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1 Introduction
LetC be a nonempty closed convex subset of a real Hilbert spaceHwith the inner product
〈·, ·〉 and the norm ‖·‖.We denote weak convergence and strong convergence by notations
⇀ and →, respectively. The bilevel variational inequalities, shortly (BVI), are formulated
as follows:

Find x∗ ∈ Sol(G,C) such that
〈
F
(
x∗),x – x∗〉 ≥ , ∀x ∈ Sol(G,C),

where G :H →H, Sol(G,C) denotes the set of all solutions of the variational inequalities:

Find y∗ ∈ C such that
〈
G

(
y∗), y – y∗〉 ≥ , ∀y ∈ C,

and F : C →H. We denote the solution set of problem (BVI) by �.
Bilevel variational inequalities are special classes of quasivariational inequalities (see

[–]) and of equilibrium with equilibrium constraints considered in []. However, they
cover some classes of mathematical programs with equilibrium constraints (see []),
bilevel minimization problems (see []), variational inequalities (see [–]), minimum-
norm problems of the solution set of variational inequalities (see [, ]), bilevel convex
programming models (see []) and bilevel linear programming in [].
Suppose that f :H →R. It is well known in convex programming that if f is convex and

differentiable on Sol(G,C), then x∗ is a solution to

min
{
f (x) : x ∈ Sol(G,C)

}

if and only if x∗ is the solution to the bilevel variational inequalities VI(∇f ,Sol(G,C)),
where ∇f is the gradient of f . Then the bilevel variational inequalities (BVI) are written in
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a form of mathematical programs with equilibrium constraints as follows:

⎧⎨
⎩
min f (x),

x ∈ {y∗ : 〈G(y∗), z – y∗〉 ≥ ,∀z ∈ C}.

If f , g are two convex and differentiable functions, then problem (BVI) (where F :=∇f and
G :=∇g) becomes the following bilevel minimization problem (see []):

⎧⎨
⎩
min f (x),

x ∈ argmin{g(x) : x ∈ C}.

In a special case F(x) = x for all x ∈ C, problem (BVI) becomes the minimum-norm prob-
lems of the solution set of variational inequalities as follows:

Find x∗ ∈ C such that x∗ = PrSol(G,C)(),

where PrSol(G,C)() is the projection of  onto Sol(G,C). A typical example is the least-
squares solution to the constrained linear inverse problem in []. For solving this problem
under the assumption that the subset C ⊆H is nonempty closed convex, G : C →H is α-
inverse strongly monotone and Sol(G,C) �= ∅, Yao et al. in [] introduced the following
extended extragradient method:

⎧⎪⎪⎨
⎪⎪⎩
x ∈ C,

yk = PrC(xk – λG(xk) – αkxk),

xk+ = PrC[xk – λG(xk) +μ(yk – xk)], ∀k ≥ .

They showed that under certain conditions over parameters, the sequence {xk} converges
strongly to x̂ = PrSol(G,C)().
Recently, Anh et al. in [] introduced an extragradient algorithm for solving problem

(BVI) in the Euclidean spaceRn. Roughly speaking the algorithm consists of two loops. At
each iteration k of the outer loop, they applied the extragradientmethod for the lower vari-
ational inequality problem. Then, starting from the obtained iterate in the outer loop, they
computed an εk-solution of problemVI(G,C). The convergence of the algorithm crucially
depends on the starting points x and the parameters chosen in advance. More precisely,
they presented the following scheme

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Compute yk := PrC(xk – αkG(xk)) and zk := PrC(xk – αkG(yk)).

Inner iterations j = , , . . . . Compute⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk, := zk – λF(zk),

yk,j := PrC(xk,j – δjG(xk,j)),

xk,j+ := αjxk, + βjxk,j + γj PrC(xk,j – δjG(yk,j)).

If ‖xk,j+ – PrSol(G,C)(xk,)‖ ≤ ε̄k , then set hk := xk,j+ and go to Step .

Otherwise, increase j by .

