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Abstract
In this study, a stochastic process which represents a single-item inventory control
model with (s, S)-type policy is constructed when the demands of a costumer are
dependent on the inter-arrival times between consecutive arrivals. Under the
assumption that the demands can be expressed as a monotone convex function of
the inter-arrival times, it is proved that this process is ergodic, and closed form of the
ergodic distribution is given. Moreover, a sharp lower bound for this distribution is
obtained.
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1 Introduction
Consider a single-item inventory control model as follows. Customers arrive at the depot
at random times {Tn}, and the amount of their demands can be modeled by a sequence of
random variables {ηn}. If there exists enough supply in the stock, then the demanded items
of the customer are satisfied from the stock, else an immediate replenishment order takes
place so that to raise the inventory level to an order-up-to level S > . In other words, if
X(t–) denotes stock level just before an arrival of a customer at time t and η is the amount
of his/her demand, then

X(t) =

⎧⎨
⎩X(t–) – η, X(t–) – η > s,

S, X(t–) – η ≤ s.

Here s ≥  is a pre-defined control level. We will assume that no product is returned or
defective and the supplier of this depot is reliable so that the replenishment is not delayed.
This model is known as (S, s)-type policy inventory control model and it has been exten-
sively studied under various assumptions in the literature (see Scarf [], Rabta and Aissani
[], Chen and Yang [], Khaniyev and Atalay [], Khaniyev and Aksop []).
The classical inventory model assumes that the inter-arrival times of the customers and

the amounts of the demands are mutually independent random variables. However, real
life problems are generally too complex so the assumptions of classical inventory control
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theory are not valid. This situation shows itself mainly on the structure of the amounts of
the demands and the inter-arrival times between consecutive costumers.
Inmost cases, these demands cannot bemodeled by independent random variables. For

example, demands candependon the day of theweek so that at theweekends there can be a
high demandwhile at weekdays there can be lowdemand, or there can be seasonal demand
for that item (see Sethi and Cheng []). Also the amount of the demand can depend on
the inventory level: if the supplier can offer a wide selection of his/her items, then he/she
can increase the probability of making a sale (see Urban []).
The model investigated in this study assumes that the demands are dependent on the

inter-arrival times. This assumption makes sense especially in the situations when the de-
mands can be met only by one supplier and reaching that supplier is not easy for the cus-
tomers. In this case, if a customer did not make a demand for a long time, then he or she
will probably have a need for more items. This is the situation occurring at rural districts
or regions which are difficult to access.
The main purpose of this paper is to investigate the ergodicity of an inventory con-

trol model with (s,S)-policy under the assumption that the amount of demands is depen-
dent on inter-arrival times. Next section gives a mathematical construction of the studied
stochastic process X(t). Section  gives some notations used in this study, and Section 
gives the main results. In the last section, some discussion is given.

2 Mathematical construction of the process X(t)
Let {(ξi,ηi)} be an independent and identically distributed random pair, where ξi and ηi

are dependent random variables with joint distribution G(x, y) and marginal distributions
� and F , respectively, that is,

G(t,x) = P{ξi ≤ t,ηi ≤ x}, i = , , . . .

and

�(t) = P{ξi ≤ t}, F(x) = P{ηi ≤ x}.

Moreover, let ηi be absolutely continuous random variables.
Let us construct a sequence of integer-valued random variables {Nn} as follows:

N = ,

N =min{n≥  : S – Yn < s},
Nm =min

{
n ≥Nm– +  : S – (Yn – YNm– ) < s

}
, m = , , . . . ,

where Yn =
∑n

i= ηi, n = , , . . . . For the sake of simplicity, we will use the following nota-
tion:

ξkn = ξNk–+n, ηkn = ηNk–+n, k = , . . . ,n = , , . . . .

Let us construct a stochastic process X(t) as follows:

X(t) = S –
ν(t)∑
i=

ηi, t > .
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Here

ν(t) =max{n≥  : Tn ≤ t},

and Tn =
∑n

i= ξi, n = , , . . . , T = .
Whenever the value of this process falls below to a pre-defined fixed control level s > ,

we kill this process and a new replica X(t) of the process X(t) is constructed with the
initial value S. Let us denote this time by τ; that is,

τ = inf
{
t >  : X(t) < s

}
.

So the new process X(t) can be expressed as follows:

X(t) = S –
ν(t)∑
i=

ηi, t > ,

where, ηi and ν(t) are defined similar to ηi and ν(t), respectively.
In a similar way, let us construct a sequence of stochastic processes {Xn(t),n = , , . . .}.

