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Acute intratracheal Pseudomonas aeruginosa
infection in cystic fibrosis mice is age-independent
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Abstract

Background: Since the discovery of the human CFTR gene in 1989 various mouse models for cystic fibrosis (CF)
have been generated and used as a very suitable and popular tool to approach research on this life-threatening
disease. Age related changes regarding the course of disease and susceptibility towards pulmonary infections have
been discussed in numerous studies.

Methods: Here, we investigated CftrTgH(neoim)Hgu and Cftrtm1Unc-Tg(FABPCFTR)1Jaw/J CF mice and their non-CF
littermates during an acute lung infection with Pseudomonas aeruginosa for age dependent effects of their lung
function and immune response.
Mice younger than three or older than six months were intratracheally infected with P. aeruginosa TBCF10839. The
infection was monitored by lung function of the animals using non-invasive head-out spirometry and the time
course of physiological parameters over 192 hours. Quantitative bacteriology and lung histopathology of a
subgroup of animals were used as endpoint parameters.

Results: Age-dependent changes in lung function and characteristic features for CF like a shallower, faster
breathing pattern were observed in both CF mouse models in uninfected state. In contrast infected CF mice did
not significantly differ from their non-CF littermates in susceptibility and severity of lung infection in both mouse
models and age groups. The transgenic Cftrtm1Unc-Tg(FABPCFTR)1Jaw/J and their non-CF littermates showed a
milder course of infection than the CftrTgH(neoim)Hgu CF and their congenic C57Bl/6J non-CF mice suggesting that
the genetic background was more important for outcome than Cftr dysfunction.

Conclusions: Previous investigations of the same mouse lines have shown a higher airway susceptibility of older
CF mice to intranasally applied P. aeruginosa. The different outcome of intranasal and intratracheal instillation of
bacteria implies that infected CF epithelium is impaired during the initial colonization of upper airways, but not in
the subsequent response of host defense.
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Background
Cystic fibrosis (CF) is the most common life-shortening
autosomal recessive disease within the Caucasian popula-
tion and is caused by mutations in the Cystic Fibrosis
Transmembrane Conductance Regulator (CFTR) gene
[1]. The CFTR protein functions as a cAMP-regulated
chloride channel in the apical membrane of epithelial

cells. The symptoms of CF are caused by an impaired
function of exocrine glands in many CFTR expressing
organs, predominantly within the gastrointestinal and
respiratory tracts. In most cases the progressive decrease
of lung function is life limiting for CF patients. In this
context, the opportunistic bacterial pathogen Pseudomo-
nas aeruginosa most commonly causes chronic microbial
lung infections, leading to excessive lung tissue remodel-
ling and destruction [2,3]. The bacteria are able to survive
in the anaerobic environment of the CF lung [4] and
become extremely resistant to the eradication of biofilms
in the conducting airways by antibiotic treatment.
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In 1989 the coding gene for the CF disease was identified
on the long arm of chromosome 7 [5-7], a finding which
highly advanced our understanding of CF cell biology and
pathophysiology. In 1991 Tata et al. [8] and Yorifuji et al.
[9] described the cloning and sequencing of the murine
Cftr gene which is located in a conserved segment of chro-
mosome 6 and shows 78% amino acid sequence homology
to the human CFTR gene. Since no spontaneous mutations
were known for the murine Cftr, different CF mouse mod-
els were generated by targeted mutagenesis [10]. Most of
these models show massive pathological changes in the
intestine, but fail to develop a lung disease comparable to
human CF subjects. The reason therefore may due to the
short life expectancy of mice or their ability to use alterna-
tive chloride channels in the lung epithelium [11-15]. In
1992 Dorin and her coworkers described the CftrTgH(neoim)

Hgu mouse which only showed mild gastrointestinal com-
plications, a good survival after weaning and benign
respiratory symptoms [16,17]. Another well described and
often used mouse model is represented by the transgenic
STOCK Cftrtm1Unc-Tg(FABPCFTR)1Jaw/J mouse, which
expresses human CFTR in the gut under control of the
FABP1 promoter (fatty acid binding protein1), which pre-
vents it from acute intestinal obstruction [18].
Both CF models were included in a study by Teichgräber

et al. [19] in which they detected ceramide accumulation in
the murine respiratory epithelium and hypothesized that
this accumulation leads to inflammation and cell death and
increases infection susceptibility towards P. aeruginosa in
CF patients. A significant increase of ceramide in the lung
epithelium of both CF models was found to be associated
with higher bacterial numbers, an accumulation of neutro-
phils and alveolar macrophages and increased cell death.
All effects became more prominent with increasing age
and started to become visible by around week 16 of murine
life. These findings are also consistent with previously pub-
lished data from P. Durie and associates, who identified
many pathological changes in aged CF mice [20].
In this study described here we tested the influence of

the described age-dependent ceramide accumulation [21]
in our well established mouse model on airway infection
with P. aeruginosa [22] using young and old mice and
identical mouse strains but a different, namely intratra-
cheal infection route. In Teichgräber’s study [19] the bac-
teria were inoculated by intranasal instillation thus
targeting both the upper and lower airways. In contrast
intratracheal instillation [23] bypasses the upper airways
and delivers more bacteria into distal bronchi than the
intranasal inoculation. Thus the two infection routes target
overlapping, but not matching airway compartments.
We monitored the course of infection over 192 hours via
several physiological parameters supported by non invasive
head-out spirometry and employed quantitative bacteriol-
ogy and lung histopathology as endpoint parameters. To

make a clear distinction we categorized mice in groups
younger than three and older than six months. Moreover,
we compared the lung function of the CF mice in the
uninfected state. The differential outcome of the infection
experiments in Teichgräber’s and our study led to the con-
clusion that older CF mice are impaired in their first
defence of bacterial clearance, but that otherwise the clini-
cal course of the acute P. aeruginosa lung infection is
indistinguishable between CF and non-CF mice that share
the same genetic background.

