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Abstract
In this paper we introduce a class of complex Stancu-type Durrmeyer operators and
study the approximation properties of these operators. We obtain a
Voronovskaja-type result with quantitative estimate for these operators attached to
analytic functions on compact disks. We also study the exact order of approximation.
More important, our results show the overconvergence phenomenon for these
complex operators.
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1 Introduction
In , some approximation properties of complex Bernstein polynomials in compact
disks were initially studied by Lorentz []. Very recently, the problem of the approximation
of complex operators has been causing great concern, which has become a hot topic of re-
search. AVoronovskaja-type result with quantitative estimate for complex Bernstein poly-
nomials in compact disks was obtained by Gal [] Also, in [–] similar results for com-
plex Bernstein-Kantorovich polynomials, Bernstein-Stancu polynomials, Kantorovich-
Schurer polynomials, Kantorovich-Stancu polynomials, complex Favard-Szász-Mirakjan
operators, complex Beta operators of first kind, complex Baskajov-Stancu operators, com-
plex Bernstein-Durrmeyer polynomials, complex genuine Durrmeyer-Stancu polynomi-
als and complex Bernstein-Durrmeyer operators based on Jacobi weights were obtained.
The aimof the present article is to obtain approximation results for complexDurrmeyer-

Stancu type operators which are defined for f : [, ]→C continuous on [, ] by

M(α,β)
n (f ; z) := n

n∑
k=

pn,k(z)
∫ 


pn–,k–(t)f

(
nt + α

n + β

)
dt

+ f
(

α

n + β

)
pn,(z), ()

where α, β are two given real parameters satisfying the condition  ≤ α ≤ β , z ∈ C, n =
, , . . . , and pn,k(z) =

(n
k
)
zk( – z)n–k .
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Note that, for α = β = , these operators become the complexDurrmeyer-type operators
Mn(f ; z) =M(,)

n (f ; z), this case has been investigated in [].

2 Auxiliary results
In the sequel, we shall need the following auxiliary results.

Lemma  Let em(z) = zm, m ∈ N ∪ {}, z ∈ C, n ∈ N,  ≤ α ≤ β , then we have that
M(α,β)

n (em; z) is a polynomial of degree less than or equal to min(m,n) and

M(α,β)
n (em; z) =

m∑
j=

(
m
j

)
njαm–j

(n + β)m
Mn(ej; z).

Proof By the definition given by (), the proof is easy, here the proof is omitted.
Let m = , , , according to [, Lemma ], by a simple computation, we have

M(α,β)
n (e; z) = ;

M(α,β)
n (e; z) =

nz
(n + )(n + β)

+
α

n + β
;

M(α,β)
n (e; z) =

n

(n + β)

[
nz + n(n – )z

(n + )(n + )

]

+
nαz

(n + )(n + β)
+

α

(n + β)
. �

Lemma  Let em(z) = zm, m ∈ N ∪ {}, z ∈ C, n ∈ N,  ≤ α ≤ β , for all |z| ≤ r, r ≥ , we
have |M(α,β)

n (em; z)| ≤ rm.

Proof The proof follows directly Lemma  and [, Lemma ]. �

Lemma  Let em(z) = zm,m,n ∈N, z ∈C and  ≤ α ≤ β , then we have

M(α,β)
n (em+; z) =

z( – z)n
(n + β)(m + n + )

(
M(α,β)

n (em; z)
)′

+
(m + nz)n + α( + m + n)

(n + β)(m + n + )
M(α,β)

n (em; z)

–
αm(n + α)

(n + β)(m + n + )
M(α,β)

n (em–; z). ()

Proof Let

T (α,β)
n–,k–(f ) :=

∫ 


pn–,k–(t)f

(
nt + α

n + β

)
dt,

T̃ (α,β)
n–,k–(f ) :=

∫ 


pn–,k–(t)tf

(
nt + α

n + β

)
dt,

T̂ (α,β)
n–,k–(f ) :=

∫ 


pn–,k–(t)tf

(
nt + α

n + β

)
dt,

E(α,β)
n (f ; z) := n

n∑
k=

pn,k(z)T (α,β)
n–,k–(f ),
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then we have