By using these sequences of stochastic processes, we can define the desired stochastic
process X(t) as follows:

X(t) =
∞∑
n=

Xn(t – τn–)I[τn–,τn)(t), t > ,

where IA(·) is the indicator function of set A, i.e.,

IA(t) =

⎧⎨
⎩, t ∈ A,

, otherwise

and τ = .

3 Notation
In this section, the notations used in this article are given.

p(t,x)dx = P
{
X(t) ∈ dx

}
,

Uθ (t) =
∞∑
n=

R∗n
 (t), Rn(t) = P{τn ≤ t}, n = , , . . . ,

pn(t,x) =
(
p(·,x) ∗ Rn

)
(t) ≡

∫ t


p(t – u,x)Rn(du),

Yn:m =
m∑
i=n

ηi, m≥ n; Yn:m = , m < n,

Fn(x) = F∗n(x), U(x)≡
∞∑
n=

Fn(x), F(x) = , x≥ ,

f (x)dx = F(dx), �n(t) =�∗n(t), F(x) =  – F(x), γ = S – s.
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4 Main results
In Theorem . below, the ergodicity of the constructed stochastic process is obtained un-
der the assumption that the demands can be expressed as a monotone increasing function
of the inter-arrival times by utilizing a theorem fromGihman and Skorohod []. Thenwith
an additional assumption of convexity, we obtained an upper bound for the first period’s
distribution function (that is, for the distribution function of X(t), ≤ t < τ). An explicit
expression for the ergodic characteristics of the process X(t) is given in Corollary .. In
Theorem . a lower bound for the ergodic distribution is obtained.

Proposition . (see Feller []) For all t ≥ , the following equation holds true:

∞∑
n=

n
[
Fn–(t) – Fn(t)

]
=U(t).

Definition . (Lehmann []) A pair of random variables (X,Y ) is positively quadrant
dependent if

P{X ≤ x,Y ≤ y} ≥ P{X ≤ x}P{Y ≤ y}, x, y ∈R. ()

Proposition . (Lehmann []) If X and Y are positively quadrant dependent, then the
following inequality holds:

P{X ≥ x,Y ≤ y} ≤ P{X ≥ x}P{Y ≤ y}.

Theorem . Let E[ξ] <∞ and E[η] > . If ξ and η are positively quadrant dependent,
then E[τ] < ∞.

Proof Note that

E[τ] = E

[ N∑
i=

ξi

]

=
∞∑
n=

nE[ξ|N = n]P{N = n}

=
∞∑
n=

n
∫ ∞


P{ξ ≥ x,N = n}dx. ()

On the other hand, for n = ,  we have

P{ξ ≥ x,N = n} ≤ P{ξ ≥ x} ()

and for n≥  we have

P{ξ ≥ x,N = n} = P{ξ ≥ x,Yn– ≤ γ < Yn}

=
∫ γ


P{ξ ≥ x,η ∈ dv,Y:n– ≤ γ – v < Y:n}
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=
∫ γ


P{Yn– ≤ γ – v < Yn–}P{ξ ≥ x,η ∈ dv}

=
∫ γ



∫ γ–v


F(γ – v –w)Fn–(dw)P{ξ ≥ x,η ∈ dv}

=
∫ γ



[
Fn–(γ – v) – Fn–(γ – v)

]
P{ξ ≥ x,η ∈ dv}. ()

By applying Proposition ., we get from ()

P{ξ ≥ x,N = n} ≤
∫ γ



[
Fn–(γ – v) – Fn–(γ – v)

]
P{η ∈ dv}P{ξ ≥ x}

=
[
Fn–(γ ) – Fn(γ )

]
P{ξ ≥ x}. ()

Substituting () into () and using Proposition . yields

E[τ] ≤
∑

n=

∫ ∞


nP{ξ ≥ x}dx +

∫ ∞



∞∑
n=

n
[
Fn–(γ ) – Fn(γ )

]
P{ξ ≥ x}dx

= E[ξ]
[
U(γ ) + F(γ ) – F(γ ) + 

]
.

Since for all finite values of γ , U(γ ) is finite (Feller []), we get

E[τ] ≤ E[ξ]
[
U(γ ) + F(γ ) – F(γ ) + 

]
≤ (

 +U(γ )
)
E[ξ] < ∞. �

Theorem . Let ηn = h(ξn), n = , , . . . , where h ∈ C(R+) is a monotone increasing func-
tion. Let h()≥  and E[η] = μ < ∞.
(A) If supx∈R h(x) > γ , then the process X(t) is ergodic.
(B) If supx∈R h(x) < γ , then, additionally, let

∫ ∞



(
 –

h(x)
γ

)
dx <∞.

Then the process X(t) is ergodic.

