referred to as
SIMD technology. Several implementations take advan-
tage of the SSE2 instructions available on Intel proces-
sors [7]. The approach where parallelisation is carried
out across multiple database sequences is also known as
inter-task parallelisation, in contrast to intra-task paral-
lelisation where the parallelisation occurs within a single
pair of sequences.
Efforts have since mostly concentrated on parallelisa-

tion within a single alignment of one pair of sequences.
Figure 1 illustrates the main approaches. Wozniak [8]
suggested computing cells along the minor diagonal in
the alignment matrix in parallel because these calcula-
tions are independent. Rognes and Seeberg [9] found that
using cells along the query sequence was faster despite
some data dependences, because loading values along the
minor diagonal was too complicated. Farrar [10] intro-
duced a “striped” approach where computations were

carried out in parallel in several separate stripes covering
different parts of the query sequence to reduce the
impact of some of the computational dependencies. Far-
rar’s striped approach is generally the fastest, and he has
reported speeds of more than 11 and 20 GCUPS on four
and eight cores, respectively [11]. Szalkowski et al[12].
described the SWPS3 implementation which uses the
striped approach of Farrar, claiming speeds of up to 15.7
GCUPS on a quad-core processor. The performance was
highly dependent on query length though. Using the
P07327 query sequence, with a typical protein length of
375 residues, SWPS3 performance was roughly 9
GCUPS.
The Cell processor manufactured by Sony, Toshiba

and IBM, have one main core (Power Processing Ele-
ment, PPE) and 8 minor cores (Synergistic Processing
Elements, SPEs). These cores have SIMD vector proces-
sing capabilities. Cell processors are found in some IBM
servers (QS20) as well as the Sony PlayStation 3 (PS3)
(only 6 SPEs available). Several implementations for this
processor have been described. SWPS3 by Szalkowski et
al[12]. used the Farrar approach and claimed speeds on
the PS3 of up to 8 GCUPS. Also here the performance
was highly dependent on query length. With the P07327
query sequence, SWPS3 performance was less than 2
GCUPS on the PS3. Wirawan et al[13]. also employed
the Farrar approach in their implementation called
CBESW and claimed speeds on the PS3 of over 3.6
GCUPS, while the performance was 2.2 GCUPS with
the P07327 query sequence. Farrar also reported speeds
of 15.5 GCUPS on an IBM QS20 and up to 11.6
GCUPS on the PS3 using the same query [11]. Rudnicki
et al[14]. described an implementation that used paralle-
lisation over multiple database sequences on the PS3
and reported speeds approaching 9 GCUPS.
Graphics processors (GPUs) can also accelerate align-

ments. Several implementations have employed the
CUDA interface to Nvidia GPUs. The CUDASW++ tool
by Liu et al[15]. reportedly performed 9.5 GCUPS on
the single-GPU GeForce GTX 280 and 14.5 GCUPS on
the dual-GPU GeForce GTX 295. Ligowski and Rud-
nicki [16] reported speeds of up to 14.5 GCUPS on the
dual-GPU GeForce 9800 GX2. In 2010, Liu et al[17].
reported speeds up to 17 and 30 GCUPS by CUDASW+
+ 2.0 on the single-GPU GeForce GTX 280 and the
dual-GPU GeForce GTX 295, respectively. Recently,
Ligowski et al[18]. reported a speed of 42.6 GCUPS on
the GeForce GTX 480.
The main advantage of the inter-task parallelisation

approach where multiple database sequences are pro-
cessed in parallel as described by Alpern et al[6]. is that
it simply avoids all data dependences within the align-
ment matrix. This approach does not seem to have been
explored much in later implementations using SIMD

database sequence(s)

query sequence

A CB D

Figure 1 Approaches to vectorisation of Smith-Waterman
alignments. Alignment matrices are shown with the elements that
form the first five vectors processed indicated in black, blue, red,
green and yellow. For simplicity, vectors of only 4 elements are
shown, while 16 elements would normally be used. (A) Vectors
along the anti-diagonal, described by Wozniak et al[8]. (B) Vectors
along the query, described by Rognes and Seeberg [9]. (C) Striped
approach, described by Farrar [10]. (D) Multi-sequence vectors,
described by Alpern et al[6]. and in this paper.

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

Page 2 of 11

technology apart from the work by Rudnicki et al[14].
However, in the GPU-based tools [15,16] this approach
is common. The aim of the present study was to explore
the use of this approach further using SIMD on ordin-
ary CPUs.
Here the algorithm is implemented on Intel processors

with SSSE3 [7] with parallelisation over multiple data-
base sequences as illustrated in Figure 1D. Instead of
aligning one database sequence against the query
sequence at a time, residues from multiple database
sequences are retrieved and processed in parallel. Rapid
extraction and organisation of data from the database
sequences have made this approach feasible. The
approach has been implemented in a tool called SWIPE.
The approach also involves computing four consecutive
cells along the database sequences before proceeding to
the next query residue in order to reduce the number of
memory accesses needed.
The performance of the new implementation has been

extensively tested using different scoring matrices, gap
penalties, query sequences and number of threads. The
speed of SWIPE was almost constant at more than 100
GCUPS on a dual Intel Xeon X5650 six-core processor
system for a wide range of query lengths. SWIPE was
about six times faster than SWPS3 and Farrar’s own
implementation for a typical length query, but the factor
varied between 2 and 18 depending on query length and
number of threads used. Two versions of BLAST were
tested and the speed was found to be highly dependent
on the score matrix. SWIPE was about twice as fast as
BLAST using the BLOSUM50 matrix, while BLAST was
about twice as fast as SWIPE using the BLOSUM62
matrix.