M(α,β)
n (f ; z) = E(α,β)

n (f ; z) + f
(

α

n + β

)
pn,(z),

T̃ (α,β)
n–,k–(em) =

∫ 


pn–,k–(t)

n + β

n

(
nt + α

n + β
–

α

n + β

)(
nt + α

n + β

)m

dt

=
n + β

n
T (α,β)
n–,k–(em+) –

α

n
T (α,β)
n–,k–(em),

T̂ (α,β)
n–,k–(em) =

∫ 


pn–,k–(t)

(
n + β

n

)(nt + α

n + β
–

α

n + β

)(nt + α

n + β

)m

dt

=
(
n + β

n

)

T (α,β)
n–,k–(em+) –

α(n + β)
n

T (α,β)
n–,k–(em+)

+
(

α

n

)

T (α,β)
n–,k–(em).

By a simple calculation, we obtain

z( – z)p′
n,k(z) = (k – nz)pn,k(z),

[
(k – ) – (n – )t

]
pn–,k–(t) = t( – t)p′

n–,k–(t).

It follows that

z( – z)
(
E(α,β)
n (em; z)

)′

= n
n∑
k=

(k – nz)pn,k(z)
∫ 


pn–,k–(t)

(
nt + α

n + β

)m

dt

= n
n∑
k=

pn,k(z)
∫ 



[
(k – ) – (n – )t + (n – )t + 

]
pn–,k–(t)

·
(
nt + α

n + β

)m

dt – nzE(α,β)
n (em; z),

where

n
n∑
k=

pn,k(z)
∫ 



[
(k – ) – (n – )t + (n – )t + 

]

· pn–,k–(t)
(
nt + α

n + β

)m

dt

= n
n∑
k=

pn,k(z)
∫ 


t( – t)p′

n–,k–(t)
(
nt + α

n + β

)m

dt

+ n(n – )
n∑
k=

pn,k(z)T̃ (α,β)
n–,k–(em) + n

n∑
k=

pn,k(z)T (α,β)
n–,k–(em)

= n
n∑
k=

pn,k(z)
∫ 


t( – t)p′

n–,k–(t)
(
nt + α

n + β

)m

dt

+
(n – )(n + β)

n
E(α,β)
n (em+; z) +

[
 –

α(n – )
n

]
E(α,β)
n (em; z).
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Also, using integration by parts, we have

∫ 


t( – t)p′

n–,k–(t)
(
nt + α

n + β

)m

dt

= –
∫ 


pn–,k–(t)( – t)

(
nt + α

n + β

)m

dt

–
mn
n + β

∫ 


pn–,k–(t)t( – t)

(
nt + α

n + β

)m–

dt

= –T (α,β)
n–,k–(em) + T̃ (α,β)

n–,k–(em)

–
mn
n + β

T̃ (α,β)
n–,k–(em–) +

mn
n + β

T̂ (α,β)
n–,k–(em–)

=
n + β

n
(m + )T (α,β)

n–,k–(em+) –
(
 +

α
n

+m +
αm
n

)
T (α,β)
n–,k–(em)

+
αm(α + n)
n(n + β)

T (α,β)
n–,k–(em–).

So, in conclusion, we have

z( – z)
(
E(α,β)
n (em; z)

)′ =
n + β

n
(m + n + )E(α,β)

n (em+; z)

–
[

α( + m + n)
n

+m + nz
]
E(α,β)
n (em; z)

+
αm(n + α)
n(n + β)

E(α,β)
n (em–; z),

which implies the recurrence in the statement. �

Lemma  Let n ∈ N, m = , , . . . , em(z) = zm, S(α,β)n,m (z) :=M(α,β)
n (em; z) – zm, z ∈ C and  ≤

α ≤ β , we have

S(α,β)n,m (z) =
z( – z)n

(n + β)(m + n)
(
M(α,β)

n (em–; z)
)′

+
(m –  + nz)n + α(m –  + n)

(n + β)(m + n)
S(α,β)n,m–(z)

+
αm

(n + β)(m + n)
M(α,β)

n (em–; z)

–
α(m – )(n + α)
(n + β)(m + n)

M(α,β)
n (em–; z)

+
(m –  + nz)n + α(m –  + n)

(n + β)(m + n)
zm– – zm. ()

Proof Using the recurrence formula (), by a simple calculation, we can easily get the re-
currence (), the proof is omitted. �

3 Main results
The first main result is expressed by the following upper estimates.
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Theorem  Let  ≤ α ≤ β ,  ≤ r ≤ R, DR = {z ∈ C : |z| < R}. Suppose that f : DR → C is
analytic in DR, i.e., f (z) =

∑∞
m= cmzm for all z ∈ DR.