Proof It is known that the following conditions are sufficient to prove that the processX(t)
is ergodic (Gihman and Skorohod []):
. For a sequence of random variables {γn} such that  ≤ γ < γ < · · · , the process

Xn ≡ X(γn)must form an ergodic Markov chain.
. E[γn+ – γn] < ∞, n = , , . . . .
Observe thatXn ≡ X(τn) forman ergodicMarkov chain becauseX(τn) = S for each n ≥ .
To see that E[τn+ –τn] <∞, it is enough to showonly that E[τ] < ∞ because τ, τ –τ, . . .

have identical distribution. Note that

E[τ] = E

[ N∑
i=

ξi

]

= E

[ N∑
i=

E
[
ξi|N

]]

= E
[
NE[ξ|N]

]
.
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On the other hand, from Proposition . and equation () we have

E[τ] =
∫ ∞



∫ ∞

h(x)
U(γ – y)F(dy)dx.

Here, if a > b, then we take
∫ b
a f dt = .

(A) Let us assume that there exists x ∈ R
+ such that h(x) > γ holds. Then let us denote

the infimum of such numbers with x∗ (<∞); that is,

x∗ = inf
{
x >  : h(x) > γ

}
.

Then we get
∫ ∞



∫ γ

h(x)
U(γ – y)F(dy)dx =

∫ x∗



∫ γ

h(x)
U(γ – y)F(dy)dx

≤
∫ x∗



∫ γ


U(γ – y)F(dy)dx

= x∗(U(γ ) – 
)
< ∞.

(B) If h(x) < γ for all x ∈R
+, then∫ ∞



∫ γ

h(x)
U(γ – y)F(dy)dx ≤ sup

y∈[,γ ]

{
U(γ – y)f (y)

}∫ γ



(
γ – h(x)

)
dx

≤ sup
y∈[,γ ]

{
U(γ – y)f (y)

}∫ ∞



(
γ – h(x)

)
dx

= γ sup
y∈[,γ ]

{
U(γ – y)f (y)

}∫ ∞



(
 –

h(x)
γ

)
dx < ∞.

Therefore E[τ] < ∞.
Now, put γn = τn in . and . to see that the process X(t) is ergodic. �

Lemma . For every measurable function g , the following equation holds true:

E
[
g
(
X(t)

)]
=

∞∑
n=

(
g ∗ p∗

n(t, ·)
)
(S). ()

Proof For every tn < t, we have

E
[
g
(
Xn(t – τn)

)
χ

(
Xn(t – τn)

)|τn = tn
]
= E

[
g
(
Xn(t – tn)

)
χ

(
Xn(t – tn)

)]
= E

[
g
(
X(t – tn)

)
χ

(
X(t – tn)

)]
=

∫ ∞


g(x)P

{
X(t – tn) ∈ dx

}

=
∫ S


g(x)p(t – tn,S – x)dx.

Here

χ (x) =

⎧⎨
⎩, x≥ ,

, x < .

http://www.journalofinequalitiesandapplications.com/content/2014/1/75
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Therefore,

E
[
g
(
Xn(t – τn)

)
I[τn ,τn+)(t)

]
=

∫ t



∫ S


g(x)p(t – tn,S – x)dxP{τn ∈ dtn}

and

E
[
g
(
X(t)

)]
=

∞∑
n=

∫ t



∫ S


g(x)p(t – tn,S – x)dxP{τn ∈ dtn}

=
∞∑
n=

∫ S


g(x)p∗

n(t,S – x)dx. �

In Theorem ., it is proved that under some assumptions the process X(t) is ergodic.
Therefore, limt→∞ P{X(t) ≤ x} exists for every x ∈ (s,S). Let us denote a random variable
X which admits this limit as a distribution; that is,

P{X ≤ x} = lim
t→∞P

{
X(t)≤ x

}
, x ∈ (s,S).

Corollary . For every measurable function g , the following equation holds:

E
[
g(X)

]
=


E[τ]

∫ ∞



(
g ∗ p(u, ·))(S)du.

Proof Note that from Theorem . we have

E
[
g
(
X(t)

)]
=

∞∑
n=

∫ S


g(x)p∗

n(t,S – x)dx

=
∞∑
n=

∫ S


g(x)

∫ t


p(t – u,S – x)P{τn ∈ du}dx

=
∫ S


g(x)

∫ t


p(t – u,S – x)Uθ (du)dx

=
∫ S


g(x)

(
p(·,S – x) ∗Uθ

)
(t)dx.

On the other hand, it is well known from the key renewal theorem that

lim
t→∞

(
p(·,S – x) ∗Uθ

)
(t) =


E[τ]

∫ ∞


p(t,S – x)dt.

