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Abstract
The aim of this paper is to establish the existence of anti-periodic solutions to the
following nonlinear anti-periodic problem: ẋ + A(t, x) ∈ Ext F(t, x) a.e. t ∈ I, x(T ) = –x(0),
in RN where Ext F(t, x) denotes the extremal point set of the multifunction F(t, x), and
A(t, x) is a nonlinear map from RN to RN . Sufficient conditions for the existence of
extremal solutions are presented. Also, we prove that the extremal point set of this
problem is compact in C(I,RN) and dense in the solution set of nonlinear evolution
problems with a convex valued perturbation which is multivalued. We apply our
results on the control system with a priori feedback.

Keywords: anti-periodic solution; evolution inclusion; the Schauder fixed point
theorem; continuous selection

1 Introduction
In this paper, we consider the following anti-periodic problems:

{
ẋ +A(t,x) ∈ ExtF(t,x) a.e. t ∈ I,
x(T) = –x(),

()

in RN where I = [,T], F(t,x) : I × RN → RN satisfies some conditions mentioned later,
A(t,x) is a nonlinear map from I × RN to RN . Anti-periodic problems of evolution inclu-
sions have important applications in many fields, such as auto-control, partial differential
equations and engineering, etc. The study of anti-periodic solutions for nonlinear evolu-
tion equations was initiated by Okochi []. Since then, many authors devoted themselves
to the investigation of the existence of anti-periodic solutions to nonlinear evolution equa-
tions in Hilbert spaces. For the details, see [–] and the references therein. In [], Chen
studied the anti-periodic solution for the following first order semilinear evolution equa-
tion:{

u̇ +Au(t) ∈ F(t,u), t ∈ R,
u(t + T) = –u(t),

where A : RN → RN is a matrix, f : R × RN → RN is a continuous function satisfying
f (t + T ,u) = –f (t, –u) for all (t,u) ∈ R × RN . Chen et al. [] also studied this problem in a
real separable Hilbert space when A is a dense self-adjoint operator which only has a point
spectrum. Recently, Q Liu [], ZH Liu [] and Wang [] considered anti-periodic prob-
lem of nonlinear evolution equation in a real reflexive Banach space and obtained some
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existence results by applying the theory of pseudo-monotone perturbations of maximal
monotone mappings and the theory of evolution operators. However, there are few re-
sults about the extremal anti-periodic problem, which is connected with the ‘Bang-Bang’
control problem in the above works. For the case of periodic problems, we refer to the
work of Li-Xue [], Xue-Yu [] in Hilbert and Xue-Cheng [] in Banach space. Inspired
by [], which considers the problem in Banach space, we continue to consider the ex-
istence of solutions for a nonlinear evolution inclusion in RN by relaxing the constraint
conditions. Our approach will be based on techniques and results of the theory of the
extremal continuous selection theorem and the Schauder fixed point theorem.
The paper is divided into four parts. In Section , we introduce some notation, and

definitions we need for the results. In Section , we present some basic assumptions and
main results, the proofs of the main results are given based on the Schauder fixed point
theorem and the extremal continuous selection theorem. Finally, an example is presented
for our results in Section .

2 Preliminaries
For convenience, we introduce somenotation as follows. In Euclidean space, (·, ·) expresses
inner product, while ‖ · ‖ expresses the Euclidean norm. Let L([,T];RN ) denote the set
of the map x : [,T] → RN which satisfies

∫ T
 |x| dt < ∞, and the norm in L([,T];RN )

is denoted by ‖x‖ = (
∫ T
 |x| dt)  . If F = [,b], the ExtF = {,b}. We recall some basic

definitions and facts from multivalued analysis which we shall need in the sequel. For
details we refer to the book of Zeidler []. Let I = [,T], (I,�) be the Lebesguemeasurable
space and X be a separable Banach space. Denote

Pf (X) = {A⊂ X: nonempty and closed},
Pk(X) = {A⊂ X: nonempty and compact},
Pwkc(X) = {A⊂ X: nonempty, weakly compact and convex}.

