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1 Introduction
Convexity plays a central and fundamental role in the fields of mathematical finance, eco-
nomics, engineering, management sciences, and optimization theory. In recent years, the
concept of convexity has been extended and generalized in several directions using the
novel and innovative ideas; see, for example, [–] and the references therein. A signifi-
cant generalization of a convex set and a convex function was the introduction of a relative
convex (g-convex) set and a relative convex (g-convex) function by Youness []. Noor []
showed that the optimality condition for a relative convex function on the relative convex
set can be characterized by a class of variational inequalities known as general variational
inequalities. Motivated by the work of Youness [] and Noor [], Chen [] introduced
and studied a new class of functions called relative semi-convex functions. Noor et al. []
derived Hermite-Hadamard inequalities for differentiable relative semi-convex functions.
For useful details on Hermite-Hadamard inequalities, see [, –, , –].
Niculescu [] introduced the concept of relative convexity and proved various properties

and generalizations of classical results for relative convexity. Mercer [] has also proved
some useful results for relative convexity.
In this paper, we derive some Hermite-Hadamard inequalities for the relative semi-

convex function and the logarithmic relative semi-convex function. The ideas of this paper
may stimulate further research in this area.

2 Preliminaries
In this section, we recall some basic results and concepts, which are useful in proving our
results. LetRn be a finite dimensional space, the inner product of which is denoted by 〈·, ·〉.
© 2013 Noor et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
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Definition . [] A setM ⊆R
n is said to be a relative convex (g-convex) set if and only

if there exists an arbitrary function g :Rn →R
n such that

( – t)g(x) + tg(y) ∈M, ∀x, y ∈R
n : g(x), g(y) ∈M, t ∈ [, ]. (.)

It is known [] that if M is a relative convex set, then it may not be a classical convex
set. For example, for M = [–,– 

 ] ∪ [, ] and g(x) = x, ∀x ∈ R. Clearly, this is a relative
convex set but not a classical convex set.

Definition . [] A function f is said to be a relative convex (g-convex) function on the
relative convex setM if and only if there exists a function g :Rn →R

n such that

f
(
( – t)g(x) + tg(y)

) ≤ ( – t)f
(
g(x)

)
+ tf

(
g(y)

)
,

∀x, y ∈R
n : g(x), g(y) ∈M, t ∈ [, ]. (.)

Every convex function f on a convex set is a relative convex function. However, the con-
verse is not true. There are functions which are relative convex functions but may not be
convex functions in the classical sense, see [].

Definition . [] A function f is said to be a relative semi-convex function if and only if
there exists an arbitrary function g :Rn →R

n such that

f
(
( – t)g(x) + tg(y)

) ≤ ( – t)f (x) + tf (y), x, y ∈M, t ∈ [, ]. (.)

Remark . A relative semi-convex function on a relative convex set is not necessarily a
relative convex function, see [].

Definition . [] A function f :M → R
+ is said to be relative logarithmic semi-convex

on a relative convex setM if

f
(
( – t)g(x) + tg(y)

) ≤ [
f (x)

]–t[f (y)]t , ∀x, y ∈M, t ∈ [, ]. (.)

From Definition . it follows that

f
(
( – t)g(x) + tg(y)

) ≤ [
f (x)

]–t[f (y)]t
≤ ( – t)f (x) + tf (y),

which shows that every relative logarithmic semi-convex function is a relative semi-convex
function, but the converse is not true.

Definition . [] Let f ∈ L[a,b]. The generalized Riemann-Liouville fractional inte-
grals Jαa+ f and Jαb– f of order α >  with p≥  are defined by

Jαp,a+ f (x) =
(p + )–α

�(α)

∫ x

a

(
xp+ – tp+

)α–tpf (t)dt, x > a,
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and

Jαp,b– f (x) =
(p + )–α

�(α)

∫ b

x

(
tp+ – xp+

)α–tpf (t)dt, x < b,

respectively, where �(α) =
∫ ∞
 e–txα– dx is the gamma function.

If p = , then Definition . reduces to the definition for classical Riemann-Liouville
integrals. See also [, ].

Definition . [] Two functions f and g are said to be similarly ordered on I ⊆R if

〈
f (x) – f (y), g(x) – g(y)

〉 ≥ , ∀x, y ∈ I.

Let M = I = [g(a), g(b)] be a relative semi-convex set. We now define a relative semi-
convex function on I , which appears to be a new one.