Therefore we get

E
[
g(X)

]
=

∫ S


g(x)


E[τ]

∫ ∞


p(t,S – x)dt dx

=


E[τ]

∫ ∞



∫ S


g(x)p(t,S – x)dxdt

=


E[τ]

∫ ∞



(
g ∗ p(t, ·))(S)dt. �
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Hanalioğlu (Khaniyev) and Aksop Journal of Inequalities and Applications 2014, 2014:75 Page 8 of 10
http://www.journalofinequalitiesandapplications.com/content/2014/1/75

The following theorem can be obtained by an application of Theorem ., Lemma .
and Corollary ..

Theorem . For all x≥ ,

P{X ≤ x} = 
E[τ]

∫ ∞



∫ x


p(t,S – x)dxdt.

Remark Since X(t) is ergodic and limt→∞ P{X(t) ≤ x} = P{X ≤ x}, distribution in Theo-
rem . is the ergodic distribution of the process X(t).

Lemma . In addition to the assumption in Theorem ., let h(x) be a convex function.
Then the following inequality holds for t < τ:

P
{
X(t)≤ x

} ≤
∞∑
n=

∫ t

nh( S–xn )
�(t – y)�n(dy). ()

Here, if a > b, we take
∫ b
a ·dt = . The inequality in () will be ≥, when h is a concave

function.

Proof Note that

P
{
X(t)≤ x

}
= P

{
S –

ν(t)∑
i=

ηi ≤ x

}

=
∞∑
n=

P

{
ν(t)∑
i=

ηi ≥ S – x,ν(t) = n

}

=
∞∑
n=

P

{ n∑
i=

ηi ≥ S – x,
n∑
i=

ξi ≤ t <
n+∑
i=

ξi

}

=
∞∑
n=

P

{ n∑
i=

h–(ξi) ≥ S – x,
n∑
i=

ξi ≤ t <
n+∑
i=

ξi

}

=
∞∑
n=

P

{

n

n∑
i=

h–(ξi) ≥ S – x
n

,
n∑
i=

ξi ≤ t <
n+∑
i=

ξi

}

≤
∞∑
n=

P

{
h–

(

n

n∑
i=

ξi

)
≥ S – x

n
,

n∑
i=

ξi ≤ t <
n+∑
i=

ξi

}

=
∞∑
n=

P

{

n

n∑
i=

ξi ≥ h
(
S – x
n

)
,

n∑
i=

ξi ≤ t <
n+∑
i=

ξi

}

=
∞∑
n=

∫ t

nh( S–xn )
�(t – y)�n(dy). ()

�

Remark Note that the series in () is convergent.

Theorem . Under the assumptions of Lemma ., we have

P{X ≤ x} ≥ 
E[τ]

∫ ∞



[
 –

∞∑
n=

∫ t

nh( xn )
�(t – y)�n(dy)

]
dt, x≥ . ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/75
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Proof From Theorem . we have

P{X ≤ x} = 
E[τ]

∫ ∞



∫ x


p(t,S – x)dxdt,

which is also the ergodic distribution ofX(t). Therefore, with an application of Lemma .
we get

P{X ≤ x} = 
E[τ]

∫ ∞



∫ S

S–x
p(t, y)dydt

=


E[τ]

∫ ∞


P
{
X(t)≥ S – x

}
dt

=


E[τ]

∫ ∞



[
 – P

{
X(t) ≤ S – x

}]
dt

≥ 
E[τ]

∫ ∞



[
 –

∞∑
n=

∫ t

nh( xn )
�(t – y)�n(dy)

]
dt. ()

�

Proposition . The inequality in Theorem . is sharp; that is, there exists a convex
function such that () is satisfied with equality.

Proof To prove this proposition, it is enough to show that () is sharp. Let h(x) = ax, a > .
From () we have

P
{
X(t)≤ x

}
=

∞∑
n=

P

{ n∑
i=

ξi ≥ a(S – x),
n∑
i=

ξi ≤ t <
n+∑
i=

ξi

}

=
∞∑
n=

∫ t

a(S–x)
�(t – y)�n(dy). ()

Therefore, () is satisfied with equality. Moreover, note that in this case the assumptions
of Theorem . are satisfied. Therefore the processX(t) is ergodic and limt→∞ P{X(t)≤ x}
is finite. The proof of this proposition follows by substituting () in (). �

5 Conclusion
In this study, a stochastic model is constructed for an inventory where the customers’ de-
mands are dependent on their arrival times. This assumption is important for modeling
real life problems such as the models for the supply chain of items to researchers at poles
or space. In Theorem ., under some assumptions, it is proved that the stochastic process
X(t) is ergodic. Moreover, an explicit expression for the ergodic characteristics of the pro-
cess X(t) is obtained. A bound for the ergodic distribution is given in Theorem . which
is sharp.
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