Let A⊂ Pf (X), x ∈ X, then the distance from x to A is given by d(x,A) = inf{|x–a| : a ∈ A}.
A multifunction F : I → Pf (X) is said to be measurable if and only if, for every z ∈ X, the
function t → d(z,F(t)) = inf{‖z – x‖ : x ∈ F(t)} is measurable. A multifunction G : I →
X \ {∅} is said to be graph measurable, if GrG = {(t,x) : x ∈ G(t)} ∈ � × B(X) with B(X)
being the Borel σ -field of X. On Pf (X) we can define a generalized metric, known in the
literature as the ‘Hausdorff metric’, by setting

h(A,B) =max
{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)
}

for all A,B ∈ Pf (X). It is well known that (Pf (X),h) is a complete metric space and Pfc(X)
is a closed subset of it. When Z is a Hausdorff topological space, a multifunction G : Z →
Pf (X) is said to be h-continuous if it is continuous as a function from Z into (Pf (X),h).
Let Y , Z beHausdorff topological spaces andG : Y → Z \{φ}.We say thatG(·) is ‘upper

semicontinuous (USC)’ (resp., ‘lower semicontinuous (LSC)’), if for all C ⊆ Z nonempty
closed,G–(C) = {y ∈ Y :G(y)∩C 
= φ} (resp.,G+(C) = {y ∈ Y :G(y) ⊆ C}) is closed in Y . An
USC multifunction has a closed graph in Y × Z, while the converse is true if G is locally
compact (i.e. for every y ∈ Y there exists a neighborhoodU of y such that F(U) is compact
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in Z). A multifunction which is both USC and LSC is said to be ‘continuous’. If Y , Z are
both metric spaces, then the above definition of LSC is equivalent to saying that for all
z ∈ Z, y → dZ(z,G(y)) = inf{dZ(z, v) : v ∈ G(y)} has upper semicontinuity as an R+-valued
function. Also, lower semicontinuity is equivalent to saying that if yn → y in Y as n → ∞,
then

G(y) ⊆ limG(yn) =
{
z ∈ Z : limdZ

(
z,G(yn)

)
= 

}
=

{
z ∈ Z : z = lim zn, zn ∈ G(yn),n≥ 

}
.

A set D ⊆ L(I,X) is said to be ‘decomposable’, if for every g, g ∈ D and for every J ⊆ I
measurablewe haveχJ g +χJc g ∈D. LetX be a Banach space and let L(I,X) be the Banach
space of all functions u : I → X, which are Bochner integrable. D(L(I,X)) denotes the
collection of nonempty decomposable subsets of L(I,X). The following lemmas are still
needed in the proof of our main theorems.

Lemma . (see []) Let X be a separable metric space and let F : X → D(L(I,X)) be a
lower semicontinuous multifunction with closed decomposable values. Then F has a con-
tinuous selection.

Let X be a separable Banach Space and C(I,X) be the Banach space of all continuous
functions. A multifunction F : I × X → Pwkc(X) is said to be Carathéodory type, if for
every x ∈ X, F(·,x) is measurable, and for almost all t ∈ I , F(t, ·) is h-continuous. (i.e. it is
continuous form X to the metric space (Pf (X),h) where h is Hausdorff metric). Let M ⊂
C(I,X). A multifunction F : I × X → Pwkc(X) is called integrably bounded on M if there
exists a function λ : I → R+ such that for almost all t ∈ I , sup{‖y‖ : y ∈ F(t,x(t)),x(·) ∈M} ≤
λ(t). A nonempty subset M ⊂ C(I,X) is called σ -compact if there is a sequence {Mk}k≥

of compact subsetsMk such thatM =
⋃

k≥Mk . LetM ⊂M, such thatM is dense inM
and σ -compact. The following continuous selection theorem in the extreme point case is
due to Tolstonogov [].