(i) For all |z| ≤ r and n ∈N, we have

∣∣M(α,β)
n (f ; z) – f (z)

∣∣ ≤ K (α,β)
r (f )
n

,

where K (α,β)
r (f ) = ( + r)

∑∞
m= |cm|m(m +  + α + β)rm– < ∞.

(ii) (Simultaneous approximation) If  ≤ r < r < R are arbitrarily fixed, then for all
|z| ≤ r and n,p ∈N, we have

∣∣(M(α,β)
n (f ; z)

)(p) – f (p)(z)
∣∣ ≤ K (α,β)

r (f )p!r
(n + β)(r – r)p+

,

where K (α,β)
r (f ) is defined as in the above point (i).

Proof Taking em(z) = zm, by the hypothesis that f (z) is analytic inDR, i.e., f (z) =
∑∞

m= cmzm

for all z ∈DR, it is easy for us to obtain

M(α,β)
n (f ; z) =

∞∑
m=

cmM(α,β)
n (em; z).

Therefore, we get

∣∣M(α,β)
n (f ; z) – f (z)

∣∣ ≤
∞∑
m=

|cm| · ∣∣M(α,β)
n (em; z) – em(z)

∣∣

=
∞∑
m=

|cm| · ∣∣M(α,β)
n (em; z) – em(z)

∣∣,

asM(α,β)
n (e; z) = e(z) = .

(i) Form ∈N, taking into account thatM(α,β)
n (em–; z) is a polynomial of degree≤ min(m–

,n), by the well-known Bernstein inequality and Lemma , we get

∣∣(M(α,β)
n (em–; z)

)′∣∣ ≤ m – 
r

max
{∣∣M(α,β)

n (em–; z)
∣∣ : |z| ≤ r

} ≤ (m – )rm–.

On the one hand, whenm = , for |z| ≤ r, by Lemma , we have

∣∣M(α,β)
n (e; z) – e(z)

∣∣ = ∣∣∣∣ nz
(n + )(n + β)

+
α

n + β
– z

∣∣∣∣ ≤  + r
n

( + α + β).

When m ≥ , for n ∈ N, |z| ≤ r,  ≤ α ≤ β , in view of |(m –  + nz)n + α(m –  + n)| ≤
(n + β)(m + n)r, using the recurrence formula () and the above inequality, we have

∣∣M(α,β)
n (em; z) – em(z)

∣∣ = ∣∣S(α,β)n,m (z)
∣∣

≤ r( + r)
n

· (m – )rm– + r
∣∣S(α,β)n,m–(z)

∣∣
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+
α

n
rm– +

α

n
rm– +

m +  + β

n
( + r)rm–

≤ m – 
n

( + r)rm– + r
∣∣S(α,β)n,m–(z)

∣∣
+

α

n
( + r)rm– +

m +  + β

n
( + r)rm–

= r
∣∣S(α,β)n,m–(z)

∣∣ + m + α + β

n
( + r)rm–.

By writing the last inequality, form = , . . . , we easily obtain step by step the following:

∣∣M(α,β)
n (em; z) – em(z)

∣∣
≤ r

(
r
∣∣S(α,β)n,m–(z)

∣∣ + (m – ) + α + β

n
( + r)rm–

)

+
m + α + β

n
( + r)rm–

= r
∣∣S(α,β)n,m–(z)

∣∣ + (m –  +m) + (α + β)
n

( + r)rm–

≤ · · · ≤  + r
n

m(m +  + α + β)rm–.