Methods
Benchmarking
Benchmarking was performed on compute nodes in the
Titan high performance cluster at the University of
Oslo. Entire nodes were reserved to ensure that no
other major processes were running. All data was initi-
ally copied to a fast local disk to reduce the influence of
the computer networks and minimize file reading time.
The output from all programs was redirected to/dev/
null to minimize performance differences due to the
amount of output. All combinations of programs, num-
ber of threads, query sequences, score matrices, gap
open penalties and gap extension penalties were run 15
times and the median total wall clock execution time
was recorded.

Software
Table 1 lists the software packages that were bench-
marked, including their version numbers and command
line options used.

SWIPE was written mainly in C++ with some parts
hand coded in inline assembler and some using SSE2
and SSSE3 intrinsics. It was compiled for 64 bit Linux
using the Intel C++ compiler version 11.1. Source code
is available at http://dna.uio.no/swipe/ under the GNU
Affero General Public License, version 3. An executable
binary and score matrix files are also available at the
same location. The same files are included in a gzipped
tar archive as additional file 1.
The source code for Farrar’s STRIPED software was

downloaded from the author’s website and compiled
with the GNU gcc compiler as specified in the supplied
Makefile [11]. The Makefile was also modified to com-
pile STRIPED using the Intel compiler, to see if there
were any differences in performance.
The binary executable for the SWPS3 program was

downloaded from the authors’ website and used directly
[12].
Precompiled binaries for BLAST and BLAST+ were

downloaded from the NCBI FTP site [4].
Graphs were drawn using Gnuplot version 4.5.

Hardware
Performance tests were carried out on Dell PowerEdge
M610 blade servers with 48 GB RAM and dual Intel
Xeon X5650 six-core processors running at 2.67 GHz.
The X5650 processors have simultaneous multithreading
capability also known as hyper-threading (HT). With
HT enabled, each of these computers has a total of 24
logical cores.

Threads
The programs were run using 1 to 24 threads. To take
full advantage of the hardware a number of threads
equal to the number of logical cores is usually the most
appropriate. There are however important differences
between software on the effect of HT and in the ability

Table 1 Programs included in performance testing

Program Version Command line

BLAST 2.2.24 ./blastall -p blastp -F F -C 0 -b 0 -v 10 -a $T -M
$M -G $GO
-E $GE -i $Q -d $D

BLAST+ 2.2.24+ ./blastp -seg no -comp_based_stats F
-num_alignments 0
-num_descriptions 10 -num_threads $T -matrix
$M
-gapopen $GO -gapextend $GE -query $Q -db $D

SWIPE 1.0 ./swipe -v 10 -a $T -M $M.mat -G $GO -E $GE -i
$Q -d $D

STRIPED ./striped -c 10 -T $T -i -$GO -e -$GE $M.mat $Q
$D.fsa

SWPS3 20080605 ./swps3 -j $T -i -$GO -e -$GE $M.mat $Q $D.fsa

Command line variables: threads ($T), score matrix file name ($M), gap open
($GO) and extension ($GE) penalties (positive values), query file name ($Q),
database file basename ($D)

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

Page 3 of 11

http://dna.uio.no/swipe/

to make efficient use of the cores available. To simplify
comparisons, some of the tests were only performed
with 1 or 24 threads.

Database sequences
UniProt Knowledgebase Release 11.0 [19] consisting of
both Swiss-Prot release 53.0 and TrEMBL release 36.0
of 29 May 2007 was used for the performance tests.
This database consists of 4 646 608 protein sequences
with a total of 1 517 383 530 amino acid residues. The
longest sequence contains 36 805 residues.
This database was chosen because the size was large

enough to be realistic but smaller than the apparent 2
GB file size limit of some software. The database also
did not contain any of the special J, O or U amino acid
residue symbols that some of the software could not
handle. Finally, this release of the database should be
available for download in the foreseeable future, making
it suitable also for future benchmarking.
The current version of SWIPE will not work with

databases split by formatdb into separate volumes.
SWIPE therefore cannot search databases larger than
about 4 billion amino acids.
The database was converted into FASTA format by a

simple Perl script and then formatted with NCBI for-
matdb version 2.2.24 into the NCBI BLAST binary data-
base format [4]. This binary format was read by SWIPE,
BLAST and BLAST+, while STRIPED and SWPS3 read
the FASTA-formatted database file directly.

Query sequences
The 32 query sequences with accession numbers P56980,
O29181, P03630, P02232, P01111, P05013, P14942,
P00762, P53765, Q8ZGB4, P03989 (replacing the identical
but obsolete P10318), P07327, P01008, P10635, P58229,
P25705, P03435, P42357, P21177, Q38941, O60341,
P27895, P07756, P04775, P19096, P28167, P0C6B8,
P20930, P08519, Q7TMA5, P33450 and Q9UKN1, ranging
in length from 24 to 5478 residues were retrieved from the
UniProt database [18]. Most of them have previously been
used several times for performance testing. To simplify
comparisons, some of the tests were only performed with
the 375 residues long P07327 query, representing a protein
of roughly average length.

Score matrices and gap penalties
All 82 different combinations of amino acid substitution
score matrices and gap penalties accepted by BLAST
were tested. The matrices used were BLOSUM45, BLO-
SUM50, BLOSUM62, BLOSUM80, and BLOSUM90
from the BLOSUM series [20] as well as PAM30,
PAM70, and PAM250 from the PAM series [21].
Matrices were obtained from the NCBI FTP site. Rows
and columns for stop codons (*) were removed from the

matrices for compatibility with the SWPS3 program.
SWPS3 would only run successfully using the BLO-
SUM45, 50 and 62 matrices. To simplify comparisons,
some of the tests were only performed with the BLO-
SUM62 matrix and gap open and extension penalties of
11 and 1, respectively, which is the BLAST default.