Set xk+ := αku + βkxk + γkhk . Increase k by  and go to Step .
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Under assumptions that F is strongly monotone and Lipschitz continuous, G is pseu-
domonotone and Lipschitz continuous on C, the sequences of parameters were chosen
appropriately. They showed that two iterative sequences {xk} and {zk} converged to the
same point x∗ which is a solution of problem (BVI). However, at each iteration of the outer
loop, the scheme requires computing an approximation solution to a variational inequality
problem.
There exist some other solution methods for bilevel variational inequalities when the

cost operator has some monotonicity (see [, –]). In all of these methods, solving
auxiliary variational inequalities is required. In order to avoid this requirement, we com-
bine the projected gradientmethod in [] for solving variational inequalities and the fixed
point property that x∗ is a solution to problemVI(F ,C) if and only if it is a fixed point of the
mapping PrC(x–λF(x)), where λ > . Then, the strong convergence of proposed sequences
is considered in a real Hilbert space.
In this paper, we are interested in finding a solution to bilevel variational inequalities

(BVI), where the operators F and G satisfy the following usual conditions:

(A) G is η-inverse strongly monotone onH and F is β-strongly monotone on C.
(A) F is L-Lipschitz continuous on C.
(A) The solution set � of problem (BVI) is nonempty.

The purpose of this paper is to propose an algorithm for directly solving bilevel pseu-
domonotone variational inequalities by using the projected gradient method and fixed
point techniques.
The rest of this paper is divided into two sections. In Section , we recall some properties

for monotonicity, the metric projection onto a closed convex set and introduce in detail a
new algorithm for solving problem (BVI). The third section is devoted to the convergence
analysis for the algorithm.

2 Preliminaries
We list some well-known definitions and the projection under the Euclidean norm which
will be used in our analysis.

Definition . Let C be a nonempty closed convex subset inH. We denote the projection
on C by PrC(·), i.e.,

PrC(x) = argmin
{‖y – x‖ : y ∈ C

}
, ∀x ∈H.

The operator ϕ : C →H is said to be
(i) γ -strongly monotone on C if for each x, y ∈ C,

〈
ϕ(x) – ϕ(y),x – y

〉 ≥ γ ‖x – y‖;

(ii) η-inverse strongly monotone on C if for each x, y ∈ C,

〈
ϕ(x) – ϕ(y),x – y

〉 ≥ η
∥∥ϕ(x) – ϕ(y)

∥∥;
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(iii) Lipschitz continuous with constant L >  (shortly L-Lipschitz continuous) on C if
for each x, y ∈ C,

∥∥ϕ(x) – ϕ(y)
∥∥ ≤ L‖x – y‖.

If ϕ : C → C and L = , then ϕ is called nonexpansive on C.

We know that the projection PrC(·) has the following well-known basic properties.

Property .
(a) ‖PrC(x) – PrC(y)‖ ≤ ‖x – y‖, ∀x, y ∈H.
(b) 〈x – PrC(x), y – PrC(x)〉 ≤ , ∀y ∈ C,x ∈H.
(c) ‖PrC(x) – PrC(y)‖ ≤ ‖x – y‖ – ‖PrC(x) – x + y – PrC(y)‖, ∀x, y ∈H.

To prove the main theorem of this paper, we need the following lemma.

Lemma . (see []) Let A :H →H be β-strongly monotone and L-Lipschitz continuous,
λ ∈ (, ] and μ ∈ (, βL ). Then the mapping T(x) := x – λμA(x) for all x ∈ H satisfies the
inequality

∥∥T(x) – T(y)
∥∥ ≤ ( – λτ )‖x – y‖, ∀x, y ∈H,

where τ =  –
√
 –μ(β –μL) ∈ (, ].

Lemma . (see []) Let H be a real Hilbert space, C be a nonempty closed and convex
subset ofH and S : C →H be a nonexpansivemapping.Then I–S (I is the identity operator
on H) is demiclosed at y ∈ H, i.e., for any sequence (xk) in C such that xk ⇀ x̄ ∈ D and
(I – S)(xk) → y, we have (I – S)(x̄) = y.

Lemma . (see []) Let {an} be a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, ∀n≥ ,

where {γn} ⊂ (, ) and {δn} is a sequence inR such that
(a)

∑∞
n= γn =∞,

(b) lim supn→∞
δn
γn

≤  or
∑∞

n= |δnγn| < +∞.
Then limn→∞ an = .