In conclusion, for anym,n ∈N, |z| ≤ r,  ≤ α ≤ β , we have

∣∣M(α,β)
n (em; z) – em(z)

∣∣ ≤  + r
n

m(m +  + α + β)rm–,

from which it follows that

∣∣M(α,β)
n (f ; z) – f (z)

∣∣ ≤  + r
n

∞∑
m=

|cm|m(m +  + α + β)rm–.

By assuming that f (z) is analytic in DR, we have f ()(z) =
∑∞

m= cmm(m – )zm– and the
series is absolutely convergent in |z| ≤ r, so we get

∑∞
m= |cm|m(m – )rm– < ∞, which

implies K (α,β)
r (f ) = ( + r)

∑∞
m= |cm|m(m +  + α + β)rm– <∞.

(ii) For the simultaneous approximation, denoting by � the circle of radius r > r and
center , since for any |z| ≤ r and υ ∈ �, we have |υ – z| ≥ r – r. By Cauchy’s formula, it
follows that for all |z| ≤ r and n ∈ N, we have

∣∣(M(α,β)
n (f ; z)

)(p) – f (p)(z)
∣∣ = p!

π

∣∣∣∣
∫

�

M(α,β)
n (f ;υ) – f (υ)
(υ – z)p+

dυ

∣∣∣∣
≤ K (α,β)

r (f )
n

p!
π

πr
(r – r)p+

=
K (α,β)
r (f )
n

· p!r
(r – r)p+

,

which proves the theorem. �

Theorem Let  ≤ α ≤ β , R > ,DR = {z ∈C : |z| < R}. Suppose that f :DR →C is analytic
in DR, i.e., f (z) =

∑∞
k= ckzk for all z ∈ DR. For any fixed r ∈ [,R] and all n ∈ N, |z| ≤ r, we

http://www.journalofinequalitiesandapplications.com/content/2013/1/442
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have

∣∣∣∣M(α,β)
n (f ; z) – f (z) –

α – ( + β)z
n

f ′(z) –
z( – z)

n
f ′′(z)

∣∣∣∣
≤ Mr(f )

n
+
M(α,β)

r, (f )
n(n + β)

+
M(α,β)

r, (f )
(n + β)

, ()

where Mr(f ) =
∑∞

k= |ck|kBk,rrk < ∞ with Bk,r = r(k + k + k + ) + r(k + k + k +
) + (k + k + k + ), M(α,β)

r, (f ) =
∑∞

k= |ck|[k(k – )α + kβr + kαβ + kβr]rk–,
M(α,β)

r, (f ) =
∑∞

k= |ck| k(k–)(α
+βr)
 rk– <∞.

Proof For all z ∈ DR, we have

M(α,β)
n (f ; z) – f (z) –

α – ( + β)z
n

f ′(z) –
z( – z)

n
f ′′(z)

=M(α,β)
n (f ; z) – f (z) +

z
n
f ′(z) –

z( – z)
n

f ′′(z) –
α – βz

n
f ′(z)

=
[
Mn(f ; z) – f (z) –

z( – z)f ′′(z) – zf ′(z)
n

]

+
[
M(α,β)

n (f ; z) –Mn(f ; z) –
α – βz

n
f ′(z)

]

:= I + I.

By [, Theorem ], we have |I| ≤ Mr(f )
n , where Mr(f ) =

∑∞
k= |ck|kBk,rrk < ∞ with Bk,r =

r(k + k + k + ) + r(k + k + k + ) + (k + k + k + ).
Next, let us estimate |I|.
By f is analytic in DR, i.e., f (z) =

∑∞
k= ckzk for all z ∈DR, we have

|I| =
∣∣∣∣∣

∞∑
k=

ck
[
M(α,β)

n (ek ; z) –Mn(ek ; z) –
α – βz

n
kzk–

]∣∣∣∣∣
≤

∞∑
k=

|ck|
∣∣∣∣M(α,β)

n (ek ; z) –Mn(ek ; z) –
α – βz

n
kzk–

∣∣∣∣.