Results
Algorithm
The optimal local alignment score of two sequences can
be computed using a dynamic programming approach.
The recurrence relations for the algorithm of Smith and
Waterman [1] with the modifications of Gotoh [2] for
affine gap penalty functions are shown below.

Hi,j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max

⎧⎪⎪⎨
⎪⎪⎩

Hi−1,j−1 + P[qi, dj]
Ei,j
Fi,j
0

∣∣∣∣∣∣
i > 0

∩
j > 0

0

∣∣∣∣∣∣
i = 0
∪

j = 0

(1)

Ei,j =

⎧⎨
⎩
max

{
Hi,j−1 − Q
Ei,j−1 − R

|j > 0

0 |j = 0
(2)

Fi,j =

⎧⎨
⎩
max

{
Hi−1,j − Q
Fi−1,j − R

|i > 0

0 |i = 0
(3)

S = max
1�i�m∩1�j�n

Hi,j (4)

The query sequence q of length m contains residues
qi. The database sequence d of length n contains resi-
dues dj . Hi,j is the score for aligning the prefixes of q
and d ending in the alignment of residues qi and dj . Ei,j
and Fi,j are the scores of aligning the same prefixes of q
and d but ending with a gap in the query and database
sequence, respectively. P[qi , dj] is the score of aligning
residues qi and dj with each other according to the sub-
stitution score matrix P. Q is the sum of gap open and
extension penalties while R is the gap extension gap
penalty. S is the overall optimal local alignment score.
The calculations are carried out column by column.

Only parts of the H, E and F matrices need to be kept
in memory: a single element of the F matrix as well as
two arrays containing m elements each, corresponding
to one column of the H and E matrices.

Implementation
The main features of the implementation are described
below.

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

Page 4 of 11

Parallelisation over sixteen database sequences
Residues from 16 different database sequences are pro-
cessed in parallel as indicated in Figure 1D. These 16
residues are all simultaneously compared to the same
query residue. The operations are carried out using vec-
tors consisting of 16 independent bytes. The 16 residues
are fed into sixteen independent channels. When the
first of these sixteen database sequences ends, the first
residue of the next database sequence is loaded into the
channel. The databases sequences are read in the order
they are found in the original database file. In contrast
to the approach by Rudnicki et al. [14], the database is
not sorted by sequence length. Figure 2 illustrates this
approach.
Compact core code of ten instructions
The basis for the computations of the values in each cell
in the alignment matrices are the recurrence relations
described in the Algorithm section. The computations
can be written in as little as ten assembly instructions
that constitute the core of the inner loop of the compu-
tations, as shown in Figure 3. These ten instructions
compute in parallel the values for each vector of 16 cells
in independent alignment matrices. The exact selection
of instructions and their order is important; this part of
the code was therefore hand coded in assembler to max-
imise performance. In the figure, H represents the main
score vector. The H vector is saved in the N vector for
the next cell on the diagonal. E and F represent the
score vectors for alignments ending in a gap in the
query and database sequence, respectively. P is the vec-
tor of substitution scores for the database sequences
versus the query residue q (see temporary score profiles

below). Q represents the vector of gap open plus gap
extension penalty. R represents the gap extension pen-
alty vector. S represents the current best score vector.
All vectors, except N are initialised prior to this code.
Processing four consecutive cells along the database
sequences
During the computations of the matrix cells, the values
in the two arrays with the H and E values usually have
to be read and written once for each matrix cell. These
arrays are usually small enough to be cached at a close
cache level, so the memory access time should not be a
major concern, but they still need to be written and
read back for each cell. Since there are sixteen 128-bit
xxm registers available and ample space for keeping the
H, E and F values of a few cells in the registers, it is
possible to reduce running time somewhat by comput-
ing a few consecutive cells along the database sequences
before moving on to the next query residue. Four conse-
cutive cells was found to perform well. Unrolling the
inner loop once along the query sequence was also
found to work well. The basic computing blocks then
consist of two times four cells that are processed in
each inner loop iteration as shown in Figure 4.
Updating scores and padding blocks
When a new database sequence begins in one of the
channels, the score of the previous database sequence
must be recorded. In addition, the H, E and S scores
from the previous sequence must be reset. When a new
column is going to be processed, it is checked whether
any database sequence ended in the previous column. If
that is the case, special processing is carried out. The
score of the sequences that ended are recorded. A mask
is created and later used to reset the values of H, E and
S in the appropriate channels before the new column is
processed. The channels are filled, and one or more new
sequences are started. A somewhat simpler and faster

MKFLVLLFNILCLFPILGADELVMSPIPTTDVQPKVTFDINSEVSSGPLYLNPV
MKFLILLFNILCLFPVLAADNHGVGPQGASGVDPITFDINSNQTGPAFLTAVEM
MASVKSSSSSSSSSFISLLLLILLVIVLQSQVIECQPQQSCTASLTGLNVCAPF
MEKKSIAGLCFLFLVLFVAQEVVVQSEAKTCENLVDTYRGPCFTTGSCDDHCKN
FNSNMLRGSVCEEDVSLMTSIDNMIEEIDFYEKEIYKGSHSGGVIKGMDYDLED
MVAFKFLLALSLSLLVSAAIAQTREPRLTQGQQCRFQRISGAQPSLRIQSEGGT
MASKATLLLAFTLLFATCIARHQQRQQQQNQCQLQNIEALEPIEVIQAEAGVTE
MARSSLFTFLCLAVFINGCLSQIEQQSPWEFQGSEVWQQHRYQSPRACRLENLR
MSTILEKISAIESEMARTQKNKATSAHLGLLKAKLAKLRRELISPKGGGGGTGE
MIFDGKVAIITGGGKAKSIGYGIAVAYAK---MSTKLILSFSLCLMVLSCSAQL
MVLLDKLWDDIVAGPQPERGLGMLRKVPQPLNLKDEGESSKITMPTTPTTPVTP
MFHVLTLTYLCPLDVVXQTRPAHVMSTKLILSFSLCLMVLSCSAQLLPWRKGQR
MARVSSLLSFCLTLLILFHGYAAQQGQQGQQFPNECQLDQLNALEPSHVLKSEA
MGRVSSIISFSLTLLILFNGYTAQQWPNECQLDQLNALEPSQIIKSEGGRIEVW
MAENNNLKLASTMEGRVEQLAEQRQVIEAGGGERRVEKQHSQGKQTARERLNNL
MIFTAXDRSAIEXV--AGEPANNEDRFNY---MSTKLILSFSLCLMVLSCSAQL

