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Abstract
In this paper, we shall prove | tr eA+B| ≤ tr(|eA||eB|) for normal matrices A, B. In
particular, tr eA+B ≤ tr(eAeB) if A, B are Hermitian matrices, yielding the
Golden-Thompson inequality.
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1 Introduction and preliminaries
The famous Golden-Thompson inequality [–] for Hermitian matrices A, B states that
tr eA+B ≤ tr(eAeB). This inequality is a basic tool in quantum statistical mechanics and ex-
tensions to infinite dimension have an extensive literature [, ]. In this paper, we extend
the classical Golden-Thompson theorem to normal matrices.
Throughout this paper, we adopt the following notation. Let Mn be the set of all n × n

complex matrices. For a matrix A ∈ Mn, as usual, its conjugate transpose is denoted
by A∗. A matrix A is called Hermitian if A = A∗, normal if A∗A = AA∗, and unitary if
A∗A = AA∗ = In (In is the identity matrix of order n). Given a matrix A ∈ Mn, the eigen-
values and singular values of A are denoted by λ(A), . . . ,λn(A), and s(A), . . . , sn(A), re-
spectively, where |λ(A)| ≥ · · · ≥ |λn(A)| and s(A) ≥ · · · ≥ sn(A). In particular, when A
is positive semidefinite (A ≥ ), then λ(A) ≥ · · · ≥ λn(A) ≥ . For simplicity, we denote
λ(A) ≡ (λ(A), . . . ,λn(A)) and s(A) ≡ (s(A), . . . , sn(A)). Recall that the singular values of a
matrix A ∈ Mn are defined to be the eigenvalues of |A| ≡ (A∗A)/, i.e., s(A) = λ(|A|). Here
s(A) = ‖A‖ is the spectral norm of A. It is known that the spectral norm ‖ · ‖ over Mn is
unitarily invariant, i.e., ‖UAV‖ = ‖A‖ for all unitary matrices U , V .
We now recall the concept of majorization (details can be found in [–]). We have

the following basic majorant relations. For real vectors x = (x, . . . ,xn), y = (y, . . . , yn) in
coordinates in decreasing order, we say that x is weakly majorized by y, denoted by x ≺w y,
if

k∑

j=

xj ≤
k∑

j=

yj, k = , . . . ,n,

and the weak log-majorant relation x ≺wlog ymeans

k∏

j=

xj ≤
k∏

j=

yj, k = , . . . ,n.
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If in addition to x ≺wlog y,
∏n

 xj =
∏n

 yj holds, we say that x is log-majorized by y, denoted
briefly by symbols x ≺log y. The following statement (see [, ]) is well known: x ≺wlog y
yields x≺w y for vectors x, y ∈ Rn

+.

Remark . For x = (x, . . . ,xn), we denote |x| = (|x|, . . . , |xn|). Weyl’s majorant theorem
[] says that |λ(A)| ≺log s(A) for A ∈Mn, that is,

(∣∣λ(A)
∣∣, . . . ,

∣∣λn(A)
∣∣) ≺log

(∣∣s(A)
∣∣, . . . ,

∣∣sn(A)
∣∣).

The formula above implies that |λ(A)| ≺w s(A).

2 Lemmas
In this section, we shall propose some lemmas, laying the foundations of our main results
in the next section.

Lemma . [] If A, B are positive semidefinite matrices, then

‖AB‖t ≤ ∥∥AtBt∥∥, and λt
(AB) ≤ λ

(
AtBt), for t ≥ .

Here note that ‖X‖ = s(X) is the spectral norm of X.

Lemma . If A,B ∈Mn are normal matrices, then for any integer m≥ 

‖AB‖m ≤ ∥∥∣∣Am∣∣ · |B|m∥∥ =
∥∥AmBm∥∥.

Proof Take the polar decompositions A =U|A| and B = V |B|. Here U , V are unitary ma-
trices. Since A, B are normal, we can derive that U|A| = |A|U and V |B| = |B|V (see [,
]). Thus

AB =U|A||B|V , AmBm =Um|A|m|B|mVm.

Since the norm ‖ · ‖ is unitary invariant, we obtain the following:

‖AB‖m =
∥∥U

(|A| · |B|)V∥∥m =
∥∥(|A| · |B|)∥∥m,

and

∥∥AmBm∥∥ =
∥∥Um · |A|m · |B|m ·Vm∥∥ =

∥∥|A|m · |B|m∥∥.

From Lemma ., ‖|A| · |B|‖m ≤ ‖(|A|m · |B|m)‖, we therefore conclude that

‖AB‖m ≤ ∥∥AmBm∥∥. �

Lemma . If A,B ∈ Mn are normal matrices, then

‖AB‖ = s
(|A| · |B|) = λ

(|A| · |B|).
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Proof Since A and B are normal, it follows from Lemma . that ‖AB‖ = ‖|A| · |B|‖. So we
get

‖AB‖ = ∥∥(|A| · |B|)∥∥ = s
(|A| · |B|) = λ

((|A| · |B|)∗ · (|A| · |B|)),

as desired. �

Lemma . If A,B ∈Mn are normal matrices, then for integers m ≥ 

sm (AB) = ‖AB‖m ≤ λ
(|A|m · |B|m)

.

Proof By Lemma ., we have ‖AB‖ = λ(|A| · |B|), and

‖AB‖m =
(‖AB‖)m/ = λm/


(|A||B|).

Applying Lemma . to the right side above, we have the following:

λm/


(|A| · |B|) ≤ λ
(|A|m · |B|m)

.

Thus we get ‖AB‖m ≤ λ(|A|m · |B|m) for integers m≥ , as desired. �

Here we note that |Am| = |A|m holds for any normal matrix.
The following lemma needs the notion of the Grassmann power�kA (or antisymmetric

tensor product), which can be found in [, p.].