Methods
Mouse strains
Infection experiments were performed with two CF
mouse models (a) B6.129P2(CF/3)-CftrTgH(neoim)Hgu, (b)
Cftrtm1Unc-Tg(FABPCFTR)1Jaw/J and their respective lit-
termates. According to the nomenclature of Teichgräber
et al. the mouse lines are called (a) CftrMHH and (b)
CftrKO, their non-CF littermates (a) B6 and (b) WT,
respectively. In CftrTgH(neoim)Hgu mice the exon 10 of the
Cftr gene had been disrupted by the insertion of the vec-
tor pMCIneoPolyA [16]. Since those mice produced low
levels of Cftr [17] but showed a mixed genetic back-
ground [24], from the original CftrTgH(neoim)Hgu mutant
mouse, CF strain CF/3-CftrTgH(neoim)Hgu was established
at the Institute of Laboratory Animal Science of the
Hannover Medical School by brother-sister mating for
more than 40 generations. Next, the congenic mouse
inbred strain B6.129P2(CF/3)- CftrTgH(neoim)Hgu, which is
used in this study, was generated by 40 backcross genera-
tions using CF/3-CftrTgH(neoim)Hgu as donor strain and
C57BL/6J as recipient strain [25]. Following the nomen-
clature of Teichgräber et al. [19] this strain is called
CftrMHH, syngenic C57BL6/J mice are called B6 and
served as controls. CftrMHH mice are regulary monitored
for their congenic C57BL/6J status using 27 SNP markers
and integrity of the mutant Cftr locus by intragenic
microsatellite markers [24,26,27].
STOCK Cftrtm1Unc-Tg(FABPCFTR)1Jaw/J mice were

obtained from the Jackson Laboratories. These mice, in
the following called CftrKO, which are of a mixed genetic
background consisting of C57BL/6, FVB/N and 129, are
knock-outs for the murine Cftr gene, but express human
CFTR in the gut under control of the FABP1 (fatty acid
binding protein1) promoter, which prevents acute intest-
inal obstruction 1 [12,18]. Mice were obtained homozy-
gous and heterozygous for the Cftrtm1Unc targeted
mutation (tm/tm and tm/+) as well as homozygous and
hemizygous for the FABP-hCFTR transgene (tg/tg and tg/
0). Tm/+ tg/0 mice were used as parents to generate wild-
type control mice (called WT). Genotyping was performed
using the protocols provided by the JAX lab [28].
Mice were maintained at the Central Animal Facility

of the Hannover Medical School, Carl-Neuberg-Str. 1,
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30625 Hannover, Germany. They were held in groups of
three to five animals animals in microisolator cages
(910 cm2) with filter top lids and free access to sterilised
standard laboratory chow (diet No. 1324, Altromin,
Lippe, Germany) and autoclaved, acidulated water at
21 ± 2°C, 55 ± 5% humidity and a 10:14 light-dark-
cycle. None of the CF mice showed gastrointestinal
complications which would require a special diet. All
mice were regularly monitored for infection by typical
pathogens according to the FELASA recommendations
[29]. All procedures performed on mice were approved
by the local district governments (AZ. 33.9-42502-04-
08/1528) and carried out according to the ILAR guide-
lines for the care and use of laboratory animals [30].
Experimental groups of mice were allocated by age of
either younger than three (henceforth designated as
young) or elder than six months (henceforth designated
as old). This selection aimed to mimic the categories of
Teichgräber et al. [19] that mice older than 4 months
were susceptible to an infection with P. aeruginosa
whereas the younger mice were more or less resistant.
Due to breeding limitations B6 mice showed a strong

predominance of males and no 192 h value of old B6
exist.

Spirometry
Non-invasive head-out spirometry with 14 parameters was
performed on conscious restrained mice [22]. In brief,
four mice were investigated in parallel by placing them in
glass inserts with their heads protruding out through a set
of membranes ensuring an airtight fit. Respiration caused
air to flow through a pneumotachograph positioned above
the thorax of the animals. The airflow was digitalized and
analyzed with the Notocord Hem 4.2.0.241 software pack-
age (Notocord Systems SAS, Croissy Sur Seine, France).

Bacteria
Pseudomonas aeruginosa strain TBCF10839 [31] was
grown in Luria broth (LB) overnight at 37°C. The over-
night culture was washed twice with the same volume of
sterile PBS to remove cell detritus and secreted exopoly-
saccharides, then the optical density of the bacterial sus-
pension was determined and the intended number of
colony forming units (CFU) was extrapolated from a stan-
dard growth curve. Inocula with 6.0 × 105 CFU in 30 μl
were prepared by dilution with sterile PBS. This infection
dose is approximately one tenth of the LD50 of strain
TBCF10839 for C57BL/6J mice and was able to produce a
clinical infection without mortality.

Infection protocol
Mice were infected intratracheally (i.t.) with 6.0 × 105 CFU
of P. aeruginosa strain TBCF10839 under a light anaesthe-
sia. For detailed description of the view-controlled

intratracheal instillation see Munder et al. [23]. To charac-
terize the course of the bacterial infection, the body condi-
tion, weight, rectal temperature and lung function of the
mice were evaluated as described previously [32]. In brief
the overall health of the animals was assessed by vocalisa-
tion, piloerection, posture, locomotion, breathing, curios-
ity, nasal secretion, grooming and dehydration.
Dysfunctions in single parameters were assessed by zero,
one or two points. The overall fitness of the mice was
determined by adding the points resulting in the following
score of the mouse body condition: unaffected (0-1);
slightly affected (2-4); moderately affected (5-7); severely
affected (8-10); moribund (≥ 11).
Non-invasive head-out spirometry. First, spirometric

values of uninfected animals (B6, WT, CftrKO and CftrMHH

with age young: < 99 days and old: > 179 days) were aver-
aged (median) from three independent measurements pre-
formed on consecutive days. Prior measurements assured
that the mice had adapted to the procedure. Lung function
measurements of infection experiments were taken daily at
the five days prior to inoculation and at time points 4, 6, 8,
10, 12, 18, 24, 48, 72, 96, 120, 144, 168, 192 hours post
inoculation.
Forty-eight hours after challenge subgroups of mice

were euthanized. Their left lungs were taken for the
determination of bacterial counts and the right lungs
were stained and examined histologically.