On the one hand, when k ≥ , since nk
(n+β)k –  = –

∑k–
j=

(k
j
) njβk–j

(n+β)k , by Lemma , we obtain

M(α,β)
n (ek ; z) –Mn(ek ; z) –

α – βz
n

kzk–

=
k–∑
j=

(
k
j

)
njαk–j

(n + β)k
Mn(ej; z) +

[
nk

(n + β)k
– 

]
Mn(ek ; z)

–
α – βz

n
kzk–

=
k–∑
j=

(
k
j

)
njαk–j

(n + β)k
Mn(ej; z) +

knk–α
(n + β)k

Mn(ek–; z)

http://www.journalofinequalitiesandapplications.com/content/2013/1/442
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–
k–∑
j=

(
k
j

)
njβk–j

(n + β)k
Mn(ek ; z) –

α – βz
n

kzk–

=
k–∑
j=

(
k
j

)
njαk–j

(n + β)k
Mn(ej; z) +

knk–α
(n + β)k

[
Mn(ek–; z) – ek–(z)

]

+
knk–α
(n + β)k

zk– –
k–∑
j=

(
k
j

)
njβk–j

(n + β)k
Mn(ek ; z)

–
knk–β
(n + β)k

[
Mn(ek ; z) – ek(z)

]
–

knk–β
(n + β)k

zk –
α – βz

n
kzk–

=
k–∑
j=

(
k
j

)
njαk–j

(n + β)k
Mn(ej; z) +

knk–α
(n + β)k

[
Mn(ek–; z) – ek–(z)

]

–
k–∑
j=

(
k
j

)
njβk–j

(n + β)k
Mn(ek ; z) –

knk–β
(n + β)k

[
Mn(ek ; z) – ek(z)

]

–
[

n
–

nk–

(n + β)k

]
kαzk– +

[

n
–

nk–

(n + β)k

]
kβzk .

By the proof of [, Corollary ], for any k ∈N, |z| ≤ r, r ≥ , we have

∣∣Mn(ek ; z)
∣∣ ≤ rk ,

∣∣Mn(ek ; z) – ek
∣∣ ≤ k

n
rk .

Hence, for any k ≥ , |z| ≤ r, r ≥ , we can get

∣∣∣∣∣
k–∑
j=

(
k
j

)
njαk–j

(n + β)k
Mn(ej; z)

∣∣∣∣∣
≤

k–∑
j=

(
k
j

)
njαk–j

(n + β)k
rk–

=
k–∑
j=

k(k – )
(k – j)(k – j – )

(
k – 
j

)
njαk––j

(n + β)k–
· α

(n + β)
rk–

≤ k(k – )


· α

(n + β)

k–∑
j=

(
k – 
j

)
njαk––j

(n + β)k–
rk–

≤ k(k – )


· α

(n + β)
rk–

and
∣∣∣∣ knk–α(n + β)k

[
Mn(ek–; z) – ek–(z)

]∣∣∣∣ ≤ k(k – )α
n(n + β)

rk–.

Also, using


n
–

nk–

(n + β)k
=

∑k–
j=

(k
j
)
njβk–j

n(n + β)k
≤ kβ

n(n + β)

http://www.journalofinequalitiesandapplications.com/content/2013/1/442
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for any k ≥ , |z| ≤ r, r ≥ , we get

∣∣∣∣M(α,β)
n (ek ; z) –Mn(ek ; z) –

α – βz
n

kzk–
∣∣∣∣

≤ k(k – )


· α

(n + β)
rk– +

k(k – )α
n(n + β)

rk– +
k(k – )


· β

(n + β)
rk

+
kβ

n(n + β)
rk +

kαβ

n(n + β)
rk– +

kβ

n(n + β)
rk

=
rk–

n(n + β)
[
k(k – )α + kβr + kαβ + kβr

]

+
rk–

(n + β)
· k(k – )(α + βr)


.

On the other hand, when k = , using Lemma  andMn(e; z) = nz
n+ (see []), by a simple

calculation, we can get |M(α,β)
n (e; z) –Mn(e; z) – α–βz

n | ≤ 
n(n+β) (βr + αβ + βr).

So, for any k ∈N, |z| ≤ r, r ≥ , we have

∣∣∣∣M(α,β)
n (ek ; z) –Mn(ek ; z) –

α – βz
n

kzk–
∣∣∣∣

≤ rk–

n(n + β)
[
k(k – )α + kβr + kαβ + kβr

]

+
rk–

(n + β)
· k(k – )(α + βr)


.