Figure 2 Blocks of database residues processed together. The
residues of the first five vectors processed are indicated on grey,
blue, red, green and yellow background. Four symbols from each of
the database sequences form blocks that are processed as a group.
Padding of some sequence blocks are indicated with dashes on a
pink background. An additional database sequence change is
indicated with a pink vertical bar. Arrows below the sequences
indicate positions were new sequences begin.

paddsb P[q], H // H = H + P[q]
pmaxub F, H // H = max(H, F)
pmaxub E, H // H = max(H, E)
pmaxub H, S // S = max(S, H)
psubsb R, F // F = F – R
psubsb R, E // E = E – R
movdqa H, N // N = H
psubsb Q, H // H = H – Q
pmaxub H, E // E = max(H, E)
pmaxub H, F // F = max(H, F)
Figure 3 Core instructions. These are the ten core instructions
executed for each vector of cells in the alignment matrices. In this
code, the first (left) operand is the source and the second (right)
operand is the destination.

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

Page 5 of 11

processing step is carried out for the new column if no
sequences ended in the previous column. In the simpler
processing step no scores need to be saved, no new
sequences are started, and no mask need to be created
or used. Since most columns are of the simpler type the
overall performance is mostly dependent on the speed
of processing the simple columns. To simplify computa-
tions, each channel is padded with 1-3 null symbols
after the end of a sequence if its length is not a multiple
of 4, to ensure that a new database sequence will only
begin at the beginning of a new block of cells. This pad-
ding is indicated in pink in Figure 2. The padding
increases the total number of cell a little bit, but allows
the checks described above to be carried out only on
every fourth residue.
Computation of temporary score profiles
To make computations fast, it is essential that the vec-
tors of substitution score values can be loaded quickly.
Each score vector corresponds to the score of a single
query residue against 16 residues from different data-
base sequences. A kind of temporary score profile is cre-
ated as outlined in Figure 5. This score profile is valid
for matching any query residue with 4 successive resi-
dues from 16 database sequences. For every fourth resi-
due in the database sequences a new score profile must
be constructed.
The temporary score profiles are created from the

ordinary substitution score matrices (e.g. BLOSUM62)
and the 4 × 16 database sequence residues using a series
of packed shuffle instructions (pshufb). The shuffle
instruction is only available on Intel processors with
Supplemental Streaming SIMD Extensions 3 (SSSE3).
On processors without SSSE3 (i.e. AMD processors and
older Intel processors), the computations may be
replaced by a kind of matrix transpose operation using a
series of unpack instructions (punpcklbw, punpckhbw)
with only a modest speed penalty.

Score range and selection of arithmetic instructions
Computations are initially performed using only a 7 bit
score range. This allows 16 alignment score matrices to
be computed in parallel using SSE2 instructions. Addi-
tions and subtractions are performed using signed and
saturated arithmetics, while the maximum operations
are carried out on unsigned numbers. Only the 7 bit
score range from -128 to -1 (signed numbers) or 128 to
255 (unsigned numbers) is used. All scores are biased by
an offset of 128. This range of values will ensure that
signed saturated addition and subtraction works well on
the lower boundary. Also, the unsigned maximum
works well in this range. The range enables the use of
the packed maximum unsigned byte instruction
(pmaxub) and packed add and subtract signed saturated
bytes instructions (paddsb and psubsb), which are avail-
able on all SSE2 processors and gives the highest speed.
An 8 bit range, which would allow the same number

(16) of parallel computations as a 7-bit range, and at the
same time allow a wider score range, is not used
because it is slower. Either the range from -128 to 127,
or the range from 0 to 255 could be used. There are
both signed and unsigned versions of the instructions
for parallel computation of the maximum of bytes
(pmaxub, pmaxsb) and for parallel addition and subtrac-
tion of bytes (paddusb, psubusb, paddsb, psubsb), but
the pmaxsb instruction for the maximum of signed
bytes was only recently available in SSE4.1 and is slower
than pmaxub. Unsigned additions and subtractions (pad-
dusb and psubusb) may be used, but the addition of the
score matrix vector then requires two instructions. First
the score vector including a bias must be added; then
the bias must be subtracted.

E1,0

F0,1H0,0

H1,1

F0,2 F0,3 F0,4

E2,0

H1,2 H1,3 H1,4

H2,1 H2,2 H2,3 H2,4

H0,1 H0,2 H0,3

H1,0

E1,1

E2,1

F1,1

F2,1

F1,2

F2,2

F1,3

F2,3

F1,4

F2,4

E1,2

E2,2

E1,3

E2,3

E1,4

E2,4

Figure 4 Block of cells computed in each iteration. In each
iteration of the inner loop blocks of eight cells in the alignment
matrices computed. The H, E, F and S values are updated for each
cell. The computations start in the upper left cell, proceed right
three times and then continue from the left on the second row.