Lemma . (see []) Let the multifunction F : I × X → Pwkc(X) be of Carathéodory type
and integrably bounded. Then there exists a continuous function g : M → Lp(I,X) such
that for almost all t ∈ I , if x(·) ∈M, then g(x)(t) ∈ ExtF(t,x(t)), and if x(·) ∈M \M, then
g(x)(t) ∈ ExtF(t,x(t)).

3 Main results
Let I = [,T] andC(I;RN ) be all the continuous functions from I to RN with themax norm.
We let Cβ = {v(·) ∈ C(I;RN ) : v() = –v(T)}, and W ,(I;RN ) = {u(·) ∈ Cβ : u̇(·) ∈ L(I;RN )}.
W ,(I;RN ) is a separable Banach space under the norm ‖ · ‖,.
Consider the following anti-periodic problem:

{
ẋ(t) +A(t,x(t)) ∈ ExtF(t,x(t)) a.e. t ∈ I,
x() = –x(T),

where A : I × RN → RN is a hemicontinuous function, F : I × RN → RN is a multifunc-
tion. By a solution x of problem (), we mean a function x ∈W ,(I,RN ) and there exists a

http://www.journalofinequalitiesandapplications.com/content/2014/1/111
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function f (t) ∈ ExtF(t,x(t)) such that

〈
ẋ(t), v

〉
+

〈
A

(
t,x(t)

)
, v

〉
=

〈
f (t), v

〉
for all v ∈ RN and almost all t ∈ I . The precise hypotheses on the data of problem () are
the following:

H(A): A : I × RN → RN is a nonlinear function such that
(i) t → A(t,x) is measurable;
(ii) for each t ∈ I , the operator A(t, ·) : RN → RN is uniformly monotone and

hemicontinuous, that is, there exists a constant p >  such that
(A(t,x) –A(t,x),x – x) ≥ p‖x – x‖ for all x,x ∈ RN .

H(F): F : R× RN → Pkc(RN ) is a multifunction such that
(i) (t,x)→ F(t,x) is graph measurable;
(ii) for almost all t ∈ I , x→ F(t,x) is h-continuous;
(iii) there exist a nonnegative function b(·) ∈ L+(I) and a constant c >  such that

∣∣F(t,x)∣∣ = sup
{‖f ‖ : f ∈ F(t,x)

} ≤ b(t) + c‖x‖α

for all x ∈ RN , t ∈ T , where α < .

We still need the following lemma.

Lemma . (see []) If the hypothesis H(A) holds, consider the equation

ẋ +A(t,x) = f (t) a.e. t ∈ I, ()

where f ∈ L([,T];RN ). Then problem () has a unique T-anti-periodic solution.

Theorem. If hypotheses H(A) andH(F) hold, then problem () has at least one solution.

Proof We define L :W ,(I;RN ) → L([,T];RN ) as Lx = ẋ + A(t,x) and x() = –x(T). By
Lemma ., we have L :W ,(I;RN ) → L([,T];RN ) is one to one and surjective, and so
L– : L([,T];RN ) →W ,(I;RN ) is well defined. As in the proof of Theorem ., we obtain
a priori bound for Se which denotes the solution set of problem (). We know that there
exist Mi > , i = , , such that ‖x‖, < M and ‖x‖C(I,H) < M for all x ∈ Se. Let ψ(t) =
b(t) + CM, ψ(t) ∈ L+(I). We may assume that |F(t,x)| ≤ ψ(t), a.e. on I for all x ∈ RN . So
let

W =
{
v ∈ Lq(I,H) :

∥∥v(t)∥∥H ≤ ψ(t) a.e. on I
}
,

then K̂ = L–(W ) ⊆ W ,(I;RN ) is compact convex subset in C(I,H). Obviously K̂ is con-
vex. We only need to show the compactness. Let {xn}n≥ ⊂ K̂ , then there exists hn ∈ W
such that L(xn) = hn, i.e. ẋn = hn – A(t,xn). By the definition of W , so W is uniformly
bounded in L([,T];RN ). By the Dunford-Pettis theorem, passing to a subsequence if
necessary, we may assume that hn ⇀ h in L([,T];RN ) for some h ∈W . From the defini-
tion ofW , we have