Pathohistology of the lungs
The right lungs were fixed via the trachea (4% paraformal-
dehyd), embedded in paraffin and stained with haematoxi-
lin/eosin. One section was selected that showed aspects
from all three lobes of the right lung. This slide was exam-
ined in twenty fields of view at a 100 fold magnification
using a Zeiss Axiophot photomicroscope. Inflammation
was assessed using a semi quantitative pathohistological
score [22]. Shortly, lung histological changes were scored
on a scale from one to three points. Points were given
separately for lung parenchyma, airways and lung vessels.
The total score classified airway inflammation into the
categories: almost not visible (0-5); slight (6-20) moderate
(21-40); severe/profound inflammation (41-60). In the cur-
rent study no more than a medium-grade inflammation
was seen, appearing as a purulent alveolar pneumonia
with peribronchiolar and perivascular inflammatory
infiltrates.

Lung bacterial numbers
The left lungs of the euthanized mice were ligated,
resected and homogenised. Aliquots were plated and
bacterial numbers of whole organs were calculated. Pre-
vious experiments showed that the distribution of bac-
teria is approximately equal in left and right lungs after
i.t. application (data not shown).

Munder et al. Respiratory Research 2011, 12:148
http://respiratory-research.com/content/12/1/148

Page 3 of 15



Statistics
Each CF mouse model and its wild type controls were
investigated separately by age group using non-parametric
test statistics of SPSS 16 (Version 16.0.2, SPSS Inc, Chi-
cago, USA). p-values (p < 0.05) with subsequent Bonfer-
roni correction were calculated by 2-sided Monte Carlo
simulations (100,000 simulations). Hereby groups were
composed of equal numbers of mice (perfect match
approach).

Results
Lung function of CF mice
To evaluate the impact of age, genetic background and the
Cftr mutant construct on respiratory health, we deter-
mined lung function in young and old CF mice and their
congenic wild-type littermates (Figure 1).
Tidal volume increased with age of the animals reflect-

ing an increase in body mass. Respiration decreased, also
characterized by increasing times for one breath. The
slower breathing was also characterized by a decrease in
the flows of expiration and inspiration.
Body weight measurements showed that CftrKO and WT

mice were slightly larger and heavier than CftrMHH and B6
mice. This is mirrored in a slightly higher tidal volume for
the CftrKO and WT mice.
All mice irrespective of genotype or gender had a com-

parable total lung volume (tidal volume, Figure 1A). CF
mice, however, achieved the comparable lung volume
through an increase in respiratory rate (Figure 1B). Corre-
spondingly the time for one breath (Time of inspiration
plus expiration, Figure 1C) was smaller in CF mice. The
higher respiratory rate was associated with higher flows as
depicted by the EF50 parameter (Midtidal expiratory flow
at 50% expiration, Figure 1D).

Outline of infection experiments
To monitor the outcome of an intratracheal instillation of
P. aeruginosa in our CF mouse models and their non-CF
littermates, mice of both genders were exactly matched
with their corresponding wild type controls by sex, age
and body weight. Mice were characterized in their global
health score (Figure 2), rectal temperature (Figure 3), body
weight (Figure 4) and lung function (Figure 5, Additional
file 1) at 14 time points over a period of 192 h.

Global body condition
B6 mice were more affected by P. aeruginosa in their body
condition than the CftrKO and their non-CF littermates
(Figure 2). With the exception of young CftrKO mice the
corresponding CF and non-CF mouse lines exhibited a
similar time course of disease symptoms. Animals were
notably affected between 6-12 h after inoculation and
recovered within the next 48 h. Young WT mice were

least affected by the instillation of P. aeruginosa into their
lungs.

Rectal body temperature
Upon exposure to bacteria mice did not react with fever
but with a drop of body temperature. The temperature
profile mimicked the time course of the global health
score. CftrMHH and the B6 mice experienced a stronger
drop of temperature than the CftrKO and WT mice, the
latter being minimally affected with a maximal reduction
of rectal temperature of 5°C (Figure 3).

Body Weight
Within the first 24 h post inoculation the mice lost 8%
(old B6) to 13% (young CftrMHH) of their initial body
weight (Figure 4). By the end of the experiment the
young mice had almost completely regained their initial
weight, whereas an irreversible weight loss was observed
in all old mice. Consistent with an intestinal CF pheno-
type, old CftrMHH mice were significantly lighter than
their congenic B6 mice [24].

Lung function
The time course during infection is shown exemplarily
for tidal volume (the total volume inspired and expired
in one breath) (Figure 5A, B), Time of inspiration plus
expiration (Figure 5C, D) and EF50 (Figure 5E, F). The
data of all 14 measured lung function parameters are
shown in the online supplement (Additional file 1). The
old non-CF and CF mice showed a similar response in
lung function towards the instillation of P. aeruginosa
into their lungs. Young KO mice differed from their
WT FABP littermates in a shorter ‘time of pause’ prior
to and after inoculation, but not in any other of the 14
parameters. In contrast, non-infected young CftrMHH

mice showed another breathing pattern than their con-
genic B6 mice (see above). CftrMHH mice differed from
their non-CF congenics in seven lung function para-
meters with a high respiratory rate as the leading symp-
tom. This characteristic pattern of non-infected CftrMHH

mice was also seen in the challenged mice at the late
time points of 144, 168 and 192 h when they had recov-
ered from infection. Thus, by the end of experiment the
CftrMHH mice had regained the initial lung function phe-
notype. Besides these CF-genotype-driven differences
between congenic mice that were apparently indepen-
dent of bacterial infection, a differential response of
CftrMHH and B6 mice was noted at time points 4 and 6
hours after challenge with P. aeruginosa. Lung function
slightly, but significantly differed in seven flow or
volume parameters (Additional file 1). In summary, dif-
ferences in lung function between congenic non-CF and
CF mice were not detectable or subtle, and if they were
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Figure 1 Respiratory parameters and body weight in non-infected CF mice and their non-CF littermates (left panels: B6, CftrMHH; right
panels: WT, CftrKO). At the day of assessment young mice were younger than 100 days and old mice elder than 179 days. The boxplots show
the median, inner quartiles and range of the parameters and are clear for wildtype mice (B6, WT) and are shaded in grey for CF mice (CftrMHH,
CftrKO). CF mice and non-CF littermates were compared in their lung function and body weight by Mann-Whitney rank tests (* = p < 0, 05; ** =
p < 0, 01; *** = p < 0, 001). The number of investigated animals per group (n) is indicated in Figure 1E. Figure 1A shows that the tidal volume is
very similar for all genotypes. The respiratory rate is higher (Figure 1B) and the time for one breath is shorter in CF mice (Figure 1C).
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Figure 2 Time course of the global health score during infection. The behavioral score describes the fitness of mice during infection. Mice
with a C57Bl/6J background (A) were more affected than FABP mice (B). The responses of congenic non-CF and CF mice were indistinguishable
(black vs. gray lines in all panels) with the single exception that young FABP WT mice were only mildly affected even during the first 24 h after
challenge with P. aeruginosa (B, left panel).