Hence, we have

|I| ≤ M(α,β)
r, (f )

n(n + β)
+
M(α,β)

r, (f )
(n + β)

,

where M(α,β)
r, (f ) =

∑∞
k= |ck|[k(k – )α + kβr + kαβ + kβr]rk–, M(α,β)

r, (f ) =∑∞
k= |ck| k(k–)(α

+βr)
 rk–.

In conclusion, we obtain∣∣∣∣M(α,β)
n (f ; z) – f (z) –

α – ( + β)z
n

f ′(z) –
z( – z)

n
f ′′(z)

∣∣∣∣
≤ |I| + |I| ≤ Mr(f )

n
+
M(α,β)

r, (f )
n(n + β)

+
M(α,β)

r, (f )
(n + β)

. �

In the following theorem, we obtain the exact order of approximation.

Theorem Let  ≤ α ≤ β , R > ,DR = {z ∈C : |z| < R}. Suppose that f :DR → C is analytic
in DR. If f is not a polynomial of degree , then for any r ∈ [,R), we have

∥∥M(α,β)
n (f ; ·) – f

∥∥
r ≥ C(α,β)

r (f )
n

, n ∈N,

where ‖f ‖r = max{|f (z)|; |z| ≤ r} and the constant C(α,β)
r (f ) >  depends on f , r and α, β ,

but it is independent of n.
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Proof Define e(z) = z and

H (α,β)
n (f ; z) =M(α,β)

n (f ; z) – f (z) –
α – ( + β)z

n
f ′(z) –

z( – z)
n

f ′′(z).

For all z ∈DR and n ∈N, we have

M(α,β)
n (f ; z) – f (z)

=

n

{[
α – ( + β)z

]
f ′(z) + z( – z)f ′′(z) +


n

[
nH (α,β)

n (f ; z)
]}

.

In view of the property ‖F +G‖r ≥ |‖F‖r – ‖G‖r| ≥ ‖F‖r – ‖G‖r , it follows
∥∥M(α,β)

n (f ; ·) – f
∥∥
r

≥ 
n

{∥∥[
α – ( + β)e

]
f ′ + e( – e)f ′′∥∥

r –

n

[
n

∥∥H (α,β)
n (f ; ·)∥∥r

]}
.

Considering the hypothesis that f is not a polynomial of degree  in DR, we have

∥∥[
α – ( + β)e

]
f ′ + e( – e)f ′′∥∥

r > .

Indeed, supposing the contrary, it follows that

[
α – ( + β)z

]
f ′(z) + z( – z)f ′′(z) =  for all z ∈Dr .

Defining y(z) = f ′(z) and looking for the analytic function y(z) under the form y(z) =∑∞
k= akzk , after replacement in the differential equation, the coefficients identification

method immediately leads to ak =  for all k ∈ N ∪ {}. This implies that y(z) = 
for all z ∈ Dr and therefore f is constant on Dr , a contradiction with the hypothe-
sis.
Using inequality (), we get

n
∥∥H (α,β)

n (f ; ·)∥∥r ≤ N (α,β)
r (f ), ()

where N (α,β)
r (f ) =Mr(f ) +M(α,β)

r, (f ) +M(α,β)
r, (f ).

Therefore, there exists an index n, depending only on f , r and α, β , such that for all
n≥ n, we have

∥∥[
α – ( + β)e

]
f ′ + e( – e)f ′′∥∥

r –

n

[
n

∥∥H (α,β)
n (f ; ·)∥∥r

]
≥ 


∥∥[
( + α) – ( + β)e

]
f ′ + e( – e)f ′′∥∥

r ,

which implies

∥∥M(α,β)
n (f ; ·) – f

∥∥
r ≥ 

n
∥∥[

α – ( + β)e
]
f ′ + e( – e)f ′′∥∥

r for all n≥ n.

http://www.journalofinequalitiesandapplications.com/content/2013/1/442
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For n ∈ {, , . . . ,n – }, we have

∥∥M(α,β)
n (f ; ·) – f

∥∥
r ≥ W (α,β)

r,n (f )
n

,

whereW (α,β)
r,n (f ) = n‖M(α,β)

n (f ; ·) – f ‖r > .
As a conclusion, we have

∥∥M(α,β)
n (f ; ·) – f

∥∥
r ≥ C(α,β)

r (f )
n

for all n ∈N,

where

C(α,β)
r (f ) = min

{
W (α,β)

r, (f ),W (α,β)
r, (f ), . . . ,W (α,β)

r,n–(f ),



∥∥[

α – ( + β)e
]
f ′ + e( – e)f ′′∥∥

r

}
,

this completes the proof. �

Combining Theorem  with Theorem , we get the following result.