‖xn‖W, =
∥∥L–(Lxn)∥∥W,

=
∥∥L–hn∥∥W,

≤M.

http://www.journalofinequalitiesandapplications.com/content/2014/1/111
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Therefore, the sequence {xn}n≥ ⊂ W ,(I;RN ) is bounded. Because of the compact-
ness of the embedding W ,(I;RN ) ⊂ L([,T];RN ), we find that the sequence {xn}n≥ ⊂
L([,T];RN ) is relatively compact. So by passing to a subsequence if necessary, we
may assume that xn → x in L([,T];RN ). Moreover, by the boundedness of the se-
quence {xn}n≥ ⊂ W ,(I;RN ), it follows that the sequence {ẋn}n≥ ⊂ L([,T];RN ) is
uniformly bounded and passing to a subsequence if necessary, we may assume that
ẋn ⇀ ẋ in L([,T];RN ). Since the embedding W ,(I;RN ) ⊂ C(I;RN ) is continuous and
W ,(I;RN ) ⊂ L([,T];RN ) is compact, it follows that xn ⇀ x in C(I;RN ) and xn → x in
L([,T];RN ). Hence, xn → x in RN for all t ∈ I \ �, m(�) =  (m being the Lebesgue
measure on R). Since A is hemicontinuous and monotone. Thus, A(t,xn) ⇀ A(t,x) in
L([,T];RN ) and as n → ∞, we obtain ẋ + A(t,x) = h a.e. on I and x() = –x(T). Note
that

ẋn – ẋ +
(
A(t,xn) –A(t,x)

)
= hn – h.

Taking the inner product above with xn – x and integrating from  to T , one can see that

∫ T



(
A(t,xn) –A(t,x),xn – x

)
dt

=
∫ T


(hn – h,xn – x)dt –

∫ T


(ẋn – ẋ,xn – x)dt

≤ 
∫ T


‖ψ‖‖xn – x‖dt

≤ ‖ψ‖L‖xn – x‖L →  as n → ∞. ()

By hypothesis H(A), it follows that

∫ T



(
A(t,xn) –A(t,x),xn – x

)
dt ≥ p

∫ T


‖xn – x‖ dt

→  as n→ ∞. ()

So, we can find τ ∈ I \ � such that

∥∥xn(τ ) – x(τ )
∥∥ →  as n→ ∞.

Using the integration by parts formula for functions inW ,(I;RN ), for any t ∈ I we have

∥∥xn(t) – x(t)
∥∥ =

∥∥xn(τ ) – x(τ )
∥∥ + 

∫ t

τ

(
ẋn(s) – ẋ(s),xn(s) – x(s)

)
ds

≤ ∥∥xn(τ ) – x(τ )
∥∥ + 

∥∥ϕ(t)
∥∥
L

∥∥xn(t) – x(t)
∥∥
L . ()

By (), we see that

max
t∈I

∥∥xn(t) – x(t)
∥∥ →  as n→ ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/111
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So, xn(t) → x(t) in C(I;RN ). Since x = L–(h) with h ∈ W , we conclude that L–(W ) ⊆
C(I;RN ) is compact. From Lemma ., we can find a continuous map f : K̂ → L(I;RN )
such that f (x)(t) ∈ ExtF(t,x(t)) a.e. on I for all x ∈ K̂ . Then L– ◦ f is a compact operator.
On applying the Schauder fixed point theorem, there exists a x ∈ K̂ such that x = L– ◦ f (x).
This is a solution of (), and so Se 
= ∅ inW ,(I;RN ). �

For the relation theorem of problem (), we need the following definition and hypothe-
ses.

Definition . (see []) The multifunction mapping F : I × RN → Pk(RN ) is called ‘one-
sided Lipschitz (OSL)’ continuous if there is an integrable function ω : I → R+ such that
for every x, y ∈ RN , t ∈ I , and v ∈ F(t,x) there exists u ∈ F(t, y) such that

(v – u,x – y) ≤ ω(t)‖x – y‖.