Figure 3 Time course of rectal body temperature during infection. Body temperature of all mice showed a strong decrease, which peaked
between 6 and 10 hours post inoculation. Temperature declined in C57Bl/6J mouse strains to a minimum of approximately 25°C (A), in FABP
mice the minimal temperature was always higher than 30°C (B). Exceptions were the young CftrKO mice with a minimal temperature of 28.5°C at
8 h p.i. In old B6 and CftrMHH mice (A, right panel) temperature remained longer at lower values (until 12 h p.i.), although the recovery to
physiological level took the same period of time as in the groups of young CftrMHH and B6 mice (A, left panel. In summary, the C57BL/6J mouse
strains showed a stronger depression of body temperature upon airway exposure with P. aeruginosa than FABP mice.
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Figure 4 Time course of body weight during infection. After challenge with P. aeruginosa all animal groups lost weight during the first 24
hours p.i. Young B6 and CftrMHH mice started to regain weight directly thereafter, although this increase was small and both groups had not
reached their initial weight by the end of the experiments (A). Weight loss was more pronounced in the old B6 and CftrMHH mice that also did
not regain their initial weight by 192 hours p.i. In both CF mouse models CF mice younger than 3 months displayed a reduced body weight
compared to their wild type littermates. This tendency became more pronounced in adult C57BL6/J, but not FABP mice thus showing an
anthropometric CF phenotype in the former, but not in the latter strain. Please note the different initial values of young and old mice and the
stronger impact of gender in the old mice, reflected in the large error bars of old CftrMHH, old CftrKO and WT mice (A, B). Since the group of old
CftrMHH mice was exclusively formed by male animals, less pronounced intragroup differences were noted (A, grey line with triangles).
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Figure 5 Time course of selected lung function parameters during infection. Spirometric curves depicting the time course of Tidal Volume
(Total volume inspired and expired in one breath) (A, B), Inspiratory plus Expiratory time (Time required for one breath) (C, D) and Expiratory
flow at 50% Expiration (EF50) (E, F) of CftrMHH mice and CftrKO and wild type mice after the intratracheal instillation of P. aeruginosa. There are no
marked differences for none of the parameters between CF and wild type mice of either genotype. C57BL6/J mice responded stronger to the
bacterial infection than FABP mice as indicated by the larger decrease in lung volume (A). As young mice breathe faster than old mice, the
overall time for one breath increases with age (C, D).
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Figure 6 Bacterial load and inflammation. Differentiated by age and genotype, the graphs depict the histology inflammation score of the
right lung (circles) and the number of viable bacteria recovered from the left lung (squares) at 48 hours after intratracheal instillation of P.
aeruginosa TBCF10839.
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Figure 7 Lung pathohistology photomicrographs. Representative examples of the stained specimen slides show the inflammation in the
murine lungs 48 h after an intratracheal infection with 6.0 × 105 CFU of P. aeruginosa. Slides A-E represent different degrees of inflammation as
they were assessed in the semi-quantitative pathohistological score; control (F). Hematoxilin-eosin staining; scale bar: 100 μm. A) Profound
purulent pneumonia in an old FABP WT mouse, massive inflammatory infiltrates within the alveolae and intrabronchiolar (arrow), B) Old FABP WT
mouse showing moderate inflammation with peri- and minor intrabronchiolar (arrowhead) leucocyte accumulation, C) Peribronchiolar and
perivascular inflammation accompanied by inflammatory edema (arrow) in a young CftrMHH mouse D) Old CftrKO mouse: Strong leucocyte
accumulation (arrow) around a lung vessel, E) Only faint peribronchiolar inflammation in an old CftrMHH F) Control: normal lung parenchyma.
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more prominent as in the case of CftrMHH mice, they
were also existent in non-infected animals.

Endpoint analyses
Forty-eight hours after challenge the numbers of viable
P. aeruginosa TBCF10839 in the murine lungs ranged
from zero to a maximum of 8.2 × 103 CFU (Figure 6).
The mice had cleared 99% or more of the initial inocu-
lum. No differences could be observed between young
and old and between CF and non-CF mice.
Examination of lung histology (Figure 7) revealed most

signs of inflammation in the lung parenchyma such as
alveolar histiocytosis, PMNs in the alveoli and partially
even necrosis of the alveolar septae. In the most strongly
affected animals approximately 20-30% of the tissue
showed signs of an acute catarrhalic-suppurating alveolar
pneumonia. Inflammatory cell infiltrates of bronchi and
perivascular edema were seen in less than 10% of exam-
ined sections.
Among the different animal groups the young CftrMHH

mice exhibited a significantly higher inflammation than

the old CftrMHH mice in the lung parenchyma, but not
in other lung compartments. Correspondingly young
CftrMHH mice had the highest mean histology score
(Figure 8). At the chosen endpoint of 48 hours the
number of viable bacteria in the lungs did not signifi-
cantly correlate with the severity of airway inflammation
classified by the histology score (Figure 6).