M
K
F
L

M
K
F
L

M
A
S
V

M
E
K
K

F
N
S
N

M
V
A
F

M
A
S
K

M
A
R
S

M
S
T
I

M
I
F
D

M
V
L
L

M
F
H
V

M
A
R
V

M
G
R
V

M
A
E
N

M
I
F
T

MMMMFMMMMMMMMMMM KKAENVAASIVFAGAI FFSKSASRTFLHRREF LLVKNFKSIDLVVVNT
A
C
D
E
V
W
Y

A C D E F G H I K L M N P Q R S T V W Y
A
C
D
E
F
G
H
I
K
L
M
N
P
Q
R
S
T
V
W
Y

Score matrix Database sequences

Score profile

Shuffling procedure

Figure 5 Creation of a temporary score profile for 64 database
sequence residues. A standard score matrix and 4 residues from
16 different database sequences form the basis for a kind of
temporary partial database sequences score profile. The score profile
enables rapid comparison of any query residue with these 64
database residues.

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

Page 6 of 11

Versions using 16-bit and 63-bit score ranges are also
implemented and used when overflow is detected in
computations with lower score ranges. The 16-bit ver-
sion allows 8 parallel computations. When potential
overflow is detected in computations with a narrow
score range, the alignment score for that database
sequence is recalculated using the next wider score
range (first 16-bit and then 63-bit if necessary). Because
rather few sequences will usually reach a score that can-
not be represented by 7 bits, the additional computation
time for wider score ranges are usually negligible.
Recalculations with a wider score range are carried

out on a subset of sequences after all sequences in a
chunk of database sequences (see below) have been pro-
cessed using the narrower score range.
Reading the sequence database
Database sequences were stored in the NCBI BLAST
database format, produced by the formatdb tool. This is
a binary format where the sequence information is split
into at least 3 files: indices (.pin), headers (.phr) and
sequences (.psq). The file format allows efficient reading
of sequences into memory. Protein sequences are stored
using byte values in the range 1-24 and 26-27 represent-
ing amino acid residues A-I, K-N, P-T, V-Z, U, O and J,
respectively. Sequences are separated by a zero byte,
which simplifies the check for sequence ends.
Database sequences are retrieved using memory map-

ping of the .pin and .psq files. This is an efficient and
convenient method of accessing the sequences, in which
the operating system manages reading data into memory
from disk as necessary, concurrently with program
execution. The sequence database is divided into 100
chunks per thread. Each chunk contains approximately
the same number of sequences. The sequences in one
chunk are mapped into memory and processed before
the next chunk is mapped. This results in a small mem-
ory footprint of the program.
Multiple threads
SWIPE uses multiple threads (pthreads) that work on
different parts of the sequence database. The number of
threads is specified when starting the program and
should in general be equal to the number of cores of
the computer. For the latest generations of Intel proces-
sors with hyper-threading, a number of threads equal to
the number of logical cores is usually most effective.
Chunks of database sequences are assigned to the
threads as they are ready for more work, so the threads
may not process exactly the same number of chunks
each. Results from the threads are inserted into a com-
mon hit list after each chunk is processed.

Testing
The SWIPE software was benchmarked against BLAST,
BLAST+, STRIPED and SWPS3 under many different

conditions to measure speed. The performance using a
variable number of threads and the effect of query
sequence length was studied. Additionally, the impact of
different scoring systems, both substitution score
matrices and gap open and extension penalties was
examined.
Threads
Figure 6A indicates the performance of the programs
running with 1 to 24 threads, the 375 residue long
P07327 query sequence, the BLOSUM62 matrix, and
with gap open and extension penalties of 11 and 1,
respectively. SWIPE runs at 9.1 GCUPS using a single
thread and reaches its maximum performance with 19
threads at 106.2 GCUPS, but there is almost no gain
from additional threads beyond 12. It scales very well
and the maximum speed-up (the ratio of maximum
speed to single thread speed) is 11.6. SWPS3 runs at 3.4
GCUPS using a single thread and reaches its best per-
formance at 12 threads with 16.4 GCUPS, but has little
gain beyond 9 threads. The maximum speed-up is 4.8.
Surprisingly, the speed using two threads is inferior to
that with a single thread. STRIPED compiled with the
GNU compiler runs at 3.1 GCUPS with a single thread
and reaches its maximum performance with 23 threads
at 14.7 GCUPS, but gains little beyond 12 threads. The
maximum speed-up is 4.8. Compiling STRIPED with the
Intel compiler resulted in a 21% speed increase to 3.7
GCUPS when running on a single thread, but just 2% to
15.0 GCUPS with 23 threads. This corresponds to a
maximum speed-up of 4.0. BLAST and BLAST+ run at
14.7 and 15.5 GCUPS, with a single thread, respectively,
scale very well and reach their maximum performance
when 24 threads are running with speeds of 208.4 and
178.9 GCUPS, respectively. The maximum speed-ups of
BLAST and BLAST+ are 14.2 and 11.5, respectively.
Query length
Figure 6B and Figure 6C illustrates the performance
with queries of varying length using either 24 threads
(B) or a single thread (C). 32 different sequences with
lengths ranging from 24 to 5478 amino acid residues
were used as queries.
SWIPE had a rather flat performance curve. For

queries shorter than about 100 residues there was a gra-
dual loss in performance, especially when running with
many threads. The speed was also slightly reduced for
very long queries when using many threads. The perfor-
mance ranged from 23.1 to 110.1 GCUPS for 24 threads
and from 3.9 to 9.8 GCUPS for a single thread.
The SWPS3 program was very dependent on query