Now we are in a position to describe an algorithm for problem (BVI). The proposed
algorithm can be considered as a combination of the projected gradient and fixed point
methods. Roughly speaking the algorithm consists of two steps. First, we use the well-
known projected gradient method for solving the variational inequalities VI(G,C) : xk+ =
PrC(xk – λG(xk)) (k = , , . . .), where λ >  and x ∈ C. The method generates a sequence
(xk) converging strongly to the unique solution of problem VI(G,C) under assumptions
that G is L-Lipschitz continuous and α-strongly monotone on C with the step-size λ ∈
(, αL ). Next, we use the Banach contraction-mapping fixed-point principle for finding
the unique fixed point of the contraction-mapping Tλ = I – λμF , where F is β-strongly
monotone and L-Lipschitz continuous, I is the identitymapping,μ ∈ (, βL ) and λ ∈ (, ].
The algorithm is presented in detail as follows.

http://www.journalofinequalitiesandapplications.com/content/2014/1/205


Anh et al. Journal of Inequalities and Applications 2014, 2014:205 Page 5 of 9
http://www.journalofinequalitiesandapplications.com/content/2014/1/205

Algorithm . (Projection algorithm for solving (BVI))
Step . Choose x ∈ C, k = , a positive sequence {αk}, λ, μ such that

⎧⎪⎪⎨
⎪⎪⎩
 < αk ≤min{, 

τ
}, τ =  –

√
 –μ(β –μL),

limk→∞ αk = , limk→∞ | 
αk+

– 
αk

| = ,∑∞
k= αk =∞,  < λ ≤ η,  < μ < β

L .

(.)

Step . Compute
⎧⎨
⎩
yk := PrC(xk – λG(xk)),

xk+ = yk –μαkF(yk).

Update k := k + , and go to Step .

Note that in the case F(x) =  for all x ∈ C, Algorithm. becomes the projected gradient
algorithm as follows:

xk+ := PrC
(
xk – λG

(
xk

))
.

3 Convergence results
In this section, we state and prove our main results.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert spaceH. Let two
mappings F : C → H and G :H → H satisfy assumptions (A)-(A). Then the sequences
(xk) and (yk) in Algorithm . converge strongly to the same point x∗ ∈ �.

Proof For conditions (.), we consider the mapping Sk :H →H defined by

Sk(x) := PrC
(
x – λG(x)

)
–μαkF

[
PrC

(
x – λG(x)

)]
, ∀x ∈H.

Using Property .(a), G is η-inverse strongly monotone and conditions (.), for each
x, y ∈H, we have

∥∥PrC(
x – λG(x)

)
– PrC

(
y – λG(y)

)∥∥ ≤ ∥∥x – λG(x) – y + λG(y)
∥∥

= ‖x – y‖ + λ∥∥G(x) –G(y)
∥∥

– λ
〈
x – y,G(x) –G(y)

〉
≤ ‖x – y‖ + λ(λ – η)

∥∥G(x) –G(y)
∥∥

≤ ‖x – y‖. (.)

Combining this and Lemma ., we get

∥∥Sk(x) – Sk(y)
∥∥ =

∥∥PrC(
x – λG(x)

)
–μαkF

[
PrC

(
x – λG(x)

)]
– PrC

(
y – λG(y)

)
+μαkF

[
PrC

(
y – λG(y)

)]∥∥
≤ ( – αkτ )

∥∥PrC(
x – λG(x)

)
– PrC

(
y – λG(y)

)∥∥
≤ ( – αkτ )‖x – y‖, (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/205
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where τ := –
√
 –μ(β –μL). Thus, Sk is a contraction onH. By the Banach contraction

principle, there is the unique fixed point ξ k such that Sk(ξ k) = ξ k . For each x̂ ∈ Sol(G,C),
set

Ĉ :=
{
x ∈H : ‖x – x̂‖ ≤ μ‖F(x̂)‖

τ

}
.