Discussion
This study shows for the first time lung function data of
CF mice and demonstrates the impact of age, cftr geno-
type, genetic background and an acute airway infection
with P. aeruginosa on lung function. Lung function mea-
surements in uninfected CF and non-CF mice showed
general trends for the investigated age groups. Tidal
volume increased slightly with increased body weight.
Respiratory rate decreased as mice breathe slower, which
is also observed in the time required for one breath. In
general the flows also decreased concordant with the
slower respiration. CF and wild type mice had approxi-
mately the same tidal volume. However, when further
lung function parameters were taken into account, it
could be observed that the tidal volume levels of the CF
mice were only achieved through faster breathing as
characterized by the times for breathing and the respira-
tory rate. Interestingly these variations between CF and
non-CF mice of the same genetic background did not
withstand under P. aeruginosa airway infection.
Chronic airway infections with P. aeruginosa contribute

substantially to morbidity and mortality in individuals
with CF [33,34]. Numerous infection models have been
established in rodents to mimick the P. aeruginosa infec-
tion in CF, but only the rather artificial bead models with
encapsulated P. aeruginosa partially succeeded to mimick
bacterial persistence in lungs that is typical for human
CF airways [35-37]. No chronic P. aeruginosa infection
model has yet been established in CF mice [10,14,15].
This fact may be ascribed to differences in lung morphol-
ogy or lung physiology such as the lack of submucosal
glands in the lower conducting airways of the mouse or
to the endogeneous expression of alternative chloride
channels in murine lungs that may at least in part rescue
loss-of-function Cftr [11,38]. Although the former argu-
ment is probably true and hence calls for alternative
infection models in the recently developed CF pigs and
CF ferrets [39-45], the latter argument is less convincing
because we meanwhile know of many CF patients who
express residual amounts of CFTR or alternative ion con-
ductances and still become chronically colonized with
P. aeruginosa in their airways [46,47]. Hence we propose
that we should revisit the CF mouse infection models
and try to pinpoint concordant and discordant mechan-
isms that are operating in CF mice and CF patients.
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Figure 8 Mean histology scores of lung inflammation 48 hours
after intratracheal instillation of P. aeruginosa. The bars show
the mean and the standard error of the mean. *, P < 0.05; Kruskall-
Wallis rank test and Dunn’s multiple comparison test of the
individual scores.
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Only recently a link between Cftr genotype and the
airway infection with P. aeruginosa in mice could be
established. CF mice elder than 16 weeks became sus-
ceptible to airway colonization with P. aeruginosa when
infected by the intranasal route [19]. This phenotype
was associated with an age-dependent accumulation of
ceramide in airway epithelial cells. When ceramide accu-
mulation was prevented by pharmacological or genetic
means, the CF mice lost their increased susceptibility to
colonization with P. aeruginosa.
For the present study we selected exactly the same CF

mouse lines and their congenic or transgenic controls, but
inoculated P. aeruginosa by intratracheal instillation [23].
The congenic B6 mice showed more pronounced symp-
toms of acute infection than the transgenic mice, but non-
CF and CF animals with the same genetic background
behaved more or less similar. The old CF mice were not
more susceptible to P. aeruginosa infection than their age-
matched wild type controls.

Since the present and the previous studies primarily
differ in their mode of bacterial infection (Figure 9), we
hypothesize that the divergent infection routes explain
the inconsistent outcome of the two studies of how and
to which extent P. aeruginosa colonizes the airways of
old CF mice. The intranasal route deposits the bacteria
in the upper airways from which they spread to the
intestine and the lower airways. In contrast the intratra-
cheal route inoculates the lower airways, preferentially
the smaller conducting airways [23]. The intratracheal
instillation thus bypasses the initial steps of any lung
infection, i.e. the colonization of the upper airways and
the largest lower airways with the (opportunistic) patho-
gen (Figure 9).
We have previously investigated the CF phenotype of

trachea and upper airways of CftrMHH mice [21,25]. Like
in humans, the nasal epithelium of the CF mice exhib-
ited the basic defect of Na+ hyperabsorption and Cl-

hyposecretion [25] and the trachea had accumulated

Trachea Nasal Cavity

intratracheal intranasal

Figure 9 Experimental lung infection - Impact of infection route. The sketch highlights the differential experimental set-up for intranasal
and intratracheal infection in mice. Compared to an intranasal infection route the intratracheal instillation bypasses the initial host immune
response conducted by the respiratory epithelium of the upper airways and deposits more bacteria into the distal airways. The basic defect in
CF impairs the mucociliary clearance [48]. Ciliated respiratory epithelium is abundant in the upper and conducting airways, decreasing with the
increasing branching of the airways. Correspondingly mucociliary clearance plays a prominent role for the elimination of the pathogen from
these compartments, but not from the alveolar space. Please note the differential abundance of respiratory epithelium in the upper airways
(right photograph) and the lower conducting airways of mice (left photograph).

Munder et al. Respiratory Research 2011, 12:148
http://respiratory-research.com/content/12/1/148

Page 12 of 15



ceramide [21]. The basic defect of perturbed electrolyte
transport across the apical epithelial membrane trans-
lates into airway surface dehydration and impaired
mucociliary clearance [48], and we have indeed mea-
sured impaired clearance in CftrMHH mice [49]. Corre-
spondingly, if CF mice were exposed intranasally with P.
aeruginosa the bacterial clearance did not work effi-
ciently in the upper airways of CF mice and the bacter-
ial load increased within the first hours [19]. In contrast,
if the murine lung was inoculated with P. aeruginosa by
intratracheal instillation, the bacterial clearance from the
upper airways and the large conducting lower airways
was bypassed and the host response to the intratracheal
infection route was indistinguishable between congenic
CF and non-CF mice. Thus we would like to conclude
that the CF condition undermines the first barrier of
host defense, i.e. bacterial clearance, but does not com-
promise the subsequent host responses. This conclusion
fits with our current knowledge of how the basic defect
in CF patients predisposes to infection in conducting
airways [40,48,50,51]: CFTR-deficiency impairs ciliary
clearance and slows down mucus transport thus facili-
tating bacterial colonization, particularly if the airways
are injured by an acute viral infection [52].

Conclusions
Hence, the bottom-line of our previous and present stu-
dies is that CF mice are suited to investigate of how the
basic defect translates into an increased susceptibility to
airway colonization with P. aeruginosa. The first line of
host defense, i.e. the removal of bacteria from the air-
ways by mucociliary clearance is deficient in CF mice.
However, the subsequent steps of host-pathogen interac-
tion during an acute infection with P. aeruginosa are not
compromised in CF mice. In other words, CF mice are
appropriate models to study the very early host defense
mechanisms.

Additional material

Additional file 1: Longitudinal values for spirometric parameters.
The comprehensive table shows the courses of each single spirometric
parameter. Significant differences are marked in grey.