Definition . Let I = [g(a), g(b)], then f is called a relative semi-convex function if and
only if

∣∣∣∣∣∣∣
  

g(a) g(x) g(b)
f (a) f (g(x)) f (b)

∣∣∣∣∣∣∣
≥ ; g(a) ≤ g(x)≤ g(b).

One can easily show that the following are equivalent:
. f is a relative semi-convex function on a relative convex set.
. f (g(x))≤ f (a) + f (b)–f (a)

g(b)–g(a) (g(x) – g(a)).

. f (g(x))–f (a)
g(x)–g(a) ≤ f (b)–f (a)

g(b)–g(a) ≤ f (b)–f (g(x))
g(b)–g(x) .

. –f (a)
(g(x)–g(a))(g(b)–g(a)) +

f (g(x))
(g(b)–g(x))(g(x)–g(a)) –

f (b)
(g(b)–g(a))(g(b)–g(x)) ≥ .

. (g(b) – g(x))f (a) – (g(b) – g(a))f (g(x)) + (g(x) – g(a))f (b)≥ ,
where g(x) = ( – t)g(a) + tg(b) ∈M, t ∈ [, ].
For the applications of the relative convex functions, see [].

Remark . We note that if f is a differentiable relative semi-convex function, then

f
(
g(y)

)
– f (x)≥

〈
f ′(x)
g ′(x)

, g(y) – g(x)
〉
, ∀g(y) ∈ (

g(a), g(b)
)
.

3 Main results
In this section we discuss our main results.
Essentially using the techniques of [], one can prove the following results for relative

semi-convexity.

Lemma . Let f be a relative semi-convex function. If g is not a constant function, then

g(a) = g(x) implies f (a) = f
(
g(x)

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/332
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Lemma. Let f : I →R be a relative semi-convex function,where I = [g(a), g(b)]. If g(x) /∈
{g(a), g(b)}, then

f (b) – f (g(x))
g(b) – g(x)

≥ f (a) – f (g(x))
g(a) – g(x)

.

Lemma . Let f be a relative semi-convex function. Consider g(x), g(x), . . . , g(xn) ∈ I ,
g(y), g(y), . . . , g(yn) ∈ I and weights ω,ω, . . . ,ωn ∈R such that:

(i) g(x) ≥ g(x) ≥ · · · ≥ g(xn) and g(y) ≥ g(y)≥ · · · ≥ g(yn),
(ii)

∑r
k= ωkg(xk) ≤ ∑r

k= ωkg(yk), ∀r = , . . . ,n,
(iii)

∑n
k= ωkg(xk) =

∑n
k= ωkg(yk),

then we have

n∑
k=

ωkf
(
g(xk)

) ≤
n∑
k=

ωkf (yk).

Lemma . Let f be a relative semi-convex function. Consider g(x), g(x), . . . , g(xn) ∈ I ,
g(y), g(y), . . . , g(yn) ∈ I and weights ω,ω, . . . ,ωn ∈R such that

(i) g(x) ≥ g(x) ≥ · · · ≥ g(xn) and g(y) ≥ g(y)≥ · · · ≥ g(yn),
(ii)

∑r
k= ωkg(xk) ≤ ∑r

k= ωkg(yk), ∀r = , . . . ,n,
(iii) 〈f (x) – f (y), g(x) – g(y)〉 ≥ ,

then we have

n∑
k=

ωkf
(
g(xk)

) ≤
n∑
k=

ωkf (yk).

Lemma . Let f be a relative semi-convex function, then, for all g(a) < g(c) < g(d) < g(b),
we have

f (a) + f (b)


– f
(
g(a) + g(b)



)
≥ f (c) + f (d)


– f

(
g(c) + g(d)



)
.

Theorem . Let f and w be two relative semi-convex functions. Then the product of f
and w will be a relative semi-convex function if f and w are similarly ordered functions.