length with speeds ranging from 0.94 to 49.0 GCUPS on
24 threads and between 1.1 and 4.6 GCUPS on a single
thread.
The STRIPED program compiled with the Intel com-

piler was also quite dependent on the query length, in

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

Page 7 of 11

particular when running on 24 threads, with speeds ran-
ging from 1.2 to 46.6 GCUPS. On a single thread, the
speed of STRIPED varied between 0.8 and 5.7 GCUPS.
STRIPED compiled with the GNU compiler was in gen-
eral slightly slower, particularly with longer queries.
The speed of the BLAST programs seemed somewhat

faster with longer query sequences with speeds ranging
from 52.8 to 374.1 and 30.6 to 360.2 GCUPS for BLAST
and BLAST+, respectively, but the performance varied a
bit from sequence to sequence. There was a noticeable
drop in performance with queries shorter than about
100 residues.
Scoring systems
Figure 7 shows the performance under different scoring
systems. All combinations of matrices and gap penalties
allowed by BLAST were tested. The 375 residue long
P07327 query sequence and 24 threads were used. The
performance of SWIPE is almost constant at about 102-
106 GCUPS. The performances of STRIPED and
SWPS3 are also almost constant at about 14-15 and 15
GCUPS, respectively. The performance of BLAST was
highly dependent on the scoring matrix used. SWIPE
was almost twice as fast as ordinary BLAST using the
BLOSUM50 matrix. The speeds of the two programs
were quite similar with the PAM250 matrix, while
BLAST was faster for the other matrices. In general,
BLAST+ was about 10-20% slower than ordinary
BLAST. Gap penalties had little impact on performance
in general, but relatively low gap penalties seemed to
reduce the speed of BLAST, BLAST+, and STRIPED in
a few cases (e.g. BLOSUM62 with gap penalties 9 and
1), while the impact on SWIPE and SWPS3 was
negligible.

Discussion
The SWIPE software greatly increases the speed of
sequence database searches based on the Smith-Water-
man algorithm compared to earlier SIMD implementa-
tions, being more than six times faster in realistic cases.
SWIPE was found to be performing at a speed of 106
GCUPS with a 375 residue query sequence on a dual
Intel Xeon X5650 six-core processor system. The speed
was a bit dependent on the query length, but indepen-
dent of the scoring system used. The maximum speed
corresponds to the processing of more than 3.3 cells per
physical core in each clock cycle.
Using GPUs, speeds of up to 42.6 GCUPS have been

reported for CUDASW++ 2.0 on a Nvidia GeForce
GTX 480 graphics card [18]. This is comparable to the
expected performance of SWIPE on a quad-core CPU.
SWIPE scaled almost linearly with the number of

threads used up to 12 threads, corresponding to the
number of physical cores available. The X5650 proces-
sors features hyper-threading which makes it possible to

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 10 12 14 16 20 24

S
pe

ed
 [G

C
U

P
S

]

Number of threads

A

BLAST
BLAST+

SWIPE
SWPS3

STRIPED-G
STRIPED-I

 1

 10

 100

 1000

 10 100 1000 10000

S
pe

ed
 [G

C
U

P
S

]

Query length [residues]

B

24 threads

BLAST
BLAST+

SWIPE
SWPS3

STRIPED-G
STRIPED-I

 0.1

 1

 10

 100

 10 100 1000 10000

S
pe

ed
 [G

C
U

P
S

]

Query length [residues]

C

1 thread

BLAST
BLAST+

SWIPE
SWPS3

STRIPED-G
STRIPED-I

Figure 6 Performance dependency on number of threads and
query length. The speed in billion cell updates per second
(GCUPS) of the BLAST (red), BLAST+ (orange), SWIPE (black), and
SWPS3 (green) programs, as well as STRIPED compiled with the
GNU (light blue) and Intel (dark blue) compiler, using a variable
number of threads and queries of varying length. (A) Number of
threads ranging from 1 to 24 and the 375 residue long P07327
query sequence. (B) Query sequences ranging from 24 to 5478
residues in length and 24 threads. (C) Query sequences of varying
length and 1 thread. All scales are logarithmic. The BLOSUM62
matrix and gap open and extension penalties of 11 and 1,
respectively, were used in all cases.

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

Page 8 of 11

 10

 100

 1000

10
3

11
3

12
2

12
3

13
2

13
3

14
2

15
2

16
1

16
2

17
1

18
1

19
1

S
pe

ed
 [G

C
U

P
S

]

Gap open and extension penalties

BLOSUM45

BLAST
BLAST+

SWIPE
SWPS3

STRIPED-G
STRIPED-I

 10

 100

 1000

9
3

10
3

11
3

12
2

12
3

13
2

13
3

14
2

15
1

15
2

16
1

16
2

17
1

18
1

19
1

BLOSUM50

 10

 100

 1000

6
2

7
2

8
2

9
1

9
2

10
1

10
2

11
1

11
2

12
1

13
1

BLOSUM62

 10

 100

 1000

6
2

7
2

8
2

9
1

9
2

10
1

11
1

13
2

25
2

BLOSUM80

 10

 100

 1000

6
2

7
2

8
2

9
1

9
2

10
1

11
1

BLOSUM90

 10

 100

 1000

5
2

6
2

7
2

8
1

9
1

10
1

PAM30

 10

 100

 1000

6
2

7
2

8
2

9
1

10
1

11
1

PAM70

 10

 100

 1000

11
3

12
3

13
2

13
3

14
2

14
3

15
2

15
3

16
2

17
1

17
2

18
1

19
1

20
1

21
1

PAM250

Figure 7 Performance with different scoring systems. The speed in billion cell updates per second (GCUPS) (logarithmic scale) is shown for
the BLAST (red), BLAST+ (orange), SWIPE (black), and SWPS3 (green) programs, as well as STRIPED compiled with the GNU (light blue) and Intel
(dark blue) compiler, using different scoring systems. All combinations of scoring matrices and gap penalties accepted by BLAST were tested.
The matrix name is indicated above each graph, while the open and extension gap penalties are indicated on the x-axis. The query sequence
was P07327 and 24 threads were running. SWPS3 would not run successfully in all cases.