Acknowledgements
The authors are indebted to Achim Gruber’s laboratory for the preparation
and staining of the histological samples. We also thank Damaris Leemhuis
and Sylwia Wiehlmann for excellent technical assistance and to Dagmar
Stelte for her excellent editing of the sketch.
This work was supported by a grant of the Deutsche
Forschungsgemeinschaft to BT (SFB 587, project A9). FW received a
predoctoral stipend from the DFG-supported IRTG ‚Pseudomonas:
Pathogenicity and Biotechnology’ (GRK 653/3 and 653/4). Publication was
supported by the ‘Open Access Publishing’ project of the Deutsche
Forschungsgemeinschaft.

Author details
1Clinical Research Group, Clinic for Pediatric Pneumology, Allergology and
Neonatology, OE 6710, Hannover Medical School, Hannover, Germany.
2Institute for Functional and Applied Anatomy, OE 4120, Hannover Medical
School, Hannover, Germany. 3Institute of Laboratory Animal Science, OE
8600, Hannover Medical School, Hannover, Germany. 4Pediatric
Pulmonology, Allergology and Neonatology, OE 6710, Hannover Medical
School, Hannover, Germany. 5Department of Molecular Biology, University of
Duisburg-Essen, Essen, Germany.

Authors’ contributions
AM designed and carried out the infection experiments and drafted the
manuscript. FW participated in the infection experiments, did the spirometry
measurements and performed the statistical analysis. TKM participated in the
infection experiments. DW supervised the breeding of the utilized mouse
models and did the genotyping of the CftrKO mice and their respective
littermates. UB was responsible for the make-up of the spirometry unit. EG
assisted in the concept of the study. BT conceived the study, participated in
its design and coordination and in the writing of the manuscript. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 2 August 2011 Accepted: 7 November 2011
Published: 7 November 2011

References
1. Ratjen F, Döring G: Cystic fibrosis. Lancet 2003, 361:681-689.
2. Davis PB, Drumm M, Konstan MW: Cystic fibrosis. Am J Respir Crit Care Med

1996, 154:1229-1256.
3. Gibson RL, Burns JL, Ramsey BW: Pathophysiology and management of

pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 2003,
168:918-951.

4. Worlitzsch D, Tarran R, Ulrich M, Schwab U, Cekici A, Meyer KC, Birrer P,
Bellon G, Berger J, Weiss T, Botzenhart K, Yankaskas JR, Randell S,
Boucher RC, Döring G: Effects of reduced mucus oxygen concentration in
airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest
2002, 109:317-325.

5. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M,
Rozmahel R, Cole JL, Kennedy D, Hidaka N: Identification of the cystic
fibrosis gene: chromosome walking and jumping. Science 1989,
245:1059-1065.

6. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z,
Zielenski J, Lok S, Plavsic N, Chou JL, Drumm ML, Iannuzzi MC, Collins FS,
Tsui LC: Identification of the cystic fibrosis gene: cloning and
characterization of complementary DNA. Science 1989, 245:1066-73.

7. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A,
Buchwald M, Tsui LC: Identification of the cystic fibrosis gene: genetic
analysis. Science 1989, 245:1073-1080.

8. Tata F, Stanier P, Wicking C, Halford S, Kruyer H, Lench NJ, Scambler PJ,
Hansen C, Braman JC, Williamson R: Cloning the mouse homolog of the
human cystic fibrosis transmembrane conductance regulator gene.
Genomics 1991, 10:301-307.

9. Yorifuji T, Lemna WK, Ballard CF, Rosenbloom CL, Rozmahel R, Plavsic N,
Tsui LC, Beaudet AL: Molecular cloning and sequence analysis of the
murine cDNA for the cystic fibrosis transmembrane conductance
regulator. Genomics 1991, 10:547-550.

10. Grubb BR, Boucher RC: Pathophysiology of gene-targeted mouse models
for cystic fibrosis. Physiol Rev 1999, 79:193-214.

11. Rozmahel R, Wilschanski M, Matin A, Plyte S, Oliver M, Auerbach W,
Moore A, Forstner J, Durie P, Nadeau J, Bear C, Tsui LC: Modulation of
disease severity in cystic fibrosis transmembrane conductance regulator
deficient mice by a secondary genetic factor. Nat Genet 1996, 12:280-287.

12. Haston CK, McKerlie C, Newbigging S, Corey M, Rozmahel R, Tsui LC:
Detection of modifier loci influencing the lung phenotype of cystic
fibrosis knockout mice. Mamm Genome 2002, 13:605-13.

13. Kent G, Iles R, Bear CE, Huan LJ, Griesenbach U, McKerlie C, Frndova H,
Ackerley C, Gosselin D, Radzioch D, O’Brodovich H, Tsui LC, Buchwald M,
Tanswell AK: Lung disease in mice with cystic fibrosis. J Clin Invest 1997,
100:3060-3069.

Munder et al. Respiratory Research 2011, 12:148
http://respiratory-research.com/content/12/1/148

Page 13 of 15

http://www.biomedcentral.com/content/supplementary/1465-9921-12-148-S1.XLS
http://www.ncbi.nlm.nih.gov/pubmed/12606185?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8912731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14555458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14555458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11827991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11827991?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2772657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2772657?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2475911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2475911?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2570460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2570460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1712752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1712752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1716243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1716243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1716243?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8589719?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8589719?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8589719?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12461645?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12461645?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9399953?dopt=Abstract


14. Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, Smithies O,
Koller BH: An animal model for cystic fibrosis made by gene targeting.
Science 1992, 257:1083-1088.

15. Snouwaert JN, Brigman KK, Latour AM, Iraj E, Schwab U, Gilmour MI,
Koller BH: A murine model of cystic fibrosis. Am J Respir Crit Care Med
1995, 151:59-64.

16. Dorin JR, Dickinson P, Alton EWFW, Smith SN, Geddes DM, Stevenson BJ,
Kimber WL, Fleming S, Clarke AR, Hooper ML, Anderson L, Beddington RSP,
Porteous DJ: Cystic fibrosis in the mouse by targeted insertional
mutagenesis. Nature 1992, 359:211-215.