Proof Since f and w are relative semi-convex functions, so we have

f
(
( – t)g(a) + tg(b)

)
w

(
( – t)g(a) + tg(b)

)
≤ [

( – t)f (a) + tf (b)
][
( – t)w(a) + tw(b)

]
= [ – t]f (a)w(a) + t( – t)f (a)w(b) + t( – t)f (b)w(a) + [t]f (b)w(b)

= ( – t)f (a)w(a) + tf (b)w(b) – t( – t)
[
f (a)w(a) + f (b)w(b) – f (b)w(a) – f (a)w(b)

]
≤ ( – t)f (a)w(a) + tf (b)w(b),

where we have used the fact that f and w are similarly ordered. This completes the proof.
�

We now obtain some Hermite-Hadamard inequalities for relative semi-convex func-
tions.
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Theorem . Let f : I ⊆R →R be a relative semi-convex function on I = [g(a), g(b)] with
g(a) < g(b), then we have

f
(
g(a) + g(b)



)
≤ 

g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
dg(x) ≤ f (a) + f (b)


. (.)

Proof Let f be relative semi-convex. Then

f
(
g(a) + g(b)



)
=

∫ 


f
(
g(a) + g(b)



)
dt

=
∫ 


f
(
( – t)g(a) + tg(b) + tg(a) + ( – t)g(b)



)
dt

≤ 


∫ 



[
f
(
( – t)g(a) + tg(b)

)
+ f

(
tg(a) + ( – t)g(b)

)]
dt

=


g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
dg(x) =

∫ 


f
(
( – t)g(a) + tg(b)

)
dt

≤
∫ 



(
( – t)f (a) + tf (b)

)
dt =

f (a) + f (b)


. �

Using the technique of [], we can prove the following result.

Lemma . Let f be a semi-relative convex function. Then, for any g(x) ∈ [g(a), g(b)], we
have

f
(
g(a) + g(b) – g(x)

) ≤ f (a) + f (b) – f
(
g(x)

)
.

Theorem . Let f be a relative semi-convex function and let w : [g(a), g(b)]→R be non-
negative, integrable and symmetric about g(a)+g(b)

 . Then

f
(
g(a) + g(b)



)∫ g(b)

g(a)
w

(
g(x)

)
dg(x) ≤

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x)

≤ f (a) + f (b)


∫ g(b)

g(a)
w

(
g(x)

)
dg(x). (.)

Proof Since f is a relative semi-convex function and w : [g(a), g(b)] → R is nonnegative,
integrable and symmetric about g(a)+g(b)

 , we have

f
(
g(a) + g(b)



)∫ g(b)

g(a)
w

(
g(x)

)
dg(x)

=
∫ g(b)

g(a)
f
(
g(a) + g(b)



)
w

(
g(x)

)
dg(x)

≤
∫ g(b)

g(a)

[


(
f
(
g(a) + g(b) – g(x)

)
+ f

(
g(x)

))]
w

(
g(x)

)
dg(x)

≤
∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x)
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=



∫ g(b)

g(a)
f
(
g(a) + g(b) – g(x)

)
w

(
g(x)

)
dg(x) +




∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x)

≤ 


∫ g(b)

g(a)

{
f (a) + f (b) – f

(
g(x)

)}
w

(
g(x)

)
dg(x) +




∫ g(b)

a
f
(
g(x)

)
w

(
g(x)

)
dg(x)

=
f (a) + f (b)



∫ g(b)

g(a)
w

(
g(x)

)
dg(x).

This completes the proof. �

Theorem. Let f ,w : I ⊆ R→R be relative semi-convex functions on I with g(a) < g(b).
Then, for all t ∈ [, ], we have

f
(
g(a) + g(b)



)
w

(
g(a) + g(b)



)
–

[


M(a,b) +



N(a,b)

]

≤ 
g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x) ≤ 


M(a,b) +



N(a,b),

where

M(a,b) = f (a)w(a) + f (b)w(b), (.)

N(a,b) = f (a)w(b) + f (b)w(a). (.)

Proof Let f and w be relative semi-convex functions. Then

f
(
g(a) + g(b)



)
w

(
g(a) + g(b)



)

= f
(
tg(a) + ( – t)g(b) + ( – t)g(a) + tg(b)



)

×w
(
tg(a) + ( – t)g(b) + ( – t)g(a) + tg(b)



)

≤ 

[
f
(
tg(a) + ( – t)g(b)

)
+ f

(
( – t)g(a) + tg(b)

)]

× 

[
w

(
tg(a) + ( – t)g(b)

)
+w

(
( – t)g(a) + tg(b)

)]

=



[
f
(
tg(a) + ( – t)g(b)

)
w

(
tg(a) + ( – t)g(b)

)

+ f
(
( – t)g(a) + tg(b)

)
w

(
( – t)g(a) + tg(b)

)]

+



[
f
(
tg(a) + ( – t)g(b)