Lemma . If A ∈Mn, ≤ k ≤ n, then for any natural number m, the following holds:

k∏

j=

sj
(
Am) ≤

k∏

j=

smj (A), and
n∏

j=

sj
(
Am)

=
n∏

j=

smj (A).

i.e.,

s
(
Am) ≺log sm(A).

Proof For  ≤ k ≤ n, consider the kth antisymmetric tensor product �kA of A ∈ Mn. It is
known [, p.] that �k(Am) = (�kA)m and

s
(
�k(Am))

= s
((

�kA
)m)

=
∥∥(

�kA
)m∥∥ ≤ ∥∥�kA

∥∥m =
(
s

(
�kA

))m.

Thus

k∏

j=

sj
(
Am) ≤

k∏

j=

smj (A), k = , . . . ,n.

In particular,

n∏

j=

sj
(
Am)

=
n∏

j=

smj (A) =
∣∣det(A)

∣∣m,

which, equivalently, says that s(Am) ≺log sm(A). This completes the proof. �

http://www.journalofinequalitiesandapplications.com/content/2014/1/14


Li and Zhao Journal of Inequalities and Applications 2014, 2014:14 Page 4 of 6
http://www.journalofinequalitiesandapplications.com/content/2014/1/14

3 Main results
In this section, we shall present the main results of this paper.

Theorem . If A,B ∈Mn are normal matrices, then

s
(
eA+B

) ≺log λ
(∣∣eA

∣∣ · ∣∣eB∣∣).

Proof Let A,B ∈ Mn be normal matrices. It is clear that �keA/m, �keB/m are normal for
≤ k ≤ n. By replacing A, B by �keA/m, �keB/m in Lemma ., respectively, we can obtain
the following for integers m≥ :

sm
(
�k(eA/meB/m

))
= sm

(
�keA/m�keB/m

)

≤ λ
(∣∣�keA

∣∣∣∣�keB
∣∣) = λ

(
�k(∣∣eA

∣∣∣∣eB
∣∣)).

Here we note that |�kA| =�k|A| because |�kA| =�k|A|. So we obtain

k∏

j=

smj
(
eA/meB/m

) ≤
k∏

j=

λj
(∣∣eA

∣∣ · ∣∣eB∣∣).

From Lemma ., we have

k∏

j=

sj
[(
eA/meB/m

)m] ≤
k∏

j=

smj
(
eA/meB/m

)
.

Thus,

k∏

j=

sj
[(
eA/meB/m

)m] ≤
k∏

j=

λj
(∣∣eA

∣∣∣∣eB
∣∣).

The Lie product formula [, p.] says that for any matrices A, B

lim
m→∞

(
eA/meB/m

)m = eA+B.

Thus takingm → ∞ in the inequality above yields

k∏

j=

sj
(
eA+B

) ≤
k∏

j=

λj
(∣∣eA

∣∣∣∣eB
∣∣).

Finally we note that

n∏

j=

sj
(
eA+B

)
=

∣∣det
(
eA+B

)∣∣ =
∣∣det

(
eAeB

)∣∣ =
n∏

j=

λj
(∣∣eA

∣∣∣∣eB
∣∣).

Thus we get

s
(
eA+B

) ≺log λ
(∣∣eA

∣∣ · ∣∣eB∣∣).

This completes the proof. �
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From Theorem ., we know that

s
(
eA+B

) ≺log λ
(∣∣eA

∣∣ · ∣∣eB∣∣).

On the other hand, the following equation holds:

λ
(∣∣eA

∣∣ · ∣∣eB∣∣) = λ
(∣∣eA

∣∣/ · ∣∣eB∣∣ · ∣∣eA∣∣/) = s
(∣∣eA

∣∣/ · ∣∣eB∣∣ · |eA|/).

The above two inequalities yield the following:

s
(
eA+B

) ≺log s
(∣∣eA

∣∣/ · ∣∣eB∣∣ · ∣∣eA∣∣/).

Thus, we can get the following corollary by using the Fan Dominance Principle [, p.].

Corollary . If A,B ∈Mn are normal matrices, then

∥∥∣∣eA+B
∣∣∥∥ ≤ ∥∥∣∣∣∣eA

∣∣/ · ∣∣eB∣∣ · ∣∣eA∣∣/∣∣∥∥,

for all unitarily invariant norms ‖| · |‖.

From Theorem ., we can also have the following result.

Theorem . If A,B ∈Mn are normal matrices, then

∣∣λ
(
eA+B

)∣∣ ≺log λ
(∣∣eA

∣∣ · ∣∣eB∣∣).

Proof By Weyl’s majorant theorem we have |λ(A)| ≺log s(A). Hence Theorem . implies
the desired inequality in Theorem .. �

Note that Theorem . strengthens the Golden-Thompson inequality:

∣∣tr
(
eA+B

)∣∣ ≤ tr
(
eAeB

)

for Hermitian matrices A, B.

Theorem . If A, B are normal matrices, then

∣∣tr
(
eA+B

)∣∣ ≤ tr
(∣∣eA

∣∣ · ∣∣eB∣∣).

Proof Because x ≺log y implies x≺w y, it follows from Theorem . that

∣∣λ
(
eA+B

)∣∣ ≺w λ
(∣∣eA

∣∣ · ∣∣eB∣∣).

Taking the traces above, we have

∣∣tr
(
eA+B

)∣∣ ≤ tr
(∣∣eA

∣∣ · ∣∣eB∣∣).

So we get the desired inequality. This completes the proof. �
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Of course, Theorem . is an extension of Golden-Thompson inequality:

tr
(
eA+B

) ≤ tr
(
eAeB

)

for Hermitian matrices A, B.
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