17. Dorin JR, Stevenson BJ, Fleming S, Alton EW, Dickinson P, Porteous DJ:
Long-term survival of the exon 10 insertional cystic fibrosis mutant
mouse is a consequence of low level residual wild-type Cftr gene
expression. Mamm Genome 1994, 5:465-472.

18. Zhou L, Dey CR, Wert SE, DuVall MD, Frizzell RA, Whitsett JA: Correction of
lethal intestinal defect in a mouse model of cystic fibrosis by human
CFTR. Science 1994, 266:1705-1708.

19. Teichgräber V, Ulrich M, Endlich N, Riethmüller J, Wilker B, De Oliveira-
Munding CC, van Heeckeren AM, Barr ML, von Kürthy G, Schmid KW,
Weller M, Tümmler B, Lang F, Grassme H, Döring G, Gulbins E: Ceramide
accumulation mediates inflammation, cell death and infection
susceptibility in cystic fibrosis. Nat Med 2008, 14:382-391.

20. Durie PR, Kent G, Phillips MJ, Ackerley CA: Characteristic multiorgan
pathology of cystic fibrosis in a long-living cystic fibrosis
transmembrane regulator knockout murine model. Am J Pathol 2004,
164:1481-1493.

21. Becker KA, Tümmler B, Gulbins E, Grassmé H: Accumulation of ceramide in
the trachea and intestine of cystic fibrosis mice causes inflammation
and cell death. Biochem Biophys Res Commun 2010, 403:368-74.

22. Wölbeling F, Munder A, Stanke F, Tümmler B, Baumann U: Head-out
spirometry accurately monitors the course of Pseudomonas aeruginosa
lung infection in mice. Respiration 2010, 80:340-346.

23. Munder A, Krusch S, Tschernig T, Dorsch M, Lührmann A, van Griensven M,
Tümmler B, Weiss S, Hedrich HJ: Pulmonary microbial infection in mice:
Comparison of different application methods and correlation of
bacterial numbers and histopathology. Exp Toxicol Pathol 2002,
54:127-133.

24. Charizopoulou N, Jansen S, Dorsch M, Stanke F, Dorin JR, Hedrich HJ,
Tümmler B: Instability of the insertional mutation CftrTgH(neoim)Hgu
cystic fibrosis mouse model. BMC Genetics 2004, 5:6.

25. Tóth B, Wilke M, Stanke F, Dorsch M, Jansen S, Wedekind D,
Charizopoulou N, Bot A, Burmester M, Leonhard-Marek S, de Jonge HR,
Hedrich HJ, Breves G, Tümmler B: Very mild disease phenotype of
congenic CftrTgH(neoim)Hgu cystic fibrosis mice. BMC Genetics 2008,
9:28.

26. Petkov PM, Cassell MA, Sargent EE, Donnelly CJ, Robinson P, Crew V,
Asquith S, Haar RV, Wiles MV: Development of a SNP genotyping panel
for genetic monitoring of the laboratory mouse. Genomics 2004,
83:902-11.

27. Hedrich HJ, Rapp KG, Zschege C: Genetic constancy, respectively subline
drifting of inbred strains of rats and mice. Z Versuchstierkd 1975,
17:263-74.

28. The JAX® Mice Database. [http://jaxmice.jax.org/strain/002364.html].
29. Nicklas W, Baneux P, Boot R, Decelle T, Deeny AA, Fumanelli M, Illgen-

Wilcke B, FELASA (Federation of European Laboratory Animal Science
Associations Working Group on Health Monitoring of Rodent and Rabbit
Colonies). FELASA, London UK: Recommendations for the health
monitoring of rodent and rabbit colonies in breeding and experimental
units. Lab Anim 2002, 36:20-42.

30. National Research Council (US) Committee for the Update of the Guide for
the Care and Use of Laboratory Animals: Guide for the Care and Use of
Laboratory Animals. National Academies Press (US), Washington (DC);, 8
2011.

31. Tümmler B, Koopmann U, Grothues D, Weissbrodt H, Steinkamp D, von der
Hardt H: Nosocomial acquisition of Pseudomonas aeruginosa by cystic
fibrosis patients. J Clin Microbiol 1991, 29:1265-1267.

32. Munder A, Zelmer A, Schmiedl A, Dittmar KE, Rohde M, Dorsch M, Otto K,
Hedrich HJ, Tümmler B, Weiss S, Tschernig T: Murine pulmonary infection
with Listeria monocytogenes: differential susceptibility of BALB/c, C57BL/
6 and DBA/2 mice. Microbes Infect 2005, 7:600-611.

33. Saiman L: Microbiology of early CF lung disease. Paediatr Respir Rev 2004,
5(Suppl A):367-369.

34. Li Z, Kosorok MR, Farrell PM, Laxova A, West SE, Green CG, Collins J,
Rock MJ, Splaingard ML: Longitudinal development of mucoid
Pseudomonas aeruginosa infection and lung disease progression in
children with cystic fibrosis. JAMA 2005, 293:581-588.

35. Cash HA, Woods DE, McCullough B, Johanson WG Jr, Bass JA: A rat model
of chronic respiratory infection with Pseudomonas aeruginosa. Am Rev
Respir Dis 1979, 119:453-459.

36. O’Reilly T: Relevance of animal models for chronic bacterial infections in
humans. Am J Respir Crit Care Med 1995, 151:2101-2107.

37. Pedersen SS, Shand GH, Hansen BL, Hansen GN: Induction of experimental
chronic Pseudomonas aeruginosa lung infection with P. aeruginosa
entrapped in alginate microspheres. APMIS 1990, 98:203-211.

38. Guilbault C, Saeed Z, Downey GP, Radzioch D: Cystic fibrosis mouse
models. Am J Respir Cell Mol Biol 2007, 36:1-7.

39. Rogers CS, Stoltz DA, Meyerholz DK, Ostedgaard LS, Rokhlina T, Taft PJ,
Rogan MP, Pezzulo AA, Karp PH, Itani OA, Kabel AC, Wohlford-Lenane CL,
Davis GJ, Hanfland RA, Smith TL, Samuel M, Wax D, Murphy CN, Rieke A,
Whitworth K, Uc A, Starner TD, Brogden KA, Shilyansky J, McCray PB Jr,
Zabner J, Prather RS, Welsh MJ: Disruption of the CFTR gene produces a
model of cystic fibrosis in newborn pigs. Science 2008, 321:1837-1841.