)
w

(
( – t)g(a) + tg(b)

)

+ f
(
( – t)g(a) + tg(b)

)
w

(
tg(a) + ( – t)g(b)

)]

≤ 


[
f
(
tg(a) + ( – t)g(b)

)
w

(
tg(a) + ( – t)g(b)

)

+ f
(
( – t)g(a) + tg(b)

)
w

(
( – t)g(a) + tg(b)

)]

+



[
t( – t)

(
f (a)w(a) + f (b)w(b)

)
+

(
t + ( – t)

)(
f (b)w(a) + f (a)w(b)

)]
.
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Integrating with respect to t on [, ], we have

f
(
g(a) + g(b)



)
w

(
g(a) + g(b)



)

≤ 


[


g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x)

]
+



[


M(a,b) +



N(a,b)

]
.

This implies that

f
(
g(a) + g(b)



)
w

(
g(a) + g(b)



)
–

[


M(a,b) +



N(a,b)

]

≤ 
g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x)

=
∫ 


f
(
tg(a) + ( – t)g(b)

)
w

(
tg(a) + ( – t)g(b)

)
dt

≤
∫ 



[
tf (a) + ( – t)f (b)

][
tw(a) + ( – t)w(b)

]
dt

=


M(a,b) +



N(a,b).

This completes the proof. �

Theorem. Let f ,w : I ⊆R →R be relative semi-convex functions on I with g(a) < g(b).
If w is symmetric about g(a)+g(b)

 , then for all t ∈ [, ] we have


g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(a) + g(b) – g(x)

)
dg(x)≤ 


M(a,b) +



N(a,b),

where M(a,b) and N(a,b) are given by (.) and (.), �(a,b) = [f (a)] + [f (b)] + [w(a)] +
[w(b)].

Proof Since f and w are relative semi-convex functions, then we have


g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(a) + g(b) – g(x)

)
dg(x)

=
∫ 


f
(
tg(a) + ( – t)g(b)

)
w

(
( – t)g(a) + tg(b)

)
dt

≤ 


∫ 



{[
f
(
tg(a) + ( – t)g(b)

)] + [
w

(
( – t)g(a) + tg(b)

)]}dt

≤ 


∫ 



{[
tf (a) + ( – t)f (b)

] + [
( – t)w(a) + tw(b)

]}dt
=



{[
f (a)

] + [
f (b)

] + f (a)f (b) +
[
w(a)

] + [
w(b)

] +w(a)w(b)
}

≤ 


{[
f (a)

] + [
f (b)

] + [
w(a)

] + [
w(b)

]} = 


�(a,b)

≤
∫ 



(
tf (a) + ( – t)f (b)

)(
( – t)w(a) + tw(b)

)
dt

http://www.journalofinequalitiesandapplications.com/content/2013/1/332
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=


f (a)w(a) +



f (a)w(b) +



f (b)w(a) +



f (b)w(b)

=


M(a,b) +



N(a,b).

The desired result. �

Theorem . Let f ,w : I ⊆ R → R be similarly ordered and relative semi-convex func-
tions on I with g(a) < g(b). Then, for all t ∈ [, ], we have

f
(
g(a) + g(b)



)
w

(
g(a) + g(b)



)
–


M(a,b)

≤ 
g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x) ≤ f (a)w(a) + f (b)w(b)


,

where M(a,b) is given by (.).

Proof Since f and w are similarly ordered functions, the proof follows from Theo-
rem .. �

Theorem . Let f be a relative semi-convex function, then for all λ ∈ (, ) we have

f
(
g(a) + g(b)



)
≤ �(λ)≤ 

g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
dg(x)

≤ �(λ) ≤ f (a) + f (b)


, (.)

where

�(λ) = λf
(
( – λ)g(a) + λg(b)



)
+ ( – λ)f

(
( – λ)g(a) + ( + λ)g(b)



)

and

�(λ) =
f (( – λ)g(a) + λg(b)) + λf (a) + ( – λ)f (b)


.

Proof We divide the interval [g(a), g(b)] into [g(a), ( – λ)g(a) + λg(b)] and [( – λ)g(a) +
λg(b), g(b)]. Using the left-hand side of (.), we have

f
(
( – λ)g(a) + λg(b)



)
≤ 

λ(g(b) – g(a))

∫ (–λ)g(a)+λg(b)

g(a)
f
(
g(x)

)
dg(x), (.)

f
(
( – λ)g(a) + ( + λg(b))



)
≤ 

( – λ)(g(b) – g(a))

∫ g(b)

(–λ)g(a)+λg(b)
f
(
g(x)

)
dg(x). (.)