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

Page 9 of 11

obtain extra performance using more than one thread
per physical core, unless all execution units of busy.
Almost no increase in performance beyond 12 threads
was observed, so apparently the execution units are
fairly busy when SWIPE is running on 12 threads.
SWIPE scaled much better than SWPS3 and STRIPED
with multiple threads. The maximum speed of SWIPE
was 6.5 times faster than SWPS3, the fastest of these,
using the 375 residue query. When all programs were
running on a single thread, SWIPE was about 2.5 times
faster. There seems to be two equally important factors
responsible for the differences in speed. Based on the
single thread performance numbers, it seems like the
use of the inter-sequence parallelisation approach
instead of the striped approach is responsible for about
half of the increase in speed. Efficient thread parallelisa-
tion seems responsible for the other half.
In the comparisons with the STRIPED software it

should be noted that Farrar (2007) apparently reported
the “scan time” and not the complete running time for
the program, excluding the time needed to read the
database sequences into memory. The full running time
is reported here. For the other programs, it is difficult to
separate the scan time from the rest of the time used.
STRIPED reads the FASTA formatted files directly and
not files formatted by NCBI’s formatdb tool. It appears
that STRIPED initially parses the entire FASTA file and
reads the database into memory using non-threaded
code, resulting in low performance when using several
threads and measuring the complete running time.
Excluding the time for database reading leads to shorter
run times and higher performance numbers. On the
other hand, it is probably faster to read files in the bin-
ary NCBI format than parsing the FASTA text format.
The performance of SWIPE was not very dependent

on query length, except for rather short and very long
queries. Overhead costs incurred for each database resi-
due probably reduced the performance of SWIPE for
the shortest queries. For the longest queries there was a
performance decrease when many threads were running.
This is probably due to the effects of memory caches, of
which some are shared between cores. The programs
based on Farrar’s approach were considerably more
dependent on query length and performed better with
increasing query length. The reason for this is probably
that as the width of the stripes increase, the relative
importance of the dependency between the stripes is
reduced.
SWIPE was about twice as fast as BLAST using the

BLOSUM50 matrix, while BLAST was twice as fast as
SWIPE using the BLOSUM62 matrix. BLAST perfor-
mance was found to be very dependent on the scoring
matrix. The reason may be that BLAST in its heuristics
uses an initial hit score threshold (T) that has a fixed

default value (11) independent of the score matrix speci-
fied. Score matrices with relatively high expected values,
e.g. BLOSUM50, will then trigger more initial hits than
other matrices, e.g. PAM30.
If one would like to search using a query profile (posi-

tion-specific scoring matrix) instead of a query
sequence, the computation of the temporary score pro-
file need to be carried out for every position of the
query, not just for the 20 possible amino acid residues.
This has not been implemented, but the resulting reduc-
tion in speed has been estimated to 30%.
The software described here should be considered a

prototype indicating the performance potential of the
approach. A later version that at least computes the
actual alignments (not just the alignment score) and the
statistical significance of the matches is planned.

Conclusions
Efficient parallelisation using SIMD on standard hard-
ware now allows Smith-Waterman database searches to
run considerably faster than before. In the new tool
SWIPE, residues from sixteen different database
sequences are compared in parallel to one query residue.
Using a 375 residue query sequence a speed of 106 bil-
lion cell updates per second (GCUPS) was achieved on
a dual Intel Xeon X5650 six-core processor system,
which is more than six times faster than software based
on Farrar’s approach, the previous fastest implementa-
tion. Furthermore, for the first time, the speed of a
Smith-Waterman based search has been shown to
clearly exceed that of BLAST at least with one particular
scoring matrix.
Since the slow speed has been the major drawback

limiting the usefulness of Smith-Waterman based
searches, the approach described here could signifi-
cantly widen the potential application of such searches.
Other applications that require optimal local alignment
scores, like short read mapping [22] or genome
sequence assembly [23] could also benefit from
improved performance of this method. The approach
used here may probably also be applied to HMM-
based searches.

Additional material

Additional file 1: Source code. The source code of SWIPE version 1.0,
as well as a binary executable for 64-bit Linux and score matrices are
included in this gzipped tar archive file.

Acknowledgements
This work was supported by the Research Council of Norway with a CoE
grant to CMBN. Thanks to the Research Computing Services group at the
Center for Information Technology at the University of Oslo for access to the
Titan cluster and other services.

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

Page 10 of 11

http://www.biomedcentral.com/content/supplementary/1471-2105-12-221-S1.GZ

Author details
1Department of Informatics, University of Oslo, PO Box 1080 Blindern, NO-
0316 Oslo, Norway. 2Centre for Molecular Biology and Neuroscience (CMBN),
Department of Microbiology, Rikshospitalet, Oslo University Hospital, PO Box
4950 Nydalen, NO-0424 Oslo, Norway. 3Sencel Bioinformatics AS, PO Box 180
Vinderen, NO-0319 Oslo, Norway.