Under the above hypotheses, let S denote the solution set of the equation ẋ(t) +
A(t,x(t)) ∈ F(t,x), x() = –x(T).

Theorem . If hypotheses H(A) and H(F) hold and, moreover, F(t,x) satisfies the OSL
condition, we have Se = S, where the closure is taken in C(I;RN ).

Proof Let x ∈ S, then there exist f ∈ L(I;RN ) and f (x)(t) ∈ F(t,x(t)) a.e. on I , such that

ẋ(t) +A
(
t,x(t)

)
= f (t,x),

x() = –x(T).
()

As before let W = {v ∈ L(I;RN ) : ‖v‖ ≤ ψ(t) a.e. on I}, then K̂ = L–(W ) ⊆ W ,(I;RN ) is
compact convex subset in C(I;RN ). For every y ∈ K̂ , we define the multifunction

Qε(t) =
{
v ∈ F(t, y) : (f – v,x – y) ≤ ω(t)‖x – y‖ + ε

}
.

Clearly, for every t ∈ I , Qε(t) 
= ∅, and it is graph measurable. On applying the Aumann
selection theorem, we get a measurable function v : I → RN such that v(t) ∈ Qε(t) almost
everywhere on I . So we define the multifunction

Rε(y) =
{
v ∈ SF(·,y) : (f – v,x – y) ≤ ω(t)‖x – y‖ + ε

}
.

We see that Rε : K̂ → L(I;RN ) has nonempty and decomposable values. It follows from
Theorem  of [] that Rε(·) is LSC. Therefore y → Rε(y) is LSC and has closed and de-
composable values. So we apply Lemma . to get a continuous map fε : K̂ → L(I;RN )
such that fε(y) ∈ Rε(y) for all y ∈ K̂ . Invoking II-Theorem . of [] (in [, p.]), we
can find a continuous map gε : K̂ → L(I;RN ) such that gε(y)(t) ∈ ExtF(t, y) almost every-
where on I , and ‖fε(y) – gε(y)‖ ≤ ε for all y ∈ K̂ . Now let ε →  and set fεn = fε , gεn = gε .
Note that ‖gεn (y)‖ ≤ ψ(t) a.e. on I withψ ∈ L(I;RN ), so we have gεn ⇀ fεn in L(I;RN ).We
consider the following problem:

ẋ(t) +A(x)(t) = gεn (x)(t),

x() = –x(T),
()

http://www.journalofinequalitiesandapplications.com/content/2014/1/111
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where gεn (x) ∈ ExtRε(x). We see that L–gεn : K̂ → K̂ is a compact operator and by the
Schauder fixed point theorem, we obtain a solution xεn ∈ Se ⊂ W ,(I;RN ) of (). We see
that the sequence {xεn}n≥ ⊂ K̂ is uniformly bounded. So by passing to a subsequence if
necessary, we may assume that xεn ⇀ x̂ inW ,(I;RN ). From the proof of Theorem ., we
know that xεn → x̂ in C(I,H) and x̂() = –x̂(T). Note that Lxεn –Lx = gεn (xεn ) – f (x). So, we
have

(
ẋεn (t) – ẋ(t),xεn (t) – x(t)

)
+

(
A(xεn )(t) –A(x)(t),xεn (t) – x(t)

)
=

(
gεn (xεn )(t) – f (x)(t),xεn (t) – x(t)

)
.

However,

(
A(xεn )(t) –A(x)(t),xεn (t) – x(t)

) ≥  a.e. I.

Then,

(
ẋεn (t) – ẋ(t),xεn (t) – x(t)

)
≤ (

gεn (xεn )(t) – f (x)(t),xεn (t) – x(t)
)

=
(
gεn (xεn )(t) – fεn (xεn )(t),xεn (t) – x(t)

)
+

(
fεn (xεn )(t) – f (x)(t),xεn (t) – x(t)

)
.