Multiplying (.) by λ and (.) by ( – λ), and then adding the resultant, we have

�(λ) = λf
(
( – λ)g(a) + λg(b)



)
+ ( – λ)f

(
( – λ)g(a) + ( + λg(b))



)

≤ 
g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
dg(x). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/332
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Now, using the right-hand side of (.), we have


λ(g(b) – g(a))

∫ (–λ)g(a)+λg(b)

g(a)
f
(
g(x)

)
dg(x) ≤ f (g(a)) + f (( – λ)g(a) + λg(b))



≤ f (a) + f (( – λ)g(a) + λg(b))


, (.)


( – λ)(g(b) – g(a))

∫ g(b)

(–λ)g(a)+λg(b)
f
(
g(x)

)
dg(x) ≤ f (( – λ)g(a) + λg(b)) + f (g(b))



≤ f (( – λ)g(a) + λg(b)) + f (b)


. (.)

Multiplying (.) by λ and (.) by ( – λ) and adding the resultant, we have


g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
dg(x) ≤ f (( – λ)g(a) + λg(b)) + λf (a) + ( – λ)f (b)



= �(λ). (.)

Now, using the fact that f is a relative semi-convex function, and also every convex func-
tion is a relative semi-convex function, we have

f
(
g(a) + g(b)



)

= f
(

λ
( – λ)g(a) + λg(b)


+ ( – λ)

( – λ)g(a) + ( + λ)g(b)


)

≤ λf
(
( – λ)g(a) + λg(b)



)
+ ( – λ)f

(
( – λ)g(a) + ( + λ)g(b)



)
= �(λ)

≤ 
g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
dg(x)

≤ 

[
λf

(
( – λ)g(a) + λg(b)

)
+ λf (a) + ( – λ)f

(
( – λ)g(a) + λg(b)

)
+ ( – λ)f (b)

]

=


[
f
(
( – λ)g(a) + λg(b)

)
+ λf (a) + ( – λ)f (b)

]
= �(λ)

≤ 

[
( – λ)f (a) + λf (b) + λf (a) + ( – λ)f (b)

]
=
f (a) + f (b)


, (.)

the required result. �

Remark . For suitable and different choices of λ ∈ (, ) and g = I in Theorem .,
one can obtain several new and previously known results for various classes of convex
functions.

We now prove the Hermite-Hadamard type inequalities for relative semi-convex func-
tions via fractional integrals.

Theorem . Let f be a relative semi-convex function. Then

Jαp,g(a)+ f
(
g(b)

)
+ Jαp,g(b)– f

(
g(a)

) ≤ [
f (a) + f (b)

][
Jαp,g(a)+ () + Jαp,g(b)– ()

]
, α > ,p≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/332


Noor et al. Journal of Inequalities and Applications 2013, 2013:332 Page 10 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/332

Proof Since f is a relative semi-convex function onM, so

(p + )–α

�(α)

∫ 



([
g(b)

]p+ – [
( – t)g(a) + tg(b)

]p+)α–

× [
( – t)g(a) + tg(b)

]pf (( – t)g(a) + tg(b)
)
dt

≤ (p + )–α

�(α)
f (a)

∫ 



([
g(b)

]p+ – [
( – t)g(a) + tg(b)

]p+)α–

× [
( – t)g(a) + tg(b)

]p( – t)dt

+
(p + )–α

�(α)
f (b)

∫ 



([
g(b)

]p+ – [
( – t)g(a) + tg(b)

]p+)α–

× [
( – t)g(a) + tg(b)

]p(t)dt.

Let g(x) = ( – t)g(a) + tg(b), then dt = dg(x)
g(b)–g(a) . Take t =

g(x)–g(a)
g(b)–g(a) ,  – t = g(b)–g(x)

g(b)–g(a) . Then we
have

(p + )–α

�(α)(g(b) – g(a))

∫ g(b)

g(a)

([
g(b)

]p+ – [
g(x)

]p+)α–[g(x)]pf (g(x))dg(x)

≤ (p + )–α

�(α)
f (a)

g(b) – g(a)

∫ g(b)

g(a)

([
g(b)

]p+ – [
g(x)

]p+)α–[g(x)]p g(b) – g(x)
g(b) – g(a)

dg(x)

+
(p + )–α

�(α)
f (b)

g(b) – g(a)

×
∫ g(b)

g(a)

([
g(b)

]p+ – [
g(x)

]p+)α–[g(x)]p g(x) – g(a)
g(b) – g(a)

dg(x)

≤ [
f (a) + f (b)

] (p + )–α

�(α)

∫ g(b)

g(a)

([
g(b)

]p+ – [
g(x)

]p+)α–[g(x)]p dg(x).