40. Lee RJ, Foskett JK: cAMP-activated Ca2+ signaling is required for CFTR-
mediated serous cell fluid secretion in porcine and human airways. J
Clin Invest 2010, 120:3137-3148.

41. Joo NS, Cho HJ, Khansaheb M, Wine JJ: Hyposecretion of fluid from
tracheal submucosal glands of CFTR-deficient pigs. J Clin Invest 2010,
120:3161-3166.

42. Rogan MP, Reznikov LR, Pezzulo AA, Gansemer ND, Samuel M, Prather RS,
Zabner J, Fredericks DC, McCray PB Jr, Welsh MJ, Stoltz DA: Pigs and
humans with cystic fibrosis have reduced insulin-like growth factor 1
(IGF1) levels at birth. Proc Natl Acad Sci USA 2010, 107:20571-5.

43. Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, Rector MV,
Reznikov LR, Launspach JL, Chaloner K, Zabner J, Welsh MJ: Loss of anion
transport without increased sodium absorption characterizes newborn
porcine cystic fibrosis airway epithelia. Cell 2010, 143:911-23.

44. Ostedgaard LS, Meyerholz DK, Chen JH, Pezzulo AA, Karp PH, Rokhlina T,
Ernst SE, Hanfland RA, Reznikov LR, Ludwig PS, Rogan MP, Davis GJ,
Dohrn CL, Wohlford-Lenane C, Taft PJ, Rector MV, Hornick E, Nassar BS,
Samuel M, Zhang Y, Richter SS, Uc A, Shilyansky J, Prather RS, McCray PB Jr,
Zabner J, Welsh MJ, Stoltz DA: The ΔF508 mutation causes CFTR
misprocessing and cystic fibrosis-like disease in pigs. Sci Transl Med 2011,
3:74ra24.

45. Sun X, Sui H, Fisher JT, Yan Z, Liu X, Cho HJ, Joo NS, Zhang Y, Zhou W, Yi Y,
Kinyon JM, Lei-Butters DC, Griffin MA, Naumann P, Luo M, Ascher J,
Wang K, Frana T, Wine JJ, Meyerholz DK, Engelhardt JF: Disease phenotype
of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest 2010,
120:3149-3160.

46. Kubesch P, Dörk T, Wulbrand U, Kälin N, Neumann T, Wulf B, Geerlings H,
Weissbrodt H, von der Hardt H, Tümmler B: Genetic determinants of
airways’ colonisation with Pseudomonas aeruginosa in cystic fibrosis.
Lancet 1993, 341:189-193.

47. Kumar V, Becker T, Jansen S, van Barneveld A, Boztug K, Wölfl S, Tümmler B,
Stanke F: Expression levels of FAS are regulated through an evolutionary
conserved element in intron 2, which modulates cystic fibrosis disease
severity. Genes Immun 2008, 9:689-696.

48. Boucher RC: Airway surface dehydration in cystic fibrosis: pathogenesis
and therapy. Annu Rev Med 2007, 58:157-70.

49. Larbig M, Jansen S, Dorsch M, Bernhard W, Bellmann B, Dorin JR,
Porteous DJ, Von Der Hardt H, Steinmetz I, Hedrich HJ, Tuemmler B,
Tschernig T: Residual cftr expression varies with age in cftr(tm1Hgu)
cystic fibrosis mice: impact on morphology and physiology. Pathobiology
2002, 70:89-97.

50. Choi JY, Joo NS, Krouse ME, Wu JV, Robbins RC, Ianowski JP, Hanrahan JW,
Wine JJ: Synergistic airway gland mucus secretion in response to
vasoactive intestinal peptide and carbachol is lost in cystic fibrosis. J Clin
Invest 2007, 117:3118-3127.

51. Joo NS, Cho HJ, Khansaheb M, Wine JJ: Hyposecretion of fluid from
tracheal submucosal glands of CFTR-deficient pigs. J Clin Invest 2010,
120:3161-3166.

Munder et al. Respiratory Research 2011, 12:148
http://respiratory-research.com/content/12/1/148

Page 14 of 15

http://www.ncbi.nlm.nih.gov/pubmed/1380723?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1382232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1382232?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7949729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7949729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7949729?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7527588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7527588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7527588?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18376404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18376404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18376404?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15039235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15039235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15039235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21078296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21078296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21078296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20664195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20664195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20664195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12211633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12211633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12211633?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15102331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15102331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18400105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18400105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15081119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15081119?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1210818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1210818?dopt=Abstract
http://jaxmice.jax.org/strain/002364.html
http://www.ncbi.nlm.nih.gov/pubmed/11831737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11831737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11831737?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1907611?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1907611?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15820148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15820148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15820148?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15687313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15687313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15687313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/109021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/109021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7767564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7767564?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2107827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2107827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2107827?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16888286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16888286?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18818360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18818360?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21059918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21059918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21059918?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21145458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21145458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21145458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21411740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21411740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7678316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7678316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18685642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18685642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18685642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17217330?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17217330?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12476034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12476034?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17853942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17853942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739758?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20739758?dopt=Abstract


52. Wang EEL, Prober CG, Manson B, Corey M, Levison H: Association of
respiratory viral infections with pulmonary deterioration in patients with
cystic fibrosis. N Engl J Med 1984, 311:1653-1658.

doi:10.1186/1465-9921-12-148
Cite this article as: Munder et al.: Acute intratracheal Pseudomonas
aeruginosa infection in cystic fibrosis mice is age-independent. Respiratory
Research 2011 12:148.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Munder et al. Respiratory Research 2011, 12:148
http://respiratory-research.com/content/12/1/148

Page 15 of 15

http://www.ncbi.nlm.nih.gov/pubmed/6504106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6504106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6504106?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Mouse strains
	Spirometry
	Bacteria
	Infection protocol
	Pathohistology of the lungs
	Lung bacterial numbers
	Statistics

	Results
	Lung function of CF mice
	Outline of infection experiments
	Global body condition
	Rectal body temperature
	Body Weight
	Lung function
	Endpoint analyses

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