Received: 5 March 2011 Accepted: 1 June 2011 Published: 1 June 2011

References
1. TF Smith, MS Waterman, Identification of common molecular

subsequences. J Mol Biol. 147, 195–197 (1981). doi:10.1016/0022-2836(81)
90087-5

2. O Gotoh, An improved algorithm for matching biological sequences. J Mol
Biol. 162, 705–708 (1982). doi:10.1016/0022-2836(82)90398-9

3. SF Altschul, W Gish, W Miller, EW Myers, DJ Lipman, Basic local alignment
search tool. J Mol Biol. 215, 403–410 (1990)

4. SF Altschul, TL Madden, AA Schaffer, J Zhang, Z Zhang, W Miller, DJ
Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).
doi:10.1093/nar/25.17.3389

5. ITS Li, W Shum, K Truong, 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC
Bioinformatics. 8, 185 (2007). doi:10.1186/1471-2105-8-185

6. B Alpern, L Carter, KS Gatlin, Microparallelism and high performance protein
matching. Proceedings of the 1995 ACM/IEEE Supercomputing Conference,
San Diego, California, Dec 3-8, 1995

7. Intel Corporation, Intel 64 and IA-32 Architectures Optimization Reference
Manual. (2011)

8. A Wozniak, Using video-oriented instructions to speed up sequence
comparison. Comput Appl Biosci. 13, 145–150 (1997)

9. T Rognes, E Seeberg, Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common microprocessors.
Bioinformatics. 16, 699–706 (2000). doi:10.1093/bioinformatics/16.8.699

10. M Farrar, Striped Smith-Waterman speeds database searches six times over
other SIMD implementations. Bioinformatics. 23, 156–161 (2007).
doi:10.1093/bioinformatics/btl582

11. MS Farrar, Optimizing Smith-Waterman for the Cell Broadband Engine.
http://sites.google.com/site/farrarmichael/SW-CellBE.pdf

12. A Szalkowski, C Ledergerber, P Krähenbühl, C Dessimoz, SWPS3 - fast multi-
threaded vectorized Smith-Waterman for IBM Cell/B.E. and x86/SSE2. BMC
Res Notes. 1, 107 (2008). doi:10.1186/1756-0500-1-107

13. A Wirawan, CK Kwoh, NT Hieu, B Schmidt, CBESW: Sequence Alignment on
the Playstation 3. BMC Bioinformatics. 9, 377 (2008). doi:10.1186/1471-2105-
9-377

14. W Rudnicki, A Jankowski, A Modzelewski, A Piotrowski, A Zadrożny, The
new SIMD Implementation of the Smith-Waterman Algorithm on Cell
Microprocessor. Fund Inform. 96, 181–194 (2009)

15. Y Liu, DL Maskell, B Schmidt, CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units.
BMC Res Notes. 2, 73 (2009). doi:10.1186/1756-0500-2-73

16. ?Ł? Ligowski, WR Rudnicki, An efficient implementation of Smith Waterman
algorithm on GPU using CUDA, for massively parallel scanning of sequence
databases. Eighth IEEE International Workshop on High Performance
Computational Biology, Rome, Italy, May 25, 2009

17. Y Liu, B Schmidt, DL Maskell, CUDASW++2.0: enhanced Smith-Waterman
protein database search on CUDA_enabled GPUs based on SIMT and
virtualized SIMD abstractions. BMC Res Notes. 3, 93 (2010). doi:10.1186/
1756-0500-3-93

18. ?Ł? Ligowski, WR Rudnicki, Y Liu, B Schmidt, Accurate Scanning of
Sequence Databases with the Smith-Waterman Algorithm. GPU Computing
Gems, Emerald Edition. (Morgan Kaufmann, 2011), pp. 155–157

19. UniProt Consortium, The Universal Protein Resource (UniProt) in 2010.
Nucleic Acids Res. 38, D142–8 (2010)

20. S Henikoff, J Henikoff, Amino acid substitution matrices from protein blocks.
Proc Natl Acad Sci USA. 89, 10915–10919 (1992). doi:10.1073/
pnas.89.22.10915

21. MO Dayhoff, RM Schwartz, BC Orcutt, A model of evolutionary change in
proteins. in Atlas of Protein Sequence and Structure, vol. 5, ed. by Dayhoff
MO (Natl Biomed Res Found, Washington, DC, 1978)(Suppl 3), , pp. 345–352

22. SM Rumble, P Lacroute, AV Dalca, M Fiume, A Sidow, M Brudno, SHRiMP:
Accurate Mapping of Short Color-space Reads. PLoS Comput Biol. 5,
e1000386 (2009). doi:10.1371/journal.pcbi.1000386

23. JR Miller, S Koren, G Sutton, Assembly algorithms for next-generation
sequencing data. Genomics. 95, 315–27 (2010). doi:10.1016/j.
ygeno.2010.03.001

doi:10.1186/1471-2105-12-221
Cite this article as: Rognes: Faster Smith-Waterman database searches
with inter-sequence SIMD parallelisation. BMC Bioinformatics 2011 12:221.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Rognes BMC Bioinformatics 2011, 12:221
http://www.biomedcentral.com/1471-2105/12/221

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7166760?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17555593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17555593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9146961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9146961?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11099256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11099256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17110365?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17110365?dopt=Abstract
http://sites.google.com/site/farrarmichael/SW-CellBE.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18959793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959793?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18798993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18798993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19416548?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20370891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19843607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1438297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19461883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19461883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20211242?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Benchmarking
	Software
	Hardware
	Threads
	Database sequences
	Query sequences
	Score matrices and gap penalties

	Results
	Algorithm
	Implementation
	Parallelisation over sixteen database sequences
	Compact core code of ten instructions
	Processing four consecutive cells along the database sequences
	Updating scores and padding blocks
	Computation of temporary score profiles
	Score range and selection of arithmetic instructions
	Reading the sequence database
	Multiple threads

	Testing
	Threads
	Query length
	Scoring systems

	Discussion
	Conclusions
	Acknowledgements
	Author details
	References