This implies that

Jαp,g(a)+ f
(
g(b)

) ≤ [
f (a) + f (b)

]
Jαp,g(a)+ (). (.)

Also

(p + )–α

�(α)

∫ 



([
( – t)g(a) + tg(b)

]p+ – [
g(a)

]p+)α–

× [
( – t)g(a) + tg(b)

]pf (( – t)g(a) + tg(b)
)
dt

≤ (p + )–α

�(α)
f (a)

∫ 



([
( – t)g(a) + tg(b)

]p+ – [
g(a)

]p+)α–

× [
( – t)g(a) + tg(b)

]p( – t)dt

+
(p + )–α

�(α)
f (b)

∫ 



([
( – t)g(a) + tg(b)

]p+ – [
g(a)

]p+)α–

× [
( – t)g(a) + tg(b)

]p(t)dt.
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This implies that

(p + )–α

�(α)(g(b) – g(a))

∫ g(b)

g(a)

([
g(x)

]p+ – [
g(a)

]p+)α–[g(x)]pf (g(x))dg(x)

≤ (p + )–α

�(α)
f (a)

g(b) – g(a)

∫ g(b)

g(a)

([
g(x)

]p+ – [
g(a)

]p+)α–[g(x)]p g(b) – g(x)
g(b) – g(a)

dg(x)

+
(p + )–α

�(α)
f (b)

g(b) – g(a)

∫ g(b)

g(a)

([
g(x)

]p+ – [
g(a)

]p+)α–[g(x)]p g(x) – g(a)
g(b) – g(a)

dg(x)

≤ [
f (a) + f (b)

] (p + )–α

�(α)

∫ g(b)

g(a)

([
g(x)

]p+ – [
g(a)

]p+)α–[g(x)]p dg(x).

This implies that

Jαp,g(b)– f
(
g(a)

) ≤ [
f (a) + f (b)

]
Jαp,g(b)– (). (.)

Combining (.) and (.), we have the required result. �

Remark . We can prove the Hermite-Hadamard inequality for the classical Riemann-
Liouville integrals as follows:

f
(
g(a) + g(b)



)
≤ �(α + )

(g(b) – g(a))α
[
Jαg(a)+ f

(
g(b)

)
+ Jαg(b)– f

(
g(a)

)] ≤ f (a) + f (b)


.

We now derive the Hermite-Hadamard inequalities for the class of relative logarithmic
semi-convex functions.

Theorem . Let f : I ⊆ R → R be a relative logarithmic semi-convex function, then for
all t ∈ [, ] we have

f
(
g(a) + g(b)



)
≤ exp

[


g(b) – g(a)

∫ g(b)

g(a)
log f

(
g(x)

)
dg(x)

]
≤ √

f (a)f (b).

Theorem . Let f : I ⊆ R → R be a relative logarithmic semi-convex function, then for
all t ∈ [, ],

f
(
g(a) + g(b)



)
≤ exp

[


g(b) – g(a)

∫ g(b)

g(a)
log f

(
g(x)

)
dg(x)

]

≤ 
g(b) – g(a)

∫ g(b)

g(a)
G

(
f
(
g(x)

)
, f

(
g(a) + g(b) – g(x)

))
dg(x)

≤ 
g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
dg(x) ≤ L

[
f (b), f (a)

] ≤ f (a) + f (b)


,

where L[f (b), f (a)] = f (b)–f (a)
log f (b)–log f (a) , and G[f (a), f (b)] =

√
f (a)f (b).
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Proof The proof of the first inequality follows directly from Theorem .. For the second
inequality, we consider


g(b) – g(a)

∫ g(b)

g(a)
G

(
f
(
g(x)

)
, f

(
g(a) + g(b) – g(x)

))
dg(x)

=


g(b) – g(a)

∫ g(b)

g(a)
exp

[
logG

(
f
(
g(x)

)
, f

(
g(a) + g(b) – g(x)

))]
dg(x)

≥ exp

[


g(b) – g(a)

∫ g(b)

g(a)
logG

(
f
(
g(x)

)
, f

(
g(a) + g(b) – g(x)

))
dg(x)

]

= exp

[


g(b) – g(a)

∫ g(b)

g(a)

log f (g(x)) + log f (g(a) + g(b) – g(x))


dg(x)
]

= exp

[


g(b) – g(a)

∫ g(b)

g(a)
log f

(
g(x)

)
dg(x)

]
.