Due to this and Property .(a), we get that the mapping Sk PrĈ is contractive onH. Then
there exists the unique point zk such that Sk[PrĈ(zk)] = zk . Set z̄k = PrĈ(zk). It follows from
(.) that

∥∥zk – x̂
∥∥ =

∥∥Sk(z̄k) – x̂
∥∥

≤ ∥∥Sk(z̄k) – Sk(x̂)
∥∥ +

∥∥Sk(x̂) – x̂
∥∥

=
∥∥Sk(z̄k) – Sk(x̂)

∥∥ +
∥∥Sk(x̂) – PrC

(
x̂ – αkG(x̂)

)∥∥
≤ ( – αkτ )

∥∥z̄k – x̂
∥∥ +μαk

∥∥F[
PrC

(
x̂ – αkG(x̂)

)]∥∥
≤ ( – αkτ )

μ‖F(x̂)‖
τ

+μαk
∥∥F(x̂)∥∥

=
μ‖F(x̂)‖

τ
.

Thus, zk ∈ Ĉ, Sk[PrĈ(zk)] = Sk(zk) = zk and hence ξ k = zk ∈ Ĉ. Therefore, there exists a sub-
sequence (ξ ki ) of the sequence (ξ k) such that ξ ki ⇀ ξ̄ . Combining this and the assumption
limk→∞ αk = , we get

∥∥PrC(
ξ ki – λG

(
ξ ki

))
– ξ ki

∥∥ =
∥∥PrC(

ξ ki – λG
(
ξ ki

))
– Ski

(
ξ ki

)∥∥
= μαki

∥∥F[
PrC

(
ξ ki – λG

(
ξ ki

))]∥∥
→  as i → ∞. (.)

It follows from (.) that the mapping PrC(· – αkG(·)) is nonexpansive on H. Using
Lemma ., (.) and ξ ki ⇀ ξ̄ , we obtain PrC(ξ̄ – λG(ξ̄ )) = ξ̄ , which implies ξ̄ ∈ Sol(G,C).
Now we will prove that limj→∞ ξ kj = x∗ ∈ Sol(BVI).
Set z̄k = PrC(ξ k – λG(ξ k)), v∗ = (μF – I)(x∗) and vk = (μF – I)(z̄k), where I is the identity

mapping. Since Skj (ξ
kj ) = ξ kj and x∗ = PrC(x∗ – λG(x∗)), we have

( – αkj )
(
ξ kj – z̄kj

)
+ αkj

(
ξ kj + vkj

)
= 

and

( – αkj )
[
I – PrC

(· – λG(·))](x∗) + αkj
(
x∗ + v∗) = αkj

(
x∗ + v∗).

Then

–αkj
〈
x∗ + v∗, ξ kj – x∗〉 = ( – αkj )

〈
ξ kj – x∗ –

(
z̄kj – x∗), ξ kj – x∗〉

+ αkj
〈
ξ kj – x∗ + vkj – v∗, ξ kj – x∗〉. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/205
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By the Schwarz inequality, we have

〈
ξ kj – x∗ –

(
z̄kj – x∗), ξ kj – x∗〉 ≥ ∥∥ξ kj – x∗∥∥ –

∥∥z̄kj – x∗∥∥∥∥ξ kj – x∗∥∥
≥ ∥∥ξ kj – x∗∥∥ –

∥∥ξ kj – x∗∥∥

=  (.)

and

〈
ξ kj – x∗ + vkj – v∗, ξ kj – x∗〉 ≥ ∥∥ξ kj – x∗∥∥ –

∥∥vkj – v∗∥∥∥∥ξ kj – x∗∥∥
≥ ∥∥ξ kj – x∗∥∥ – ( – τ )

∥∥ξ kj – x∗∥∥

= τ
∥∥ξ kj – x∗∥∥. (.)

Combining (.), (.) and (.), we get

–τ
∥∥ξ kj – x∗∥∥ ≥ 〈

x∗ + v∗, ξ kj – x∗〉
= μ

〈
F
(
x∗), ξ kj – x∗〉

= μ
〈
F
(
x∗), ξ kj – ξ̄

〉
+μ

〈
F
(
x∗), ξ̄ – x∗〉

≥ μ
〈
F
(
x∗), ξ kj – ξ̄

〉
.

Then we have

τ
∥∥ξ kj – x∗∥∥ ≤ μ

〈
F
(
x∗), ξ̄ – ξ kj

〉
.