Corollary  Let ≤ α ≤ β ,R > ,DR = {z ∈ C : |z| < R}. Suppose that f :DR →C is analytic
in DR. If f is not a polynomial of degree , then for any r ∈ [,R), we have

∥∥M(α,β)
n (f ; ·) – f

∥∥
r 
 

n
, n ∈N,

where ‖f ‖r =max{|f (z)|; |z| ≤ r} and the constants in the equivalence depend on f , r and α,
β , but they are independent of n.

Theorem Let  ≤ α ≤ β , R > ,DR = {z ∈C : |z| < R}. Suppose that f :DR →C is analytic
in DR. Also, let  ≤ r < r < R and p ∈ N be fixed. If f is not a polynomial of degree ≤ p – ,
then we have

∥∥(
M(α,β)

n (f ; ·))(p) – f (p)
∥∥
r 
 

n
, n ∈N,

where ‖f ‖r =max{|f (z)|; |z| ≤ r} and the constants in the equivalence depend on f , r, r, p,
α and β , but they are independent of n.

Proof Taking into account the upper estimate in Theorem , it remains to prove the lower
estimate only. Denoting by � the circle of radius r > r and center , by Cauchy’s formula,
it follows that for all |z| ≤ r and n ∈ N, we have

(
M(α,β)

n (f ; z)
)(p) – f (p)(z) =

p!
π i

∫
�

M(α,β)
n (f ; v) – f (v)
(v – z)p+

dv.

http://www.journalofinequalitiesandapplications.com/content/2013/1/442
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Keeping the notation there for H (α,β)
n (f ; z), for all n ∈N, we have

M(α,β)
n (f ; z) – f (z)

=

n

{[
α – ( + β)z

]
f ′(z) + z( – z)f ′′(z) +


n

[
nH (α,β)

n (f ; z)
]}

.

By using Cauchy’s formula, for all v ∈ �, we get

(
M(α,β)

n (f ; z)
)(p) – f (p)(z) =


n

{[(
α – ( + β)z

)
f ′(z) + z( – z)f ′′(z)

](p)

+

n

· p!
π i

∫
�

nH (α,β)
n (f ; v)

(v – z)p+
dv

}
.

Passing now to ‖ · ‖r and denoting e(z) = z, it follows

∥∥(
M(α,β)

n (f ; ·))(p) – f (p)
∥∥
r ≥ 

n

[∥∥[(
α – ( + β)e

)
f ′ + e( – e)f ′′](p)∥∥

r

–

n

∥∥∥∥ p!
π i

∫
�

nH (α,β)
n (f ; v)

(v – ·)p+ dv
∥∥∥∥
r

]
.

Since for any |z| ≤ r and υ ∈ � we have |υ – z| ≥ r – r, so, by inequality (), we get

∥∥∥∥ p!
π i

∫
�

nH (α,β)
n (f ; v)

(v – ·)p+ dv
∥∥∥∥
r
≤ p!

π
· πrn

‖H (α,β)
n (f ; ·)‖r

(r – r)p+

≤ N (α,β)
r (f )p!r
(r – r)p+

,

where N (α,β)
r (f ) =Mr (f ) +M(α,β)

r, (f ) +M(α,β)
r, (f ).

Taking into account that the function f is analytic in DR, by following exactly the lines
in Gal [], seeing also the book Gal [, pp.-] (where it is proved that ‖[(α – βe)f ′ +
e(–e)

 f ′′](p)‖r > ), we have

∥∥[(
α – ( + β)e

)
f ′ + e( – e)f ′′](p)∥∥

r > .

In continuation, reasoning exactly as in the proof of Theorem , we can get the desired
conclusion. �
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