Using the AM-GM inequality, we have

G
(
f
(
g(x)

)
, f

(
g(a) + g(b) – g(x)

)) ≤ f (g(x)) + f (g(a) + g(b) – g(x))


.

Integrating the above inequality with respect to x on [g(a), g(b)], we have


g(b) – g(a)

∫ g(b)

g(a)
G

(
f
(
g(x)

)
, f

(
g(a) + g(b) – g(x)

))
dg(x)

≤ 
g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
dg(x).

Now, using the fact that f is a relative semi-convex function and applying the change of
variable technique on the right-hand side of the above inequality completes the proof. �

Theorem . Let f ,w : I ⊆ R → R be relative logarithmic semi-convex functions, then
we have


g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x) ≤ L

[
f (a)w(b), f (a)w(a)

]

≤ f (a)w(a) + f (b)w(b)


≤ 


�(a,b),

where �(a,b) = [f (a)] + [f (b)] + [w(a)] + [w(b)].

Proof Let f and w be relative logarithmic semi-convex functions. Then


g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x)

=
∫ 


f
(
( – t)g(a) + tg(b)

)
w

(
( – t)g(a) + tg(b)

)

≤
∫ 



[
f (a)w(a)

]–t[f (b)w(b)]t dt = f (b)w(b) – f (a)w(a)
log f (b)w(b) – log f (a)w(a)
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= L
[
f (b)w(b), f (a)w(a)

] ≤ f (a)w(a) + f (b)w(b)


≤ 


∫ 



[{
f
(
( – t)g(a) + tg(b)

)} + {
w

(
( – t)g(a) + tg(b)

)}]dt

≤ 


∫ 



[{[
f (a)

]–t[f (b)]t} + {[
w(a)

]–t[w(b)]t}]dt

=



[
[f (a) + f (b)][f (b) – f (a)]

log f (b) – log f (a)
+
[w(a) +w(b)][w(b) –w(a)]

logw(b) – logw(a)

]

≤ 

[[
f (a) + f (b)

] + [
w(a) +w(b)

]] ≤ 


�(a,b). �

Theorem . Let f ,w : I ⊆R →R be relative logarithmic semi-convex functions, then

logw
(
g(a) + g(b)



)
–


g(b) – g(a)

∫ g(b)

g(a)
logw

(
g(x)

)
dg(x)

≤ 
g(b) – g(a)

∫ g(b)

g(a)
log f

(
g(x)

)
dg(x) – log f

(
g(a) + g(b)



)
.

Proof Let f and w be relative logarithmic semi-convex functions. Then

log f
(
g(a) + g(b)



)
w

(
g(a) + g(b)



)

= log

[
f
(
( – t)g(a) + tg(b) + tg(a) + ( – t)g(b)



)

×w
(
( – t)g(a) + tg(b) + tg(a) + ( – t)g(b)



)]

≤ log
[[
f
(
( – t)g(a) + tg(b)

)
f
(
tg(a) + ( – t)g(b)

)] 


× [
w

(
( – t)g(a) + tg(b)

)
w

(
tg(a) + ( – t)g(b)

)] 

]

=


[
log f

(
( – t)g(a) + tg(b)

)
+ log f

(
tg(a) + ( – t)g(b)

)]

+


[
logw

(
( – t)g(a) + tg(b)

)
+ logw

(
tg(a) + ( – t)g(b)

)]
.