By gεn ⇀ fεn in L(I;RN ) and xεn → x̂ in L(I;RN ), we have

(
gεn (xεn )(t) – fεn (xεn )(t),xεn (t) – x(t)

)
=

(
gεn (xεn )(t) – fεn (xεn )(t),xεn (t) – x̂(t)

)
+

(
gεn (xεn )(t) – fεn (xεn )(t), x̂(t) – x(t)

) →  a.e. I. ()

Hence, there exists a constant N > , and one has

∣∣(gεn (xεn )(t) – fεn (xεn )(t),xεn (t) – x(t)
)∣∣ < ε

as n >N. It follows that



d
dt

‖xεn – x‖ =
(
ẋεn (t) – ẋ(t),xεn (t) – x(t)

)
≤ (

gεn (xεn )(t) – fεn (xεn )(t),xεn (t) – x(t)
)

+
(
fεn (xεn )(t) – f (x)(t),xεn (t) – x(t)

)
≤ (

fεn (xεn )(t) – f (x)(t),xεn (t) – x(t)
)
+ ε

≤ ω(t)‖xεn – x‖ + ε. ()

Let Sn(t) = ‖xεn –x‖, then Ṡn(t) ≤ ω(t)Sn(t) +ε. Integrating over () from  to t, one has

Sn(t)≤
∫ t


ω(s)Sn(s)ds + S() + εt.

http://www.journalofinequalitiesandapplications.com/content/2014/1/111
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By using the Gronwall inequality, we have

Sn(t)≤
∫ t


ω(s)

(
Sn() + εs

)
exp

∫ t
 ω(μ)dμ ds + Sn() + εt.

From gεn (x)(t) ∈ F(t,x), we know that Sn() = . Let ε → , we have Sn(t)→ , i.e. ‖xε(t) –
x(t)‖ →  for any t ∈ I . Therefore, x = x̂, i.e. xε → x and xε ∈ Se, and so S ⊆ Se. Also S is
closed in C(I,H) (see the proof of Theorem .), thus S = Se. �

4 An application
We present an example of a nonlinear anti-periodic distributed parameter control sys-
tem, with a priori feedback (i.e. state dependent control constraint set). Let T = [,b],
ẋ = (ẋ, ẋ, . . . , ẋN ). Consider the following control system:

⎧⎪⎨
⎪⎩
ẋ + a(t,x)x = g(t,x)u(t) a.e. on T ,
x() = –x(b),
u(t) ∈ ExtU(t,x(t)) a.e. on T .

()

The hypotheses on the data () are the following.

H(a): a : T × RN → R+, g : T × RN → R are Carathéodory functions such that for almost
all t ∈ T

 < θ ≤ a(t,x)≤ θ,∣∣g(t,x)∣∣ ≤ η(t) + η(t)|x|α ,

with θ, θ > ,  < α < , η(t) ∈ L+(T), η(t) ∈ L∞(T).
H(U): U : T × RN → Pkc(RN ) is a multifunction such that

(i) for all x ∈ RN , t →U(t,x) is measurable;
(ii) for all t ∈ T , x →U(t,x) is h-continuous;
(iii) for almost all t ∈ T and all x ∈ RN , |U(t,x)| ≤ γ , with γ > .

Let A : T × RN → RN be the operator defined by A(t,x) = a(t,x)x. Evidently, using hy-
pothesis H(a), it is straightforward to check that A satisfies hypothesis H(A). Also, let
F : T × RN → Pkc(RN ) be defined by

F(t,x) =
{
y ∈ RN : y(t) = g

(
t,x(t)

)
u(t),u(t) ∈U

(
t,x(t)

)
a.e. on T

}
.

Using hypothesesH(a) andH(U), it is straightforward to check that F satisfies hypothesis
H(F).
Rewrite problem () in the following equivalent evolution inclusion form:

{
ẋ +A(t,x(t)) ∈ ExtF(t,x) a.e. on T ,
x() = –x(b).

()

We can apply Theorem . on problem () and obtain the following.

Theorem . If the hypotheses H(a) and H(U) hold, then problem () has a solution
x ∈W ,(I;RN ).

http://www.journalofinequalitiesandapplications.com/content/2014/1/111
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