Let j → ∞, and hence the sequence {ξ kj} converges strongly to x∗. This implies that the
sequence {ξ k} also converges strongly to x∗.
Otherwise, by using (.), we have

∥∥xk – ξ k∥∥ ≤ ∥∥xk – ξ k–∥∥ +
∥∥ξ k– – ξ k∥∥

=
∥∥Sk–(xk–) – Sk–

(
ξ k–)∥∥ +

∥∥ξ k– – ξ k∥∥
≤ ( – αk–τ )

∥∥xk– – ξ k–∥∥ +
∥∥ξ k– – ξ k∥∥. (.)

Moreover, by Lemma ., we have

∥∥ξ k– – ξ k∥∥ =
∥∥Sk–(ξ k–) – Sk

(
ξ k)∥∥

=
∥∥( – αk)z̄k – αkvk – ( – αk–)z̄k– + αk–vk–

∥∥
=

∥∥( – αk)
(
z̄k – z̄k–

)
– αk

(
vk – vk–

)
+ (αk– – αk)

(
z̄k– + vk–

)∥∥
≤ ( – αk)

∥∥z̄k – z̄k–
∥∥ + αk

∥∥vk – vk–
∥∥ + |αk– – αk|μ

∥∥F(
z̄k–

)∥∥
≤ ( – αk)

∥∥z̄k – z̄k–
∥∥ + αk

√
 –μ

(
β –μL

)∥∥ξ k – ξ k–∥∥
+ |αk– – αk|μ

∥∥F(
z̄k–

)∥∥
≤ ( – αk)

∥∥ξ k – ξ k–∥∥ + αk

√
 –μ

(
β –μL

)∥∥ξ k – ξ k–∥∥
+ |αk– – αk|μ

∥∥F(
z̄k–

)∥∥.
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This implies that

αkτ
∥∥ξ k– – ξ k∥∥ ≤ |αk– – αk|μ

∥∥F(
z̄k–

)∥∥
and hence

∥∥ξ k – ξ k–∥∥ ≤ μ|αk– – αk|‖F(z̄k–)‖
αkτ

.

So, we have

∥∥xk – ξ k∥∥ ≤ ( – αk–τ )
∥∥xk– – ξ k–∥∥ +

μ|αk– – αk|‖F(z̄k–)‖
αkτ

.

Let

δk :=
μ|αk – αk+|‖F(z̄k)‖

αkαk+τ  , k ≥ .

Then

∥∥xk – ξ k∥∥ ≤ ( – αk–τ )
∥∥xk– – ξ k–∥∥ + αk–τδk–, ∀k ≥ .

Since {F(z̄k)} is bounded, ‖F(z̄k)‖ ≤ K for all k ≥ , we have

lim
k→∞

δk = lim
k→∞

μ|αk – αk+|‖F(z̄k)‖
αkαk+τ  ≤ μK

τ  lim
k→∞

∣∣∣∣ 
αk+

–

αk

∣∣∣∣ = .

Applying Lemma ., limk→∞ ‖xk –ξ k‖ = . Combining this and the fact that the sequence
{ξ k} converges strongly to x∗, the sequence {xk} also converges strongly to the unique
solution to problem (BVI). �

Nowwe consider the special case F(x) = x for all x ∈H. It is easy to see that F is Lipschitz
continuous with constant L =  and strongly monotone with constant β =  on H. Prob-
lem (BVI) becomes the minimum-norm problems of the solution set of the variational
inequalities.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H. Let
G :H →H be η-inverse strongly monotone. The iteration sequence (xk) is defined by

⎧⎨
⎩
yk := PrC(xk – λG(xk)),

xk+ = ( –μαk)yk .

The parameters satisfy the following:

⎧⎪⎪⎨
⎪⎪⎩
 < αk ≤min{, 

τ
}, τ =  – | –μ|,

limk→∞ αk = , limk→∞ | 
αk+

– 
αk

| = ,∑∞
k= αk =∞,  < λ ≤ η,  < μ < .

Then the sequences {xk} and {yk} converge strongly to the same point x̂ = PrSol(G,C)().

http://www.journalofinequalitiesandapplications.com/content/2014/1/205
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