Integrating both sides of the above inequality with respect to t on [, ], we have the re-
quired result. �

Theorem . Let f ,w : I ⊆R→R be relative logarithmic semi-convex functions, then


g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(a) + g(b) – g(x)

)
dg(x)

≤ f (a)w(b) – f (b)w(a)
log f (a)w(b) – log f (b)w(a)

≤ 


�(a,b),

where �(a,b) = [f (a)] + [f (b)] + [w(a)] + [w(b)].
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Proof Since f , w are relative logarithmic semi-convex functions, then we have


g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(a) + g(b) – g(x)

)
dg(x)

=
∫ 


f
(
tg(a) + ( – t)g(b)

)
w

(
( – t)g(a) + tg(b)

)
dt

≤
∫ 



[
f (a)

]t[f (b)]–t[w(a)]–t[w(b)]t dt

=
f (a)w(b) – f (b)w(a)

log f (a)w(b) – log f (b)w(a)

= L
[
f (a)w(b), f (b)w(a)

] ≤ f (a)w(b) + f (b)w(a)


≤ 


∫ 



{[
f
(
tg(a) + ( – t)g(b)

)] + [
w

(
( – t)g(a) + tg(b)

)]}dt

≤ 


∫ 



{[
f (a)

]t[f (b)]–t} dt + 


∫ 



{[
w(a)

]–t[w(b)]t} dt

=



[f (a)] – [f (b)]

log f (a) – log f (b)
+



[w(a)] – [w(b)]

logw(a) – logw(b)

=



[
f (a) + f (b)


f (a) – f (b)

log f (a) – log f (b)

]
+



[
w(a) +w(b)


w(a) –w(b)

logw(a) – logw(b)

]

≤ 


[
f (a) + f (b)


f (a) + f (b)



]
+



[
w(a) +w(b)


w(a) +w(b)



]
≤ 


�(a,b),

which is the required result. �

Theorem . Let f ,w : I → (,∞) be increasing and relative logarithmic semi-convex
functions on I with g(a), g(b) ∈ I . Then we have

f
(
g(a) + g(b)



)
L
[
w(a),w(b)

]
+w

(
g(a) + g(b)



)
L
[
f (a), f (b)

]

≤ 
g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x) + L

[
f (a)w(a), f (b)w(b)

]
.

Proof Let f and w be relative logarithmic semi-convex functions. Then

f
(
tg(a) + ( – t)g(b)

) ≤ [
f (a)

]t[f (b)]–t ,
w

(
tg(a) + ( – t)g(b)

) ≤ [
w(a)

]t[w(b)]–t .

Now, using 〈x – x,x – x〉 ≥  (x,x,x,x ∈ R) and x < x < x < x, we have

f
(
tg(a) + ( – t)g(b)

)[
w(a)

]t[w(b)]–t +w
(
tg(a) + ( – t)g(b)

)[
f (a)

]t[f (b)]–t
≤ f

(
tg(a) + ( – t)g(b)

)
w

(
tg(a) + ( – t)g(b)

)
+

[
f (a)

]t[f (b)]–t[w(a)]t[w(b)]–t .
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Integrating the above inequalities with respect to t on [, ], we have

∫ 


f
(
tg(a) + ( – t)g(b)

)[
w(a)

]t[w(b)]–t dt

+
∫ 


w

(
tg(a) + ( – t)g(b)

)[
f (a)

]t[f (b)]–t dt

≤
∫ 


f
(
tg(a) + ( – t)g(b)

)
w

(
tg(a) + ( – t)g(b)

)
dt

+
∫ 



[
f (a)

]t[f (b)]–t[w(a)]t[w(b)]–t dt.

Now, since f and w are increasing, using Chebyshev inequalities [], we have

∫ 


f
(
tg(a) + ( – t)g(b)

)
dt

∫ 



[
w(a)

]t[w(b)]–t dt

+
∫ 


w

(
tg(a) + ( – t)g(b)

)
dt

∫ 



[
f (a)

]t[f (b)]–t dt

≤
∫ 


f
(
tg(a) + ( – t)g(b)

)
w

(
tg(a) + ( – t)g(b)

)
dt

+
∫ 



[
f (a)

]t[f (b)]–t[w(a)]t[w(b)]–t dt.

Now calculating the simple integration, we have


g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
dg(x)L

[
w(a),w(b)

]

+


g(b) – g(a)

∫ g(b)

g(a)
w

(
g(x)

)
dg(x)L

[
f (a), f (b)

]

≤ 
g(b) – g(a)

∫ g(b)

g(a)
f
(
g(x)

)
w

(
g(x)

)
dg(x) + L

[
f (a)w(a), f (b),w(b)

]
.

Now, using the left-hand side of Hermite-Hadamard’s inequality for relative logarithmic
semi-convex functions, we have the required result. �
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